Strong convergence theorems of Cesàrotype means for nonexpansive mapping in CAT(0) space


 Ami Harrell
 1 years ago
 Views:
Transcription
1 Tang et al. Fixed Point Theory and Applications :00 DOI 0.86/s y R E S E A R C H Open Access Strong convergence theorems of Cesàrotype means for nonexpansive mapping in CAT0 space Jinfang Tang, Shihsen Chang 2* and Jian Dong * Correspondence: 2 College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 65022, China Full list of author information is available at the end of the article Abstract The iterative algorithms with Cesàrotype means for a nonexpansive mapping are proposed in CAT0 spaces. Under suitable conditions, some strong convergence theorems for the sequence generated by the algorithms to a fixed point of the nonexpansive mapping are proved. We also proved that this fixed point is also a unique solution to some kind of variational inequality. The results presented in this paper extend and improve the corresponding results of some others. Keywords: Cesàrotype means method; CAT0 space; fixed point Introduction In 975, Baillon [] first proved the following nonlinear ergodic theorem. Theorem. Suppose that C is a nonempty closed convex subset of a Hilbert space E and T : C C is a nonexpansive mapping such that FT. Then, x C, thecesàromeans T n x = n + T i x. weakly converges to a fixed point of T. In 979, Bruck [2] generalized the Baillon Cesàro s means theorem from Hilbert space to uniformly convex Banach space with Fréchet differentiable norms. In 2007, Song and Chen [3] defined the following viscosity iteration {x n } of the Cesàro means for nonexpansive mapping T: x n+ = α n f x n + α n n + T i x,.2 and they proved that the sequence {x n } converged strongly to some point in FT ina uniformly convex Banach space with weakly sequentially continuous duality mapping. In 2009, Yao et al. [4] in a Banach space introduced the following process {x n }: x n+ = α n u + β n x n + γ n Tx n, n Tang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original authors and the source, provide a link to the Creative Commons license, and indicate if changes were made.
2 Tang et al. Fixed Point Theory and Applications :00 Page 2 of 3 They proved that the sequence {x n } converged strongly to a fixed point of T under suitable control conditions of parameters. In 204, Zhu and Chen [5] proposed the following iterations with Cesàro s means for nonexpansive mappings: x n+ = α n u + β n x n + γ n n + and viscosity iteration: T i x n, n 0,.4 x n+ = α n f x n +β n x n + γ n n + T i x n, n 0..5 They proved the sequences {x n } both converged strongly to a fixed point of FT inthe framework of a uniformly smooth Banach space. As is well known, an extension of a linear version usually in Banach spaces or Hilbert spaces of this wellknown result to a metric space has its own importance. The above iterative methods..5 involve general convex combinations. If we want to extend these results from Hilbert spaces or Banach spaces to metric spaces, we need some convex structure in a metric space to investigate their convergence on a nonlinear domain. On the other hand, recently the theory and applications of CAT0 space have been studied extensively by many authors. Recall that a metric space X, d is called a CAT0 space, if it is geodesically connected and if every geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean plane. It is known that any complete, simply connected Riemannian manifold having nonpositive sectional curvature is a CAT0 space. Other examples of CAT0 spaces include prehilbert spaces see [6], Rtrees see [7], Euclidean buildings see [8], the complex Hilbert ball with a hyperbolic metric see [9], and many others. A complete CAT0 space is often called a Hadamard space. A