# PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY

Save this PDF as:

Size: px
Start display at page:

Download "PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY"

## Transcription

1 PUMP CLINIC 22 VISCOSITY The viscosity of a fluid is that property which tends to resist a shearing force. It can be thought of as the internal friction resulting when one layer of fluid is made to move in relation to another layer. A detailed discussion on viscosity is a major undertaking and this article serves to provide a basic understanding of viscosity and how it impacts on pumping. Consider the model shown in Fig. 1, which was used by Isaac Newton in first defining viscosity. It shows two parallel planes of fluid of area A separated by a distance dx and moving in the same direction at different velocities V1 and V2. Fig. 1 The velocity distribution will be linear over the distance dx, and experiments show that the velocity gradient, is directly proportional to the force per unit area, Where n constant for a given liquid and is called its viscosity. The velocity gradient, describes the shearing experienced by the intermediate layers as they move with respect to each other. Therefore, it can be called the "rate of shear", S. Also, the force per unit area can be simplified and called the "shear force" or "shear stress," F. With these simplified terms, viscosity can be defined as follows'. Newtonian Liquids Isaac Newton made the assumption that all materials have, at a given temperature, a viscosity that is independent of the rate of shear. In other words, a force twice as large would be required to move a liquid twice as fast. Fluids which behave this way are called Newtonian fluids. There are, of course, fluids which do not behave this way, in other words their viscosity is dependent on the rate of shear. These are known as Non-Newtonian fluids. Pump Clinic 22 Viscosity 27/03/08 Page 1 of 5

2 Fig. 2 shows graphically the relationships between shear Stress (F,) rate of shear (S,) and viscosity (n) for a Newtonian liquid. The viscosity remains constant as shown in sketch 2, and in absolute units, the viscosity is the inverse slope of the line in sketch 1. Water and light oils are good examples of Newtonian liquids. Non-Newtonian Liquids Fig. 2 Newtonian Liquid Fig. 3 shows graphically the three most common types of Non-Newtonian liquids. These liquids can present problems to the pump suppliers. Group A shows a decreasing viscosity with an increasing rate of shear. This is known as a pseudo-plastic material. Examples of this type are grease, molasses, paint, soap, starch, and most emulsions. They present no serious mechanical pumping problems since they tend to thin out with the high rates of shear present in a pump. They can present problems in positive displacement pump selection because slippage through clearances may increase due to the drop in viscosity and pump speeds may need to be increased to compensate. Group B shows a dilatant material or one in which the viscosity increases with an increasing rate of shear. Clay slurries and candy compounds are examples of dilatant liquids. Pumps must be selected with extreme care since these liquids can become almost solid if the shear rate is high enough. The normal procedure would be to oversize the pump somewhat and open up the internal clearances in an effort to reduce the shear rate. Group C shows a plastic material. The viscosity decreases with increasing rate of shear. However, a certain force must be applied before any movement is produced. This force is called the yield value of the material. Tomato sauce is a good example of this type of material. It behaves similar to a pseudoplastic material from a pumping standpoint. Fig. 3 Non-Newtonian Liquids Pump Clinic 22 Viscosity 27/03/08 Page 2 of 5

