that satisfies (2). Then (3) ax 0 + by 0 + cz 0 = d.

Size: px
Start display at page:

Download "that satisfies (2). Then (3) ax 0 + by 0 + cz 0 = d."

Transcription

1 Planes.nb 1 Plotting Planes in Mathematica Copright 199, 1997, 1 b James F. Hurle, Universit of Connecticut, Department of Mathematics, Unit 39, Storrs CT All rights reserved. This notebook discusses planes in 3-space, and the Mathematica code to generate plots of them. 1. Normal Form. The best algebraic representation of planes is the normal-form equation, whose geometric basis is simple: a plane is uniquel determined b one point P on it and a normal vector n. Definition. The normal-form equation of the plane through P(,, ) with the normal vector n = ai + bj + ck = (a, b, c) is (1) n ( ) =, where = (,, ) = i + j + k = OQ for an point Q(,, ) on the plane and = OP = i + j + k =(,, ) is the vector from the origin to the point P. Equation (1) sas that a point Q(,, ) lies on the plane if and onl if the plane's normal vector n is perpendicular to the vector from the given point P to Q. The vector equation leads easil to a scalar equation. The definition of dot product and (1) give (a i + b j + c k) [( ) i + ( L j + ( L k] =, a( ) + b( ) + c( ) = a + b + c = a + b + c () a + b + c = d, where d = n. Conversel, an linear equation of the form () is the equation of a plane in 3-space, provided that not all three of a, b, and c are. To see wh, let P(,, ) be an point

2 Planes.nb that satisfies (). Then (3) a + b + c = d. Let n = ai + bj + ck = (a, b, c) and = OP = i + j + k = (,, ). Then () and (3) give n = n = d n ( ) =, which is the normal-form equation of a plane. To plot the graph of a plane in Mathematica, the simplest approach is to plot its equation as that of a (simple flat) surface with equation = f(, ). That is possible unless the variable does not appear in the equation (1). To plot a plane with equation in the form (1), where the coefficient c of is not, solve (1) for the variable : () = (a + b + c a b)/c The following routine illustrates how to plot the graph of the plane b plotting the equation = f(, ), where f(, ) is the right side of (). The values of a, b, c, and d come from the plane with normal vector n = 3i + j + k = (3, 1, ) through the point P(, 1, 3). As usual, to generate the plot eecute the routine b placing the cursor at the end of the last blue line and pressing the Enter ke. In[11]:= (* Mathematica Routine to plot graph of a plane a + b + c = d, where c is not *) a := 3; b := 1; c := ; := -; := 1; := 3; F[_, _] := (a + b + c - a - b )/c; Plot3D[ F[, ], {, -, }, {, -, 1}, AesLabel -> {,, } ]

3 Planes.nb Out[19]= Ü SurfaceGraphics Ü As before, it is possible to add coordinate aes, at the epense of complicating the code. The following routine outputs the original rendering first, and then repeats that with coordinate aes. Use whichever routine that gives our ee the better image. In[1]:= (* Mathematica Routine to plot graph of a plane a + b + c = d, where c is not with coordinate aes drawn in *) a := 3; b := 1; c := ; := -; := 1; := 3; F[_, _] := (a + b + c - a - b )/c; planeplot = Graphics3D[ Plot3D[ F[, ], {, -, }, {, -, 1}, AesLabel -> {,, } ] ]; coordaes = Graphics3D[{ {RGBColor[1,, ], Line[{{-,, }, {6,, }}], Tet["", {7,, }]}, {RGBColor[1,, ], Line[{{, -3, }, {, 1, }}], Tet["", {, 13, }]}, {RGBColor[1,, ], Line[{{,, -3}, {,, 9}}], Tet["", {,, 9}]} }]; Show[planeplot, coordaes]