subset K of a CAT0 space X is convex if, for any x, y K, wehave[x, y] K, where[x, y] is the uniquely geodesic joining x and y. For a thorough discussion of CAT0 spaces and of the fundamental role they play in geometry, we refer the reader to Bridson and Haefliger [6]. Fixed point theory in CAT0 spaces has been first studied by Kirk see [0, ]. He showed that every nonexpansive singlevalued mapping defined on a bounded closed convex subset of a complete CAT0 space always has a fixed point. Motivated and inspired by the research going on in this direction, it is naturally to put forward the following. Open question Can we extend the above Cesàro nonlinear ergodic theorems for nonexpansive mapping in [ 5] from a Hilbert space or Banach space to a CAT0 space? The purpose of this paper is to give an affirmative answer to this question. For solving this problem we first propose the following new iterations with Cesàro s means for nonexpansive mappings in the setting of CAT0 spaces: x n+ = α n u β n x n γ n n + T i x n,.6
3 Tang et al. Fixed Point Theory and Applications :00 Page 3 of 3 and the viscosity iteration: x n+ = α n f x n β n x n γ n n + T i x n,.7 and then study the strong convergence of the iterative sequences.6 and.7. Under suitable conditions, some strong converge theorems to a fixed point of the nonexpansive mapping are proved. We also prove that this fixed point is a unique solution of some kind of variational inequality in CAT0 spaces. The results presented in this paper are new; they extend and improve corresponding previous results. Next we give some examples of iteration.6 or.7 with Cesàro s means for nonexpansive mappings to illustrate the generation of our new iterations. Example If X is a real Hilbert or Banach space, and if α n =0,β n =0, n, then the iteration.6 with Cesàro s means for nonexpansive mappings is reduced as the same iteration of Baillon []orbruck[2]. Example 2 If X is a real Banach space and n =, then the iteration.6 withcesàro s means for nonexpansive mappings is reduced to the same iteration of Yao et al. [4]. If n 2, then the iteration.6canbewritten x n+ = α n u + β n x n + γ n n + T i x n, which is a generalization of results due to Yao et al. [4]. Example 3 The iterations.6 and.7 are a generalization of the iterations of Zhu and Chen [5] from Banach space to CAT0 spaces. Example 4 Let E = R with the usual metric, T be a nonexpansive mapping defined by Tx = sin x,andf be a contractive mapping defined by f x= x 2.Letα n = 2n, β n = 4n 3 4n,and γ n =, n. Then the iteration.6 and.7 with Cesàro s means for nonexpansive 4n mappings Tx = sin x are reduced to the following iterations, respectively: x n+ = 4n 3 u + 2n 4n x n + xn + Tx n + T 2 x n + + T n x n, 4nn +.8 x n+ = 2n 2 x 4n 3 n + 4n x n + xn + Tx n + T 2 x n + + T n x n. 4nn +.9 Example 5 If X, d is a CAT0 space, n =andβ n = 0, then the iteration.7 with Cesàro s means for nonexpansive mappings is reduced to the following iteration, with Cesàro s means for nonexpansive mappings: x n+ = α n f x n γ n 2 x n γ n 2 Tx n,.0 which is a generalization of the iterations in Wangkeeree and Preechasilp [2]fromaBa nach space to CAT0 spaces.
4 Tang et al. Fixed Point Theory and Applications :00 Page 4 of 3 2 Preliminaries and lemmas In this paper, we write tx ty for the unique point z in the geodesic segment joining from x to y such that dx, z =tdx, y, dy, z = tdx, y. 2. Lemma 2. [3] AgeodesicspaceX, d is a CAT0 space, ifandonlyiftheinequality d 2 tx ty, z td 2 x, z+td 2 y, z t td 2 x, y 2.2 is satisfied for all x, y, z Xandt [0, ]. In particular, if x, y, z are points in a CAT0 space and t [0, ], then d tx ty, z tdx, z+tdy, z. Lemma 2.2 [6] Let X, d be a CAT0 space, p, q, r, s X, and λ [0, ]. Then d λp λq, λr λs λdp, r+ λdq, s. 