3 The viscosity of some Non-Newtonian liquids is dependent upon time as well as shear rate. In other words, the viscosity at any particular time depends upon the amount of previous agitation or shearing of the liquid. A liquid whose viscosity decreases with time at a given shear rate is called a thixotropic liquid. Examples are asphalts, glues, molasses, paint, soap, starch, and grease. Liquids whose viscosity increases with time are called rheopectic liquids, but they are seldom encountered in pumping applications. Units of Viscosity There are two basic viscosity parameters: dynamic (or absolute) viscosity and kinematic viscosity. Dynamic viscosities are given in terms of force required to move a unit area a unit distance. This is usually expressed in pound-seconds per square foot in the English system which is equal to slugs per foot-second. The Metric system is more commonly used, however, in which the unit is the dynesecond per square centimetre called the Poise. This is numerically equal to the gram per centimetresecond. For convenience, numerical values are normally expressed in centipoise, which are equal to one-hundredth of a poise. Most pipe friction charts and pump correction charts list kinematic viscosity. The basic unit of kinematic viscosity is the stoke which is equal to a square centimetre per second in the Metric system. The corresponding English unit is square foot per second. The centistoke which is onehundredth of a stoke is normally used in the charts. The following formula is used to obtain the kinematic viscosity when the dynamic or absolute viscosity is known: There are various units used for viscosity and these are determined by the type of viscometers utilised for determining liquid viscosities, most of which are designed for specific liquids or viscosity ranges. The Saybolt viscometers are probably the most widely used in the United States. The corresponding units are the SSU (Seconds Saybolt Universal). These units are found on most pipe friction and pump correction charts in addition to centistokes. Conversion charts for various units of viscosity are attached. Viscosity and Pumping 1. Centrifugal pumps. Centrifugal pump performance curves are primarily based on the viscosity of water; namely 1cst. Higher viscosities affect the capacity-head performance and more significantly the pump efficiency and therefore power requirements. The water performance of pumps may be adjusted for any viscosity and this is covered in a separate Pump Clinic titled Viscosity Impact on Centrifugal Pump Performance. Because of the significant impact of viscosity on power requirements, there are general viscosity limits for centrifugal pumps. These are simply arbitrary figures. The PIA Handbook defines the limits based on the dimension in millimetres of the pump discharge connections and these are < 50 mm maximum 300 cst >50mm but <150 mm maximum 500 cst >150 mm maximum 800 cst Our experience has indicated that these viscosities may be a little high and better limits are; < 50 mm maximum 100 cst >50mm but <150 mm maximum 250 cst >150 mm maximum 400 cst This only shows the arbitrary nature of these limits. It is important to understand the viscosity characteristics as the liquid is sheared in particular where the viscosity increases with shear and the pump manufacturer should be consulted in these instances. Pump Clinic 22 Viscosity 27/03/08 Page 3 of 5

4 2. Positive Displacement Pumps. The application of positive displacement (PD) pumps is easier as the majority of PD pump selection procedures and software programs use viscosity as one of the determining parameters for pump size, speed and motor selection. The other parameters are flow, pressure and other liquid conditions e.g. solids content. The change in viscosity as the product is sheared is more important with PD pump selection irrespective of whether viscosity increases or decreases. With decreasing viscosity, the impact of liquid slippage through pump clearances from pump discharge to suction may increase significantly (dependent on differential pressure across the pump) and this needs to be considered in pump size and speed selection. With increasing viscosities, mechanical issues as well a speed reduction is a major consideration. Contact the pump supplier with viscosity change information in these instances. Section D -- Properties of Liquids Viscosity Conversion Table 1 Pump Clinic 22 Viscosity 27/03/08 Page 4 of 5

5 Viscosity Conversion Table 2 Pump Clinic 22 Viscosity 27/03/08 Page 5 of 5

### Fig. 1. The velocity distribution will be linear over the distance dx, and experiments show that the velocity

Viscosity The viscosity of a fluid is that property which tends to resist a shearing force. It can be thought of as the internal friction resulting when one layer of fluid is made to move in relation to

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Rheological Properties of Topical Formulations

Rheological Properties of Topical Formulations Hemi Nae, PhD Hydan Technologies, Inc. Key Words Complex Modulus, Creep/Recovery, Dilatant Flow, Dynamic Viscosity, Flow, Flow Curve, Flow Models, Frequency

RHEOLOGY RHEOLOGY Science describing the flow and deformation of matter under stress. Rheo = the flow Viscosity (η) is the resistance of a fluid material to flow under stress. The higher the viscosity,

### Viscosity. Desmond Schipper Andrew R. Barron. 1 Introduction

OpenStax-CNX module: m50215 1 Viscosity Desmond Schipper Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module discusses

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che

Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing

### CHAPTER 2: LIQUID VISCOSITY MEASUREMENT

CHAPTER 2: LIQUID VISCOSITY MEASUREMENT Objective Calculate viscosity (dynamic or absolute, and kinematic) and determine how this property varies with changes in temperature for a constant-composition

### Selecting a Centrifugal Pump to Handle a Viscous Liquid

Copyright 2002, 2005, 2008 Randall W. Whitesides, P.E. Introduction This course provides the student with an understanding of fluid viscosity and its effects on the performance of centrifugal pump operation.