4 Planes.nb Out[31]= What if c =, that is, the plane is vertical? Then the equation of the plane involves onl the two variables and, so it is not possible to plot it as the graph of an equation = F(, ). The best approach is to treat the plane as a simple eample of a parametric surface. If the normal vector n = ai + bj + k = (a, b, ), then the normal-form equation (1) becomes (ai + bj) [( )i + ( )j + ( )k] =, a( ) + b( ) = a + b = a + b () a + b = d, where d = n. In (), not both a and b can be ero, because the normal vector n is nonero. Suppose for eample that b is nonero. Then = d/b a/b = (d a)/b. Since the equation of the plane does not involve, it can var over all real numbers. An point on the plane then satisfies the triple of parametric equations = u, = (d au)/b, = v, where u (, + ) and v (, + ). Note that there are two parameters, reflecting the fact that a plane is two dimensional. The following Mathematica routine plots the plane through P(1, 3, ) with normal vector n = 3 i j = (3, 1, ). Since d = n, for this plane d = (3, 1, ) (1, 3, ) = 3

5 Planes.nb 3 =. The plane is vertical, so there is no need to add the coordaes routine to displa the coordinate aes. The default plot's bo displas the nature of the plane quite well. In[33]:= (* Mathematica Routine to plot graph of a plane a + b = d, where b is not *) a := 3; b := -1; c := ; := 1; := 3; := ; d := Dot[{a, b, c}, {,, }] ParametricPlot3D[ {u, (d - a u)/b, v}, {u, -, }, {v, -, 8}, AesLabel -> {,, } ] Out[1]=. Vector cross product and planes. Euclidean geometr arose man centuries before vectors. The classical ideal of a plane in 3-space was the surface determined b three points P, Q, and R that are non-collinear (that is, do not lie in a common line) or b two non-skew lines (lines that are either parallel or intersect). One tool makes it eas to find the normal-form equation of a plane with either description. That tool is the vector cross product of 3-dimensional vectors. It produces a vector perpendicular to two given vectors, sa v and w. The definition of v w is somewhat involved, so it is worth noting first that finding a vector perpendicular to each of two given vectors is indeed enough to determine the equation of a plane through three non-collinear points or two non-skew lines. Consider

6 Planes.nb 6 first that two lines: l 1 with vector equation = + tv and l with equation = 1 + sw. Then v and w are direction vectors in the directions of the respective lines. So a normal vector n to the plane determined b v and w is indeed perpendicular to both v and w. Similarl, given three points P, Q, and R not on a common line, the vectors v = PQ and w = PR are in the plane determined b P, Q, and R. So once again, a normal vector to that plane is perpendicular to both v and w. The following definition thus provides the promised tool for finding the equation of a plane with either description. Definition. The cross product of two vectors v = (v 1, v, v 3 ) = v 1 i + v j + v 3 k and w = (w 1, w, w 3 ) = w 1 i + w j + w 3 k in Euclidean 3-space is (6) v w = (v w 3 v 3 w )i + (v 3 w 1 v 1 w 3 )j + (v 1 w v w 1 )k. The compleit of the formulas for the coordinates results from solving the sstem of equations v n = and w n = for n = (,, ). (See the tet for details.) Mathematica has a command for calculating cross products. The following short routine illustrates not onl that but also Mathematica's capacit to carr out smbolic algebra. In[3]:= (* Mathematica Routine to illustrate smbolic computation of the cross product of two vectors *) v = {v1, v, v3}; w = {w1, w, w3}; Cross[v, w] Out[6]= 8-v3 w + v w3, v3 w1 - v1 w3, -v w1 + v1 w< For a numerical eample, simpl input a couple of specific vectors v and w. In[7]:= (* Mathematica Routine to illustrate numerical computation of the cross product of two vectors *) v = {, -1, 3}; w = {1,, -3}; Cross[v, w] Out[]= 8-1, 9, 11< From this it follows that the plane through the two lines = (,, 3) + s(, 1, 3) and = (, 3, 6) + t(1,, 3) has normal vector n = ( 1, 9, 11). Its normal-form equation is therefore