2.3 By induction, we write n m= λ λ m x m := λ n x λ 2 x 2 λ n x n λ n x n. 2.4 λ n λ n λ n Lemma 2.3 [4] Let X, d be a CAT0 space, then for any sequence {λ i } n i= in [0,] satisfying n i= λ i =and for any {x i } n i= X, the following conclusions hold: d λ i x i, x i= λ i dx i, x, x X; 2.5 i= and d 2 i= λ i x i, x λ i d 2 x i, x λ λ 2 d 2 x, x 2, x X. i= Lemma 2.4 Let {x i } and {y i } be any sequences of a CAT0 space X, then for any sequence {λ i } k i= in [0, ] satisfying k i= λ i =and for any {x i } k i= X, the following inequality holds: k d λ i x i, i= k λ i y i i= k λ i dx i, y i. 2.6 i= Proof It is obvious that 2.6holdsfork =2.Supposethat2.6 holds for some k 3. Next we prove that 2.6isalsotruefork +.From2.3and2.4wehave
5 Tang et al. Fixed Point Theory and Applications :00 Page 5 of 3 d k+ k+ λ i x i, λ i y i i= i= k k λ i λ i = d λ k+ x i λ k+ x k+, λ k+ y i λ k+ y k+ λ k+ λ k+ λ k+ d λ k+ i= k k i= k+ = λ i dx i, y i. i= i= λ i λ k+ x i, i= i= k λ i y i + λ k+ dx k+, y k+ λ k+ λ i λ k+ dx i, y i +λ k+ dx k+, y k+ This implies that 2.6holds. Berg and Nikolaev [5] introduced the concept of quasilinearization as follows. Let us denote a pair a, b X X by ab and call it a vector. Then quasilinearization is defined as a map, :X X X X R defined by ab, cd = 2 d 2 a, d+d 2 b, c d 2 a, c d 2 b, d a, b, c, d X. 2.7 It is easy to seen that ab, cd = cd, ab, ab, cd = ba, cd, and ax, cd + xb, cd = ab, cd for all a, b, c, d X.WesaythatX satisfies the CauchySchwarz inequality if ab, cd da, bdc, d 2.8 for all a, b, c, d X. Itiswellknown[5] that a geodesically connected metric space is a CAT0 space if and only if it satisfies the CauchySchwarz inequality. Let C be a nonempty closed convex subset of a complete CAT0 space X. Themetric projection P C : X C is defined by u = P C x du, x=inf { dy, x:y C }, x X. Lemma 2.5 [6] Let C be a nonempty convex subset of a complete CAT0 space X, x X, and u C. Then u = P C x if and only if yu, ux 0, y C. Lemma 2.6 [2] LetCbeaclosedconvexsubsetofacompleteCAT0 space X, and let T : C C be a nonexpansive mapping with FT. Let f be a contraction on C with coefficient α <.For each t [0, ], let {x t } be the net defined by x t = tf x t ttx t. 2.9
6 Tang et al. Fixed Point Theory and Applications :00 Page 6 of 3 Then lim t 0 x t = x, some point FT which is the unique solution of the following variational inequality: xf x, x x 0, x FT. 2.0 Lemma 2.7 [2] Let X be a complete CAT0 space. Then, for any u, x, y X, the following inequality holds: d 2 x, u d 2 y, u+2 xy, xu. Lemma 2.8 [2] Let X be a complete CAT0 space. For any t [0, ] and u, v X, let u t = tu tv. Then, for any x, y X, i ut x, ut y t ux, ut y + t vx, ut y; ii ut x, uy t ux, uy + t vx, uy, and ut x, vy t ux, vy + t vx, vy. Lemma 2.9 [7] Let {a n } be a sequence of nonnegative real numbers satisfying the property a n+ α n a n + α n β n, n 0, where {α n } 0, and {β n } R such that i n=0 α n = ; ii lim sup n β n 0 or n=0 α nβ n <. Then {a n } converges to zero as n. 3 Approximative iterative algorithms Throughout this section, we assume that C is a nonempty and closed convex subset of a complete CAT0 space X,andT : C C is a nonexpansive mappings with FT.Let f be a contraction on C with coefficient k 0,. Suppose {α n }, {β n },and{γ n } are three real sequences in 0, satisfying i α n + β n + γ n =, for all n 0; ii lim n α n =0and n=0 α n = ; iii lim n γ n =0. In the following, we first present two important results. The first one is to prove the mapping S := n n+ T i : C Cisnonexpansive: In fact, for any x, y C, from Lemma 2.4 we get dsx, Sy=d dx, y, n + T i x, n n + d T i x, T i y n + T i y i.e., S is nonexpansive. The second one is to prove the following mapping T t,n : C C is contractive: T t,n x = α nt f x tγ n n + T i x.