### Determination of Viscosity Using A Brookfield Viscometer for Conditioning Polymers

LUBRIZOL TEST PROCEDURE TP-N01004 Edition: December 2, 2013 Previous Editions: August 10, 2000 / November 1, 2011 Determination of Viscosity Using A Brookfield Scope A material's flow property is an important

### Non-Newtonian Flows. R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University. τ = ηθ

Non-Newtonian Flows R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University Fluids such as water, air, ethanol, and benzene are Newtonian. This means that a plot

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### Predicting and Measuring Viscosity of Crude Oil Blends

June 20 22, 2012 Kananaskis, Alberta Predicting and Measuring Viscosity of Crude Oil Blends Branko Banjac Joint CCQTA/COQA Meetings TABLE OF CONTENTS Viscosity measurement techniques Predicting viscosity

### PHYSICS FUNDAMENTALS-Viscosity and flow

PHYSICS FUNDAMENTALS-Viscosity and flow The origin of viscosity When a force is applied to a solid, it will yield slightly, and then resist further movement. However, when we apply force to a fluid, it

### This document establishes MSHA s Standard Test Procedure (STP) for the Determining the Viscosity of a Hydraulic Fluid in Saybolt Universal Seconds.

DOCUMENT NO: ASTP 5005 VERSION: 2010-02-12 Page 1 of 9 1.0 PURPOSE This document establishes MSHA s Standard Test Procedure (STP) for the Determining the Viscosity of a Hydraulic Fluid in Saybolt Universal

### 8.62 Viscometers Application and Selection

8.62 ViscometersApplication and Selection C. H. KIM (1969, 1982) B. G. LIPTÁK (1995, 2003) Definition of Viscosity: Viscosity Units: Types of Viscous Behavior: Absolute viscosity is the ratio of applied

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW VISCOSITY POISEUILLE'S LAW? Why do cars need different oils in hot and cold countries? Why does the engine runs more freely as

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### Notes on Polymer Rheology Outline

1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Asphalt Institute Technical Bulletin. Laboratory Mixing and Compaction Temperatures

ASPHALT INSTITUTE EXECUTIVE OFFICES AND RESEARCH CENTER Research Park Drive P.O. Box 14052 Lexington, KY 40512-4052 USA Telephone 859-288-4960 FAX No. 859-288-4999 Asphalt Institute Technical Bulletin

### 02/21/2006 10:13 AM. Viscosity. The Physics Hypertextbook 1998-2005 by Glenn Elert All Rights Reserved -- Fair Use Encouraged.

Viscosity The Physics Hypertextbook 1998-2005 by Glenn Elert All Rights Reserved -- Fair Use Encouraged prev up next Discussion definitions Informally, viscosity is the quantity that describes a fluid's

### TEMPERATURE, CONCENTRATION, AND PUMPING EFFECTS ON PAM VISCOSITY

TEMPERATURE, CONCENTRATION, AND PUMPING EFFECTS ON PAM VISCOSITY D. L. Bjorneberg ABSTRACT. As polyacrylamide (PAM) use in irrigated agriculture increases, new methods are being sought to accurately and

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### CANNON INSTRUMENT COMPANY

CANNON INSTRUMENT COMPANY There are hundreds of different types of viscometers: glass capillary, rotational, viscosity cup, falling ball, and many others. All viscometers should be checked periodically

### Primary Learning Outcome: Students will be able to define the term viscosity and identify viscosity as a physical property of matter.

SPLAT! Written by Amy Rowley and Jeremy Peacock Annotation In this laboratory exercise, students will measure the relative viscosities of several common food liquids and construct a standard curve to estimate

### Viscosity Cup Reference Table 1

Viscosity Viscosity The extent to which a liquid resists a tendency to flow is defined as viscosity. In the coatings industry, this behaviour is one of the key parameters. Elcometer manufactures and supplies

### VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.

VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus

### HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

### Oversimplified Viscoelasticity

THE MAXWELL MODEL At time t = 0, suddenly deform to constant displacement X o. The force F is the same in the spring and the dashpot. F = K e X e = K v (dx v /dt) (1-20) X e is the displacement of the

### VISCOSITY CLASSIFICATIONS

VISCOSITY CLASSIFICATIONS INDUSTRIAL LUBRICANT CASSIFICATIONS ISO (International Standards Organisation) viscosity classification The ISO viscosity classification uses mm 2 /s () units and relates to viscosity

### SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT

Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

### I. INTRODUCTION: Phenomenology. N / m. N / m (2) kg G. Let s consider a shear force experiment on a solid cube. (Fig. 1)