7 Planes.nb 7 ( 1, 9, 11) (,, 3) = 1( ) ( 3) =, which simplifies to = 9. (Note: both points (,, 3) and (, 3, 6) from the two given equations satisf this equation, which confirms that there has been no error in the calculation. It is alwas advisable to substitute a known point from each line into the final equation of the plane, to verif that the lines are not skew. If the are, one of the points will satisf the final equation, but the other will not.) Mathematica can plot two vectors and their cross product. The following modification of a routine from VectPlot illustrates that. Eecute it to view the plot. In[1]:= (* Mathematica Routine to illustrate graphicall the cross product of two vectors *) v = {, -1, 3}; w = {1,, -3}; k = Cross[v, w]; q = Sqrt[v.v]; r = Sqrt[w.w]; s = Sqrt[(v + w).(v + w)]; coordaes = Graphics3D[{ {RGBColor[, 1, ], Line[{{-,, }, {6,, }}], Tet["", {8,, }]}, {RGBColor[, 1, ], Line[{{, -3, }, {, 1, }}], Tet["", {, 1, }]}, {RGBColor[, 1, ], Line[{{,, -3}, {,, 9}}], Tet["", {,, 1}]} }]; vplot = Graphics3D[{ {Line[{{,, }, v}], Polgon[{v,{.8 v[[1]],.8 v[[]],.8 v[[3]] - /q}, {.8 v[[1]],.8 v[[]],.8 v[[3]] + /q} }], Tet[FontForm["v", {"Times-Bold", 1}], {1. v[[1]], 1. v[[]], 1. v[[3]]}] }, {Line[{{,, }, w}], Polgon[{w, {.8 w[[1]],.8 w[[]],.8 w[[3]] - /r}, {.8 w[[1]],.8 w[[]],.8 w[[3]] + /r} }], Tet[FontForm["w", {"Times-Bold", 1}], {1. w[[1]], 1. w[[]], 1. w[[3]]}] }, {RGBColor[1,, 1], Line[{{,, }, Cross[v, w]}], Polgon[{k,{.9 (k)[[1]] - 1,.9 (k)[[]] + 1,.9 (k)[[3]] - 1}, {.9 (k)[[1]] + 1,.9 (k)[[]] + 1,.9 (k)[[3]] - 1} }], Tet[FontForm["v w", {"Times-Bold", 1}], {.8 (k)[[1]],.8 (k)[[]],

8 Planes.nb 8.7 (k)[[3]]}] } }] Show[vplot, coordaes, Aes -> True, Lighting -> False] Out[9]= 1 1 vw v w -1 - Out[6]= No new routine is needed to plot the plane: just modif the earlier routine for plotting the normal-form equation. There is no tet figure with which to compare this plot, but the net edition will have one! In[61]:= (* Mathematica Routine to plot graph of a plane a + b + c = d, where c is not *) a = -1; b = 9; c = 11; = ; = ; = 3; F[_, _] := (a + b + c - a - b )/c; planeplot = Graphics3D[ Plot3D[ F[, ], {, -, }, {, -, 1}, AesLabel -> {"", "", ""} ] ]; coordaes = Graphics3D[{{RGBColor[1,, ], Line[{{-,, }, {,, }}], Tet["", {6,, }]}, {RGBColor[1,, ], Line[{{, -, }, {, 1, }}], Tet["", {, 11, }]},

9 Planes.nb 9 {RGBColor[1,, ], Line[{{,, -}, {,, 9}}], Tet["", {,, 11}]} }]; Show[planeplot, coordaes] Out[71]=

Plotting Lines in Mathematica

Plotting Lines in Mathematica Lines.nb 1 Plotting Lines in Mathematica Copright 199, 1997, 1 b James F. Hurle, Universit of Connecticut, Department of Mathematics, 196 Auditorium Road Unit 39, Storrs CT 669-39. All rights reserved.

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

Lines and Planes in R 3

Lines and Planes in R 3 .3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point

More information

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8. Lines and Planes. By the end of this chapter, you will Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v 12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

Solving Systems of Linear Equations With Row Reductions to Echelon Form On Augmented Matrices. Paul A. Trogdon Cary High School Cary, North Carolina

Solving Systems of Linear Equations With Row Reductions to Echelon Form On Augmented Matrices. Paul A. Trogdon Cary High School Cary, North Carolina Solving Sstems of Linear Equations With Ro Reductions to Echelon Form On Augmented Matrices Paul A. Trogdon Car High School Car, North Carolina There is no more efficient a to solve a sstem of linear equations

More information

Problem set on Cross Product

Problem set on Cross Product 1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular

More information

CHAPTER FIVE. 5. Equations of Lines in R 3

CHAPTER FIVE. 5. Equations of Lines in R 3 118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry 1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years

More information

SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

More information

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

More information

Shake, Rattle and Roll

Shake, Rattle and Roll 00 College Board. All rights reserved. 00 College Board. All rights reserved. SUGGESTED LEARNING STRATEGIES: Shared Reading, Marking the Tet, Visualization, Interactive Word Wall Roller coasters are scar

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Section 2.4: Equations of Lines and Planes

Section 2.4: Equations of Lines and Planes Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

More information

Solving Systems of Equations

Solving Systems of Equations Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a. VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position

More information

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

More information

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

Equations of Lines and Planes

Equations of Lines and Planes Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular

More information

{ } Sec 3.1 Systems of Linear Equations in Two Variables

{ } Sec 3.1 Systems of Linear Equations in Two Variables Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination

More information

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

7.3 Solving Systems by Elimination

7.3 Solving Systems by Elimination 7. Solving Sstems b Elimination In the last section we saw the Substitution Method. It turns out there is another method for solving a sstem of linear equations that is also ver good. First, we will need

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.

Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors. Mathematics 205 HWK 6 Solutions Section 13.3 p627 Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors. Problem 5, 13.3, p627. Given a = 2j + k or a = (0,2,

More information

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t. . The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1. SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through

More information

discuss how to describe points, lines and planes in 3 space.

discuss how to describe points, lines and planes in 3 space. Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

More information

Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

THIS CHAPTER INTRODUCES the Cartesian coordinate

THIS CHAPTER INTRODUCES the Cartesian coordinate 87533_01_ch1_p001-066 1/30/08 9:36 AM Page 1 STRAIGHT LINES AND LINEAR FUNCTIONS 1 THIS CHAPTER INTRODUCES the Cartesian coordinate sstem, a sstem that allows us to represent points in the plane in terms

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11. SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012 Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

More information

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length... CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions

More information

Systems of Linear Equations: Solving by Substitution

Systems of Linear Equations: Solving by Substitution 8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

More information

Grade level: secondary Subject: mathematics Time required: 45 to 90 minutes

Grade level: secondary Subject: mathematics Time required: 45 to 90 minutes TI-Nspire Activity: Paint Can Dimensions By: Patsy Fagan and Angela Halsted Activity Overview Problem 1 explores the relationship between height and volume of a right cylinder, the height and surface area,

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions

Partial Fractions. and Logistic Growth. Section 6.2. Partial Fractions SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model real-life

More information

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT . Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

More information

By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply

By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply Introduction and Basics Tet Regions By Clicking on the Worksheet you are in an active Math Region In order to insert a tet region either go to INSERT -TEXT REGION or simply start typing --the first time

More information

Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10

Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10 Chapter 3 & 8.1-8.3 These are meant for practice. The actual test is different. Determine whether the pair of equations represents parallel lines. 1) 9 + 3 = 12 27 + 9 = 39 1) Determine whether the pair

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

Find the Relationship: An Exercise in Graphing Analysis

Find the Relationship: An Exercise in Graphing Analysis Find the Relationship: An Eercise in Graphing Analsis Computer 5 In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables.

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information