7 Tang et al. Fixed Point Theory and Applications :00 Page 7 of 3 In fact, the mapping T t,n can be written as T t,n x = λ n f x λ n n + T i x, x C, where λ n = α nt γ n +tβ n. Therefore this kind of mappings has just a similar form to 2.9. Hence for any x, y C, from Lemma 2.4,wehave d T t,n x, T t,n y = d λ n f x λ n n n + T i x, λ n f y λ n λ n d f x, f y + λ n d λ n kdx, y+ λ n n + d T i x, T i y λ n kdx, y+ λ n dx, y = λ n k dx, y, n + T i x, n n n + T i y n + T i y i.e., T t,n is a contractive mapping. Hence, it has a unique fixed point denote by z t,n, i.e., z t,n = λ n f z t,n λ n n + T i z t,n. From Lemma 2.6,foreachgivenn, we have lim z t,n = x n F t 0 n + T i, 3. and it is the unique solution of the following variational inequality: x n f x n, xxn 0, x F Next we prove that for each n FT=F n + T i. 3.2 n + T i. 3.3 If fact, if x FT, it is obvious that x F n n+ T i, for each n. This implies that FT F n n+ T i foreachn. By using induction, now we prove that F n + T i FT foreachn. 3.4
8 Tang et al. Fixed Point Theory and Applications :00 Page 8 of 3 Indeed, if n =,andx F 2 T i, i.e., x = 2 x 2 Tx,thenwehave 2 x 2 x = 2 x Tx Since the geodesic segment joining any two points in CAT0 space is unique, it follows from 3.5thatx = Tx, i.e., x FT. If 3.4istrueforsomen 2, now we prove that 3.4isalsotrueforn +. Indeed, if x F n+ n+2 T i, i.e., n+ x = n +2 T i x. 3.6 It is easy to see that 3.6canberewrittenas n + n +2 x n +2 x = n + { x n +2 n + Tx n + T n } x n + n +2 T n+ x. 3.7 By the same reasoning showing that the geodesic segment joining any two points in CAT0 space is unique, from 3.7wehave n + n +2 x = n + { x n +2 n + Tx n + T n } x n + This implies that and n +2 x = n +2 T n+ x. x = x n + Tx n + T n x n + and x = T n+ x. 3.8 By the assumption of induction, from 3.8wehavex = Tx.Theconclusion3.4isproved. Therefore the conclusion 3.3isalsoproved. By using 3.3, 3.canbewrittenas lim z t,n = x n FT, 3.9 t 0 and x n is the unique solution of the following variational inequality: x n f x n, xxn 0, x FT. 3.0 Next we prove that for any positive integers m, n, x n = x m where x n is the limit in 3.9. Therefore 3.9canbewrittenas lim t 0 z t,n = x n = x FT, 3. where x is some point, and it is the unique solution of the following variational inequality: xf x, x x 0, x FT. 3.2
9 Tang et al. Fixed Point Theory and Applications :00 Page 9 of 3 In fact, it follows from 3.0that x n f x n, xxn 0, x m f x m, yxm 0, x FT, y FT. Taking x = x m in the first inequality and y = x n in the second inequality and then adding up the resultant two inequalities, we have 0 x n f x n, x m x n x m f x m, x m x n x n f x m, x m x n + f x m f x n, x m x n x m x n, x m x n x n f x m, x m x n = f x m f x n, x m x n xm x n, x m x n d f x m, f x n dx m, x n d 2 x m, x n kd 2 x m, x n d 2 x m, x n =k d 2 x m, x n. Since k 0,, this implies that dx m, x n =0,i.e., x m = x n, m, n. The conclusion is proved. We are now in a position to propose the iterative algorithms with Cesàro s means for a nonexpansive mapping in a complete CAT0 space X, and prove that the sequence generated by the algorithms converges strongly to a fixed point of the nonexpansive mapping which is also a unique solution of some kind of variational inequality. Theorem 3. Let C be a closed convex subset of a complete CAT0 space X, and T : C C be a nonexpansive mapping with FT. Let f be a contraction on C with coefficient k 0, 2. Suppose x 0 C and the sequence {x n } is given by x n+ = α n f x n β n x n γ n n + T i x n, 3.3 where T 0 = I, {α n }, {β n }, and {γ n } are three real sequences in 0, satisfying conditions i iii. Then {x n } converges strongly to x suchthat x = P FT f x, which is equivalent to the following variational inequality: xf x, x x 0, x FT. 3.4 Proof We first show that the sequence {x n } is bounded. For any p FT, we have dx n+, p=d α n f x n β n x n γ n α n d f x n, p + β n dx n, p+γ n d n + T i x n, p n + T i x n, p α n d f xn, f p + d f p, p + β n dx n, p+γ n n + d T i x n, T i p
10 Tang et al. Fixed Point Theory and Applications :00 Page 0 of 3 By induction, we have α n kdx n, p+α n d f p, p + β n dx n, p+γ n dx n, p = α n k dx n, p+α n k { max dx n, p, k d f p, p }. { dx n, p max dx 0, p, k d f p, p } k d f p, p for all n 0. Hence {x n } is bounded, and so are {f x n } and {T i x n }. Let {z t,n } be a sequence in C such that z t,n = α nt f z t,n tγ n n + T i z t,n. It follows from 3.that{z t,n } convergesstronglytoafixedpoint x FT, which is also a unique solution of the variational inequality 3.4. Now we claim that lim sup f x x, xn+ x n It follows from Lemma 2.8 and Lemma 2.4 that d 2 z t,n, x n+ = z t,n x n+, z t,n x n+ α nt f z t,n x n+, z t,n x n+ + tγ n n = α nt [ f z t,n f x, z t,n x n+ + f x x, z t,n x n+ + xzt,n, z t,n x n+ + z t,n x n+, z t,n x n+ ] + tγ n [ n n n + T i z t,n ] n + n + T i x n+ x n+, z t,n x n+ n + T i x n+, z t,n x n+ α nt [ kdzt,n, xdz t,n, x n+ + f x x, z t,n x n+ n + T i z t,n x n+, z t,n x n+ + d x, z t,n dz t,n, x n+ +d 2 z t,n, x n+ ] [ + tγ n n d n + T i z t,n, n + T i x n+ dz t,n, x n+
11 Tang et al. Fixed Point Theory and Applications :00 Page of 3 where + d ] n + T i x n+, x n+ dz t,n, x n+ α nt [ kdzt,n, xdz t,n, x n+ + f x x, z t,n x n+ + d x, z t,n dz t,n, x n+ +d 2 z t,n, x n+ ] [ + tγ n d 2 z t,n, x n+ + d ] T i x n+, x n+ dzt,n, x n+ n + α nt [ Mkdzt,n, x+ f x x, z t,n x n+ + Md x, zt,n ] + d 2 z t,n, x n+ + tγ nmn, M sup { dz t,n, x n+, n 0, 0 < t < }, N sup { d T i x n+, x n+, n 0, i 0 }. This implies that f x x, x n+ z t,n + kmdzt,n, x+ tγ nmn α n t. 3.6 Taking the upper limit as n first, and then taking the upper limit as t 0, we get Since lim sup t 0 lim sup f x x, x n+ z t,n n f x x, xn+ x = f x x, x n+ z t,n + f x x, zt,n x f x x, x n+ z t,n + d f x, x dzt,n, x. Thus, by taking the upper limit as n first, and then taking the upper limit as t 0, it follows from z t,n x and 3.7that Hence lim sup t 0 lim sup f x x, xn+ x 0. n lim sup f x x, xn+ x 0. n Finally, we prove that x n x as n.infact,foranyn 0, let { u n := α n x α n y n, y n := β n α n x n γ n α n n n+ T i x n. 3.8
12 Tang et al. Fixed Point Theory and Applications :00 Page 2 of 3 FromLemma 2.7 andlemma 2.8 we have d 2 x n+, x d 2 u n, x+2 x n+ u n, xn+ x α n 2 d 2 y n, x+2 [ α n f x n u n, xn+ x + α n yn u n, xn+ x ] α n 2 d 2 x n, x+2 [ αn 2 f x n x, xn+ x + α n α n f x n y n, xn+ x + α n α n yn x, xn+ x + α n 2 yn y n, xn+ x ] = α n 2 d 2 x n, x+2 [ αn 2 f x n x, xn+ x + α n α n f x n x, xn+ x ] = α n 2 d 2 x n, x+2α n f x n x, xn+ x = α n 2 d 2 x n, x+2α n f x n f x, xn+ x +2α n f x x, xn+ x α n 2 d 2 x n, x+2α n kdx n, xdx n+, x+2α n f x x, xn+ x α n 2 d 2 x n, x+α n k d 2 x n, x+d 2 x n+, x +2α n f x x, xn+ x. This implies that d 2 x n+, x 2 kα n + αn 2 d 2 x n, x+ α n k = α n2 2k α n α n k Then it follows that d 2 x n, x+ 2α n f x x, xn+ x α n k 2α n f x x, xn+ x. α n k d 2 x n+, x α n d 2 x n, x+α n β n, where α n = α n2 2k α n, β n α n k = 2 f x x, xn+ x. 2 2k α n Applying Lemma 2.9,wecanconcludethatx n x as n. This completes the proof. Letting f x n u for all n N, the following theorem can be obtained from Theorem 3. immediately. Theorem 3.2 Let C be a closed convex subset of a complete CAT0 space X, and let T : C C be a nonexpansive mapping satisfying FT. For given x 0 Carbitrarilyand fixed point u C, the sequence {x n } is given by x n+ = α n u β n x n γ n n + T i x n, 3.9
13 Tang et al. Fixed Point Theory and Applications :00 Page 3 of 3 where T 0 = I, {α n }, {β n }, and {γ n } are three real sequences in 0, satisfying conditions iiii. Then {x n } converges strongly to x suchthat x = P FT u, which is equivalent to the following variational inequality: xu, x x 0, x FT Remark 3.3 Theorem 3. and Theorem 3.2 are two new results. The proofs are simple and different from many others which extend the Cesàro nonlinear ergodic theorems for nonexpansive mappings in Baillon [], Bruck [2], Song and Chen [3], Zhu and Chen [5], Yao et al. [4] from Hilbert space or Banach space to CAT0 spaces. Theorem 3. is also a generalization of the results by Wangkeeree and Preechasilp [2]. Competing interests The authors declare that they have no competing interests. Authors contributions All the authors contributed equally to the writing of the present article. They also read and approved the final paper. Author details Department of Mathematics, Yibin University, Yibin, Sichuan , China. 2 College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 65022, China. Acknowledgements The authors would like to express their thanks to the editors and the referees for their helpful suggestions and advises. This work was supported by the Scientific Research Fund of Sichuan Provincial Department of Science and Technology 205JY065 and the Scientific Research Fund of Sichuan Provincial Education Department 4ZA027 and the Scientific Research Project of Yibin University 203YY06. This work was also supported by the National Natural Science Foundation of China Grant No Received: 8 March 205 Accepted: 5 June 205 References. Baillon, JB: Un théorème de type ergodique pour les contractions non linéairs dans un espaces de Hilbert. C. R. Acad. Sci. Paris Sér. AB 28022, Bruck, RE: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces. Isr. J. Math , Song, Y, Chen, R: Viscosity approximate methods to Cesàro means for nonexpansive mappings. Appl. Math. Comput. 862, Yao, Y, Liou, YC, Zhou, H: Strong convergence of an iterative method for nonexpansive mappings with new control conditions. Nonlinear Anal., Theory Methods Appl. 706, Zhu, Z, Chen, R: Strong convergence on iterative methods of Cesàro means for nonexpansive mapping in Banach space. Abstr. Appl. Anal. 204,Article ID Bridson, MR, Haefliger, A: Metric Spaces of Nonpositive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 39. Springer, Berlin Kirk, WA: Fixed point theory in CAT0 spaces and Rtrees. Fixed Point Theory Appl , Brown, KS ed.: Buildings. Springer, New York Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monograph and Textbooks in Pure and Applied Mathematics, vol. 83. Dekker, New York Kirk, WA: Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis Malaga/Seville, 2002/2003. Colección Abierta, vol. 64, pp University of Seville Secretary of Publications, Seville Kirk, WA: Geodesic geometry and fixed point theory. II. In: International Conference on Fixed Point Theory and Applications, pp Yokohama Publishers, Yokohama Wangkeeree, R, Preechasilp, P: Viscosity approximation methods for nonexpansive semigroups in CAT0 spaces. Fixed Point Theory Appl. 203,ArticleID doi:0.86/ Dhompongsa, S, Panyanak, B: On convergence theorems in CAT0 spaces. Comput. Math. Appl. 560, Tang, JF: Viscosity approximation methods for a family of nonexpansive mappings in CAT0 spaces. Abstr. Appl. Anal. 204, Article ID Berg, ID, Nikolaev, IG: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedic. 33, Dehghan, H, Rooin, J: A characterization of metric projection in CAT0 spaces. In: International Conference on Functional Equation, Geometric Functions and Applications ICFGA 202, 02th May 202, pp Payame Noor University, Tabriz Xu, HK: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 6,
Controllability and Observability of Partial Differential Equations: Some results and open problems
Controllability and Observability of Partial Differential Equations: Some results and open problems Enrique ZUAZUA Departamento de Matemáticas Universidad Autónoma 2849 Madrid. Spain. enrique.zuazua@uam.es
More informationDecoding by Linear Programming
Decoding by Linear Programming Emmanuel Candes and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics, University of California, Los Angeles, CA 90095
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationSecondorder conditions in C 1,1 constrained vector optimization
Ivan Ginchev, Angelo Guerreggio, Matteo Rocca Secondorder conditions in C 1,1 constrained vector optimization 2004/17 UNIVERSITÀ DELL'INSUBRIA FACOLTÀ DI ECONOMIA http://eco.uninsubria.it In questi quaderni
More informationHow to Use Expert Advice
NICOLÒ CESABIANCHI Università di Milano, Milan, Italy YOAV FREUND AT&T Labs, Florham Park, New Jersey DAVID HAUSSLER AND DAVID P. HELMBOLD University of California, Santa Cruz, Santa Cruz, California
More informationProbability in High Dimension
Ramon van Handel Probability in High Dimension ORF 570 Lecture Notes Princeton University This version: June 30, 2014 Preface These lecture notes were written for the course ORF 570: Probability in High
More informationIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289. Compressed Sensing. David L. Donoho, Member, IEEE
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006 1289 Compressed Sensing David L. Donoho, Member, IEEE Abstract Suppose is an unknown vector in (a digital image or signal); we plan to
More informationA Modern Course on Curves and Surfaces. Richard S. Palais
A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of InnerProduct Spaces 7 Lecture 4. Linear Maps and the Euclidean
More informationMatthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka
Matthias Beck Gerald Marchesi Dennis Pixton Lucas Sabalka Version.5 Matthias Beck A First Course in Complex Analysis Version.5 Gerald Marchesi Department of Mathematics Department of Mathematical Sciences
More informationSubspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity
Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at UrbanaChampaign
More informationA visual introduction to Riemannian curvatures and some discrete generalizations
A visual introduction to Riemannian curvatures and some discrete generalizations Yann Ollivier Abstract. We try to provide a visual introduction to some objects used in Riemannian geometry: parallel transport,
More informationSome Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.310, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
More informationClustering with Bregman Divergences
Journal of Machine Learning Research 6 (2005) 1705 1749 Submitted 10/03; Revised 2/05; Published 10/05 Clustering with Bregman Divergences Arindam Banerjee Srujana Merugu Department of Electrical and Computer
More informationGeneralized compact knapsacks, cyclic lattices, and efficient oneway functions
Generalized compact knapsacks, cyclic lattices, and efficient oneway functions Daniele Micciancio University of California, San Diego 9500 Gilman Drive La Jolla, CA 920930404, USA daniele@cs.ucsd.edu
More informationWhen Is There a Representer Theorem? Vector Versus Matrix Regularizers
Journal of Machine Learning Research 10 (2009) 25072529 Submitted 9/08; Revised 3/09; Published 11/09 When Is There a Representer Theorem? Vector Versus Matrix Regularizers Andreas Argyriou Department
More informationOrthogonal Bases and the QR Algorithm
Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries
More informationOptimization with SparsityInducing Penalties. Contents
Foundations and Trends R in Machine Learning Vol. 4, No. 1 (2011) 1 106 c 2012 F. Bach, R. Jenatton, J. Mairal and G. Obozinski DOI: 10.1561/2200000015 Optimization with SparsityInducing Penalties By
More informationAn Elementary Introduction to Modern Convex Geometry
Flavors of Geometry MSRI Publications Volume 3, 997 An Elementary Introduction to Modern Convex Geometry KEITH BALL Contents Preface Lecture. Basic Notions 2 Lecture 2. Spherical Sections of the Cube 8
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationA Measure of Similarity between Graph Vertices: Applications to Synonym Extraction and Web Searching
SIAM REVIEW Vol 46, No 4, pp 647 666 c 2004 Society for Industrial and Applied Mathematics A Measure of Similarity between Graph Vertices: Applications to Synonym Extraction and Web Searching Vincent D
More informationSome Applications of Laplace Eigenvalues of Graphs
Some Applications of Laplace Eigenvalues of Graphs Bojan MOHAR Department of Mathematics University of Ljubljana Jadranska 19 1111 Ljubljana, Slovenia Notes taken by Martin Juvan Abstract In the last decade
More informationFrom Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
SIAM REVIEW Vol. 51,No. 1,pp. 34 81 c 2009 Society for Industrial and Applied Mathematics From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images Alfred M. Bruckstein David
More informationTHE PROBLEM OF finding localized energy solutions
600 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997 Sparse Signal Reconstruction from Limited Data Using FOCUSS: A Reweighted Minimum Norm Algorithm Irina F. Gorodnitsky, Member, IEEE,
More informationRandom matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs
Random matchings which induce Hamilton cycles, and hamiltonian decompositions of random regular graphs Jeong Han Kim Microsoft Research One Microsoft Way Redmond, WA 9805 USA jehkim@microsoft.com Nicholas
More informationNew Results on Hermitian Matrix RankOne Decomposition
New Results on Hermitian Matrix RankOne Decomposition Wenbao Ai Yongwei Huang Shuzhong Zhang June 22, 2009 Abstract In this paper, we present several new rankone decomposition theorems for Hermitian
More informationRECENTLY, there has been a great deal of interest in
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 1, JANUARY 1999 187 An Affine Scaling Methodology for Best Basis Selection Bhaskar D. Rao, Senior Member, IEEE, Kenneth KreutzDelgado, Senior Member,
More informationA GRAPHTHEORETIC DEFINITION OF A SOCIOMETRIC CLIQUE *
Journal of Mathematical Sociology Gordon and Breach Science Publishers 1973 Vol. 3, pp 113126 Printed in Birkenhead, England A GRAPHTHEORETIC DEFINITION OF A SOCIOMETRIC CLIQUE * RICHARD D. ALBA Columbia
More informationMeiChu Chang Department of Mathematics UCR Riverside, CA 92521
A POLYNOMIAL BOUND IN FREIMAN S THEOREM MeiChu Chang Department of Mathematics UCR Riverside, CA 92521 Abstract. In this paper the following improvement on Freiman s theorem on set addition is obtained.
More informationGeneralized Compact Knapsacks are Collision Resistant
Generalized Compact Knapsacks are Collision Resistant Vadim Lyubashevsky Daniele Micciancio University of California, San Diego 9500 Gilman Drive, La Jolla, CA 920930404, USA {vlyubash,daniele}@cs.ucsd.edu
More informationHow Bad is Forming Your Own Opinion?
How Bad is Forming Your Own Opinion? David Bindel Jon Kleinberg Sigal Oren August, 0 Abstract A longstanding line of work in economic theory has studied models by which a group of people in a social network,
More information