I. INTRODUCTION: Phenomenology Let s consider a shear force experiment on a solid cube. (Fig. 1) We can easily verify that for the solid not to move or rotate, all forces acting on the cube must be of

### Journal bearings/sliding bearings

Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated

### Viscosity (VIS) Topic: Mechanics. Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law

Seite 1 Viscosity Topic: Mechanics 1 Key words Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law 2 Literatur L. Bergmann, C. Schäfer, Lehrbuch der Experimentalphysik, Band

### Teil I. Student Laboratory Manuals

Teil I Student Laboratory Manuals 1 IR1 5. Fluid friction in liquids 5.1 Introduction Generally the term fluid is understood to be matter either in the gaseous or liquid state. The physics involved on

### The performance of centrifugal pumps when pumping ultra-viscous paste slurries

The performance of centrifugal pumps when pumping ultra-viscous paste slurries by J. Crawford*, F. van Sittert, and M. van der Walt Synopsis Significant advances have been made in the design of centrifugal

### pumping liquids JET PUMP TECHNICAL DATA

Section 000 Bulletin 00 Issued 5/87 Replaces /8 JET PUMP TECHNICAL DATA pumping liquids This technical bulletin includes general information about Penberthy Jet Pumps plus specific details for selecting

### Standard Test Methods for Viscosity of Adhesives 1

Designation: D 1084 97 Standard Test Methods for Viscosity of Adhesives 1 This standard is issued under the fixed designation D 1084; the number immediately following the designation indicates the year

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

### ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Viscosity: A Property of fluids 307-6 Compare the viscosity of various liquids 307-7 Describe factors that can modify the viscosity of a liquid 208-6

Viscosity: A Property of fluids 307-6 Compare the viscosity of various liquids 307-7 Describe factors that can modify the viscosity of a liquid 208-6 Design an experiment to test the viscosity of various

### Thickeners + Rheology Guide

Thickeners + Rheology Guide 2 Thickeners + Rheology Guide Rheology Rheology is defined as the study of the deformation and flow of materials. When a force is applied to a liquid, the liquid will flow to

### Fluid Mechanics Definitions

Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V \$0& #V ) Specific Gravity

### USSD Workshop on Dam Break Analysis Applied to Tailings Dams

USSD Workshop on Dam Break Analysis Applied to Tailings Dams Antecedents Newtonian / non-newtonian flows Available models that allow the simulation of non- Newtonian flows (tailings) Other models used

### Viscosity experiments: physical controls and implications for volcanic hazards. Ben Edwards Dept of Geology, Dickinson College

Viscosity experiments: physical controls and implications for volcanic hazards Student Name: Ben Edwards Dept of Geology, Dickinson College OBJECTIVES OF LAB Learn about the rheological property called

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

### Radial-axial Radial mixing is based on the premise that the fluids to be mixed enter the mixer in the correct proportions simultaneously

Brochure E-0501 1 Introduction. Static mixers are used for a wide range of applications including mixing, heat exchange and dispersion, due to numerous unique innovations our products are especially suitable

### Unit 1: Fire Engineering Science (A/505/6005)

L3D1 THE INSTITUTION OF FIRE ENGINEERS Founded 1918 Incorporated 1924 IFE Level 3 Diploma in Fire Science and Fire Safety (VRQ) Unit 1: Fire Engineering Science (A/505/6005) Friday 13 March 2015 10:15

### Lecture 2 PROPERTIES OF FLUID

Lecture 2 PROPERTIES OF FLUID Learning Objectives Upon completion of this chapter, the student should be able to: Define three states of matter: Solid, liquid and gas. Define mass density, specific weight

### Improved fluid control by proper non-newtonian flow modeling

Tekna Flow Assurance 2015, Larvik Improved fluid control by proper non-newtonian flow modeling Stein Tore Johansen, SINTEF Sjur Mo, SINTEF A general wall friction model for a non-newtonian fluid has been

### Module 2: Review of Fluid Mechanics Basic Principles for Water Resources Engineering. Basic Definitions. Basic Definitions.

Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Understanding Rheology

Understanding Rheology Ross Clark Distinguished Research Fellow San Diego R&D Page 1 Background CP Kelco makes carbohydrate based water soluble polymers Fermentation Xanthan Gellan Plant derived Pectin

### Putting the Simple Back into Viscosity. Written by John Sander Vice President of Technology Lubrication Engineers, Inc.

White Paper LE WHITE PAPER Written by John Sander Vice President of Technology Lubrication Engineers, Inc. The Lubrication Reliability Source www.le-inc.com 800-537-7683 1 Abstract: Simply stated, viscosity

### Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

### PENETRATION OF BITUMINOUS MATERIALS

NANYANG TECHNOLOGICAL UNIVERSITY School of Civil and Structural Engineering LABORATORY - PAVEMENT MATERIALS PENETRATION OF BITUMINOUS MATERIALS OBJECTIVES To examine the consistency of a sample of bitumen

### CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps

DETERMINING TOTAL DYNAMIC HEAD The total dynamic head of a water system must be considered when determining the size of pumping equipment to be installed. It determines the various head losses that the

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2)

FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2) Overview Power requirements for mixing Newtonian and non-newtonian liquids Ungassed and gassed systems Scale-up issues, scale-down approach Adapting bioreactor

### INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in

### Thickeners + Rheology Guide

Thickeners + Rheology Guide 2 Thickeners + Rheology Guide 3 Rheology Rheology is defined as the study of the deformation and flow of materials. When a force is applied to a liquid, the liquid will flow

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

### DecisionSpace Well Engineering Software

DATA SHEET DecisionSpace Well Engineering Software DecisionSpace Drilling & Completions Key features Configure the right tools to drill any type of well Dramatically simple to use, complete complex fluids

### Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### 3.1. C r. For a flat plate of bottom surface area A and separated by a film thickness, C, the force necessary to shear the fluid at some.

. hapter Fluid Properties The objective of this hapter is to introduce you to some of the most important fluid properties that affect the performance of hydraulic circuits and to some of the equations

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Brownian Motion, Dynamic Light Scattering and the Use of Viscosity Or...

Brownian Motion, Dynamic Light Scattering and the Use of Viscosity Or.... Would You Argue with Albert Einstein about how to use Viscosity in the DLS Formula? Dr. Philip E. Plantz, PhD Microtrac, Inc Particle

### Exact solution of friction factor and diameter problems involving laminar flow of Bingham plastic fluids

Journal of etroleum and Gas Exploration Research (ISSN 76-6510) Vol. () pp. 07-03, February, 01 Available online http://www.interesjournals.org/jger Copyright 01 International Research Journals Review

### Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).

HYDRAULIC MACHINES Used to convert between hydraulic and mechanical energies. Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic

### Physics for the Life Sciences: Fall 2008 Lecture #25

Physics for the Life Sciences: Fall 2008 Lecture #25 Real fluids: As we have mentioned several times, real fluids are more complex than the ideal fluids described by the continuity equation and Bernoulli

### GlobalGear Series. Process Pumps. Pump Your Heart Into It

GlobalGear Series Process Pumps Pump Your Heart Into It BUILT ON A TIME-TESTED DESIGN & MORE THAN 90 YEARS OF GEAR PUMP ENGINEERING EXPERIENCE Capable of tackling the toughest high-viscosity applications,

### A BRIEF INTRODUCTION TO CENTRIFUGAL PUMPS

A BRIEF INTRODUCTION TO CENTRIFUGAL PUMPS figure below is a cross section of a centrifugal pump and shows the two basic parts. Joe Evans, Ph.D IMPELLER This publication is based upon an introductory, half

### Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry:

Mixing Notes: Chapter 19 Robert P. Hesketh Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental Chemical Industry: Paints and Coatings Synthetic Rubbers

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

### C. starting positive displacement pumps with the discharge valve closed.

KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the

### 1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,

CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

### RPT SIGMA PUMPY HRANICE ROTARY LOBE DISPLACEMENT PUMPS 426 2.98 23.01

SIGMA PUMPY HRANICE ROTARY LOBE DISPLACEMENT PUMPS RPT SIGMA PUMPY HRANICE, s.r.o. Tovární 605, 753 01 Hranice, Czech Republic tel.: +4 581 661 111, fax: +4 581 602 587 Email: sigmahra@sigmahra.cz 426

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### Student Performance Q&A:

Student Performance Q&A: AP Calculus AB and Calculus BC Free-Response Questions The following comments on the free-response questions for AP Calculus AB and Calculus BC were written by the Chief Reader,

Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

### CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

### Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional