Peak load reduction for distributed backup scheduling


 Jordan Carroll
 2 years ago
 Views:
Transcription
1 Peak load reduction for distributed backup scheduling Peter van de Ven joint work with Angela Schörgendorfer (Google) and Bo Zhang (IBM Research)
2
3 My research interests are in the design and analysis of large (distributed) stochastic systems:  performance analysis; scheduling; stochastic optimization and control
4 Part I: Peak load reduction for distributed backup scheduling
5 load 8am 6pm Load is highly varying throughout the day  network costs are nonlinear in the hourly load  aim to reduce network costs by shifting peak load
6 load backups 8am 6pm  the load is comprised of different types of traffic  we focus on the backup traffic
7 load backups 8am 6pm Users (workstations) aim to do daily backups  the backup transmitted across the network to a central server  backup traffic can be shifted because of delaytolerance
8 load load backups backups 8am 6pm 8am 6pm current target Backups are initiated by the users, based on local information only  backup policy is characterized by hourly backup probabilities However  users are not always connected  the server may have some capacity constraint
9 load load backups backups 8am 6pm 8am 6pm current target Question 1: How much traffic can the network handle for given backup probabilities? Question 2: How to choose the backup probabilities to minimize the network costs while ensuring regular backups?
10 Model outline
11 N users network server Consider N users that generate data (bits) over time  user backup to a central server  access to server over a data network
12 A 1(t) B(t) i A 2(t) A 3(t) A 4(t) A 5(t) network server  time is slotted  user i generates A i (t) bits in slot t  data is added to the backlog B i (t)
13 A 1(t) B(t) i A 2(t) A 3(t) A 4(t) A 5(t) network C i (t) server  users can only do a backup when connected to the network  connectivity is represented by C i (t) {0, 1}, i = 1,..., N
14 A 1(t) B(t) i σ i (t) A 2(t) A 3(t) A 4(t) A 5(t) network C i (t) server Connected users may decide to do a backup (σ i (t) = 1) or not (σ i (t) = 0)
15 A 1(t) B(t) i σ i (t) A 2(t) A 3(t) A 4(t) A 5(t) network C i (t) server Connected users may decide to do a backup (σ i (t) = 1) or not (σ i (t) = 0) The backlog evolution and offered backup load are given by B i (t + 1) = (A i (t) + B i (t))(1 C i (t)σ i (t)), N H(t) = (A i (t) + B i (t))c i (t)σ i (t) i=1
16 User type & Backup probability Consider the number of days since backup W i (t) {0, 1,... } (user type): W i (t + 1) = W i (t) ( 1 σ i (t)c i (t) ) + 1 {η(t+1)=0}, with η(t) := t mod T the hour of the day
17 User type & Backup probability Consider the number of days since backup W i (t) {0, 1,... } (user type): W i (t + 1) = W i (t) ( 1 σ i (t)c i (t) ) + 1 {η(t+1)=0}, with η(t) := t mod T the hour of the day The backup decision is random and may depend on W i (t) and the hour of the day u(t) {0,..., T 1}: { 1 w.p. ν(u(t), Wi (t)) σ i (t) = 0 otherwise
18 Capacity & network cost minimization
19 Let W(t) = (W 1 (t),..., W N (t)) and consider the Markov process U := {(η(t), W(t)), t = 0, 1,... } For fixed ν, we can analyze U to obtain insights into the backup system
20 The stationary distribution π of the process U satisfies where π(u, w) = π(0, 1)k 1 (u, w), u = 0,..., T 1; w 1, π(u, 0) = π(0, 1)k 2 (u), u = 1,..., T 1, w 1 k 1 (u, w) := m(0, u 1, w) m(0, T 1, y), k 2 (u) := u v=1 y=1 and with normalizing constant [ π(0, 1) = y=1 k 1 (v 1, y)c(v 1)ν(v 1, y), T 1 w=1 u=0 T 1 k 1 (u, w) + u=1 k 2 (u)] 1.
21 Let u m(u, u, w) := (1 c(v)ν(v, w)), u, u = 0,..., T 1; w = 0, 1,..., v=u and define g(u, w) := 1 m(u, T 1, w)m(0, u 1, w + 1), u, u = 0,..., T 1; w = 0, 1,..., Proposition If α(u) := lim w w( g(u, w) w 1) exists and α(u) (0, ) for all u {0, 1,..., T 1}, then U is positive recurrent.
22 Lemma The expected backlog size of a typew user at hour u: S(u, w) = where T 1 u =0 = p(u, u, w)e π [ B(t) η(t) = u, W (t) = w, η(τ (t)) = u ]. [ E π B(t) η(t) = u, W (t) = w, η(τ (t)) = u ] p(u, u, w) = u 1 v=u +1 T 1 v=u +1 w =0 w =0 a(v), w = 0, a(v) + (w 1)â + u 1 v=0 a(v), w 1, π(u,w ) π(u,0) c(u )ν(u, w )m(u + 1, u 1, 0), w = 0, π(u,w ) π(0,1) c(u )ν(u, w )m(u + 1, T 1, 0), w 1.
23 load B(t) L(t) 8am 6pm We consider the sum of H(t) (backup load) and L(t) (extraneous load)  denote H(t; ν) to reflect the impact of ν
24 Network costs log10(kb) The data network is associated with a loaddependent hourly cost function g : R R We are interested in the average perday network costs (T = 24) G(ν) = T 1 u=0 E{g ( L(u) + H(u; ν) ) },
25 We approximate G(ν) G(ν) := T 1 u=0 g ( E [ L(u) ] + E π [ H(u; ν) ]), The E [ L(u) ] can be obtained from measurements. Exploiting user independence: E π [H(u; ν)] = NT π(u, w) ( S(u, w) + a(u) ) c(u)ν(u, w), w=0
26 We aim to minimize the network costs, while ensuring regular backups min ν G(ν) such that T w=w j π(0, w) γ j, j = 1, 2,.... This problem is nonconvex.
27 Implementation
28 We consider an IBM location with N = 5397 users 25 L u c u u u load L(u) connectivity c(u)
29 w = 1 w = 2 w = 3 w = 4 w 5 We truncate the state space at w = 5 and compute the ν(u, w)  the probability is high at night and low during working hours  users that have not done a backup in a while are more likely to schedule during peak hours
30 Comparison to original scheduling table Europe team s schedule: = Our schedule: =
31 Comparison to original scheduling table  Performance days without backup total load
32 Constrained system β Consider a constraint on the total amount of backup traffic: B i (t + 1) = (A i (t) + B i (t))(1 C i (t)σ i (t) min{1, β/b(t)}) Users are no longer independent  stability conditions and proofs are more involved  use mean field limit to compute longterm average behavior
LECTURE 4. Last time: Lecture outline
LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random
More informationHow performance metrics depend on the traffic demand in large cellular networks
How performance metrics depend on the traffic demand in large cellular networks B. B laszczyszyn (Inria/ENS) and M. K. Karray (Orange) Based on joint works [1, 2, 3] with M. Jovanovic (Orange) Presented
More informationINTEGRATED OPTIMIZATION OF SAFETY STOCK
INTEGRATED OPTIMIZATION OF SAFETY STOCK AND TRANSPORTATION CAPACITY Horst Tempelmeier Department of Production Management University of Cologne AlbertusMagnusPlatz D50932 Koeln, Germany http://www.spw.unikoeln.de/
More informationON THE KWINNERSTAKEALL NETWORK
634 ON THE KWINNERSTAKEALL NETWORK E. Majani Jet Propulsion Laboratory California Institute of Technology R. Erlanson, Y. AbuMostafa Department of Electrical Engineering California Institute of Technology
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationOn the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2
On the Traffic Capacity of Cellular Data Networks T. Bonald 1,2, A. Proutière 1,2 1 France Telecom Division R&D, 3840 rue du Général Leclerc, 92794 IssylesMoulineaux, France {thomas.bonald, alexandre.proutiere}@francetelecom.com
More informationReinforcement Learning
Reinforcement Learning LU 2  Markov Decision Problems and Dynamic Programming Dr. Martin Lauer AG Maschinelles Lernen und Natürlichsprachliche Systeme AlbertLudwigsUniversität Freiburg martin.lauer@kit.edu
More informationDynamic Assignment of Dedicated and Flexible Servers in Tandem Lines
Dynamic Assignment of Dedicated and Flexible Servers in Tandem Lines Sigrún Andradóttir and Hayriye Ayhan School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA 303320205,
More informationPerron vector Optimization applied to search engines
Perron vector Optimization applied to search engines Olivier Fercoq INRIA Saclay and CMAP Ecole Polytechnique May 18, 2011 Web page ranking The core of search engines Semantic rankings (keywords) Hyperlink
More informationRenewal Theory. (iv) For s < t, N(t) N(s) equals the number of events in (s, t].
Renewal Theory Def. A stochastic process {N(t), t 0} is said to be a counting process if N(t) represents the total number of events that have occurred up to time t. X 1, X 2,... times between the events
More informationReinforcement Learning
Reinforcement Learning LU 2  Markov Decision Problems and Dynamic Programming Dr. Joschka Bödecker AG Maschinelles Lernen und Natürlichsprachliche Systeme AlbertLudwigsUniversität Freiburg jboedeck@informatik.unifreiburg.de
More informationBrownian Motion and Stochastic Flow Systems. J.M Harrison
Brownian Motion and Stochastic Flow Systems 1 J.M Harrison Report written by Siva K. Gorantla I. INTRODUCTION Brownian motion is the seemingly random movement of particles suspended in a fluid or a mathematical
More informationChapter 2: Binomial Methods and the BlackScholes Formula
Chapter 2: Binomial Methods and the BlackScholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a calloption C t = C(t), where the
More informationBasic Multiplexing models. Computer Networks  Vassilis Tsaoussidis
Basic Multiplexing models? Supermarket?? Computer Networks  Vassilis Tsaoussidis Schedule Where does statistical multiplexing differ from TDM and FDM Why are buffers necessary  what is their tradeoff,
More informationModeling and Performance Evaluation of Computer Systems Security Operation 1
Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system
More informationRandom access protocols for channel access. Markov chains and their stability. Laurent Massoulié.
Random access protocols for channel access Markov chains and their stability laurent.massoulie@inria.fr Aloha: the first random access protocol for channel access [Abramson, Hawaii 70] Goal: allow machines
More informationThe Exponential Distribution
21 The Exponential Distribution From DiscreteTime to ContinuousTime: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
More informationBisimulation and Logical Preservation for ContinuousTime Markov Decision Processes
Bisimulation and Logical Preservation for ContinuousTime Markov Decision Processes Martin R. Neuhäußer 1,2 JoostPieter Katoen 1,2 1 RWTH Aachen University, Germany 2 University of Twente, The Netherlands
More informationIEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS
IEOR 6711: Stochastic Models, I Fall 2012, Professor Whitt, Final Exam SOLUTIONS There are four questions, each with several parts. 1. Customers Coming to an Automatic Teller Machine (ATM) (30 points)
More informationCoordinated Pricing and Inventory in A System with Minimum and Maximum Production Constraints
The 7th International Symposium on Operations Research and Its Applications (ISORA 08) Lijiang, China, October 31 Novemver 3, 2008 Copyright 2008 ORSC & APORC, pp. 160 165 Coordinated Pricing and Inventory
More information1 Limiting distribution for a Markov chain
Copyright c 2009 by Karl Sigman Limiting distribution for a Markov chain In these Lecture Notes, we shall study the limiting behavior of Markov chains as time n In particular, under suitable easytocheck
More informationAdaptive Threshold Policies for MultiChannel Call Centers
Adaptive Threshold Policies for MultiChannel Call Centers Benjamin Legros a Oualid Jouini a Ger Koole b a Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290 ChâtenayMalabry,
More informationOptimal Power Cost Management Using Stored Energy in Data Centers
1 Optimal Power Cost Management Using Stored Energy in Data Centers Rahul Urgaonkar, Bhuvan Urgaonkar, Michael J. Neely, and Anand Sivasubramaniam Dept. of EESystems, University of Southern California
More informationIN THIS PAPER, we study the delay and capacity tradeoffs
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 5, OCTOBER 2007 981 Delay and Capacity TradeOffs in Mobile Ad Hoc Networks: A Global Perspective Gaurav Sharma, Ravi Mazumdar, Fellow, IEEE, and Ness
More informationModern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
More informationA MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASEFIELD MODEL WITH MEMORY
Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASEFIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,
More informationStochastic Inventory Control
Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the
More informationSpectral Measure of Large Random Toeplitz Matrices
Spectral Measure of Large Random Toeplitz Matrices Yongwhan Lim June 5, 2012 Definition (Toepliz Matrix) The symmetric Toeplitz matrix is defined to be [X i j ] where 1 i, j n; that is, X 0 X 1 X 2 X n
More informationCHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORTTERM HYDROTHERMAL SCHEDULING
60 CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORTTERM HYDROTHERMAL SCHEDULING 3.1 INTRODUCTION Optimal shortterm hydrothermal scheduling of power systems aims at determining optimal hydro and thermal generations
More informationSTABILITY OF LUKUMAR NETWORKS UNDER LONGESTQUEUE AND LONGESTDOMINATINGQUEUE SCHEDULING
Applied Probability Trust (28 December 2012) STABILITY OF LUKUMAR NETWORKS UNDER LONGESTQUEUE AND LONGESTDOMINATINGQUEUE SCHEDULING RAMTIN PEDARSANI and JEAN WALRAND, University of California, Berkeley
More information1 2 3 4 5 6 90 180 360 600 900 W kg M stop start P M 1. 2. M 3. P 4. M M 1. 2. P 3. P 4. M M 1. 2. P 3. P 4. M 250 250 250 1. P 2. 3. P pm h M1 M2 min sec kg M 1. 2. 3. M M 1. 2. 3. M M M 1. 2. M 90
More informationFurther Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
More informationALOHA Performs DelayOptimum Power Control
ALOHA Performs DelayOptimum Power Control Xinchen Zhang and Martin Haenggi Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556, USA {xzhang7,mhaenggi}@nd.edu Abstract As
More information6.231 Dynamic Programming and Stochastic Control Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 6.231 Dynamic Programming and Stochastic Control Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.231
More informationCloud for PC SOFT applications Pricing
Cloud for PC SOFT applications Pricing Date when pricing takes effect: 6 January 2016 10:51 Overview The Cloud for PC SOFT applications offers operating platforms for your WINDEV, WEBDEV or WINDEV Mobile
More informationhttp://www.guido.be/intranet/enqueteoverview/tabid/152/ctl/eresults...
1 van 70 20/03/2014 11:55 EnqueteDescription 2 van 70 20/03/2014 11:55 3 van 70 20/03/2014 11:55 4 van 70 20/03/2014 11:55 5 van 70 20/03/2014 11:55 6 van 70 20/03/2014 11:55 7 van 70 20/03/2014 11:55
More informationAssessment of robust capacity utilisation in railway networks
Assessment of robust capacity utilisation in railway networks Lars Wittrup Jensen 2015 Agenda 1) Introduction to WP 3.1 and PhD project 2) Model for measuring capacity consumption in railway networks a)
More informationCenter for Mathematics and Computational Science (CWI) Phone: (+31)205924135
Peter van de Ven Center for Mathematics and Computational Science (CWI) Phone: (+31)205924135 Stochastics department Amsterdam, The Netherlands 2014present Research interests ven@cwi.nl Applied probability;
More informationHydrodynamic Limits of Randomized Load Balancing Networks
Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli
More informationModule MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions
Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective
More informationSinglePeriod Balancing of Pay PerClick and PayPerView Online Display Advertisements
SinglePeriod Balancing of Pay PerClick and PayPerView Online Display Advertisements Changhyun Kwon Department of Industrial and Systems Engineering University at Buffalo, the State University of New
More informationWireless Network Coding with partial Overhearing information
Wireless network coding with partial overhearing information Georgios S. Paschos Massachusetts Institute of Technology (MIT) Joint work with: C. Fragkiadakis University of Thessaly, Greece L. Georgiadis
More informationReserve Valuation in Power Systems with High Penetration of Wind Power
Reserve Valuation in Power Systems with High Penetration of Wind Power Antonio J. Conejo Univ. Castilla La Mancha Spain 2011 1 La Mancha 2 3 4 5 7 Nuclear Power Plants 5 Nuclear Power Plants 1 Nuclear
More information3. Renewal Theory. Definition 3 of the Poisson process can be generalized: Let X 1, X 2,..., iidf(x) be nonnegative interarrival times.
3. Renewal Theory Definition 3 of the Poisson process can be generalized: Let X 1, X 2,..., iidf(x) be nonnegative interarrival times. Set S n = n i=1 X i and N(t) = max {n : S n t}. Then {N(t)} is a
More informationP r o f. d r. W. G u e d e n s L i c. M. R e y n d e r s D 2 Chemie o e l s t e l l i n g B e pal i n g v an d e c o n c e n t r at i e z u u r i n w i t t e w i j n d o o r u i t v o e r i n g v an e
More informationAnalysing the impact of CDN based service delivery on traffic engineering
Analysing the impact of CDN based service delivery on traffic engineering Gerd Windisch Chair for Communication Networks Technische Universität Chemnitz Gerd Windisch  Chair for Communication Networks
More information15 Markov Chains: Limiting Probabilities
MARKOV CHAINS: LIMITING PROBABILITIES 67 Markov Chains: Limiting Probabilities Example Assume that the transition matrix is given by 7 2 P = 6 Recall that the nstep transition probabilities are given
More informationCrosslayer Scheduling and Resource Allocation in Wireless Communication Systems
Crosslayer Scheduling and Resource Allocation in Wireless Communication Systems Srikrishna Bhashyam Department of Electrical Engineering Indian Institute of Technology Madras 21 June 2011 Srikrishna Bhashyam
More informationLoad Balancing and Switch Scheduling
EE384Y Project Final Report Load Balancing and Switch Scheduling Xiangheng Liu Department of Electrical Engineering Stanford University, Stanford CA 94305 Email: liuxh@systems.stanford.edu Abstract Load
More informationChange Management in Enterprise IT Systems: Process Modeling and Capacityoptimal Scheduling
Change Management in Enterprise IT Systems: Process Modeling and Capacityoptimal Scheduling Praveen K. Muthusamy, Koushik Kar, Sambit Sahu, Prashant Pradhan and Saswati Sarkar Rensselaer Polytechnic Institute
More informationOxfordshire Fire and Rescue Service
Oxfh F Ru Sv F f v bk K Sg Tw Lk KS2 PHSE Czhp 1C, 3A, 3E & 5D NAME: Ffgh U h f u wh h mg! 1 2 3 4 5 6 7 8 9 10 11 12 13 b f g h j k m 14 15 16 17 18 19 20 21 22 23 24 25 26 p q u v w z z 2619 1813 4x5
More informationOPTIMAL CONTROL OF FLEXIBLE SERVERS IN TWO TANDEM QUEUES WITH OPERATING COSTS
Probability in the Engineering and Informational Sciences, 22, 2008, 107 131. Printed in the U.S.A. DOI: 10.1017/S0269964808000077 OPTIMAL CONTROL OF FLEXILE SERVERS IN TWO TANDEM QUEUES WITH OPERATING
More informationLecture notes on Moral Hazard, i.e. the Hidden Action PrincipleAgent Model
Lecture notes on Moral Hazard, i.e. the Hidden Action PrincipleAgent Model Allan CollardWexler April 19, 2012 CoWritten with John Asker and Vasiliki Skreta 1 Reading for next week: Make Versus Buy in
More informationTimeOfUse Pricing Policies for Offering Cloud Computing as a Service
TimeOfUse Pricing Policies for Offering Cloud Computing as a Service Denis Saure, Anshul Sheopuri, Huiming Qu, Hani Jamjoom, Assaf Zeevi Email: dsaure@gsb.columbia.edu, {sheopuri, hqu, jamjoom}@us.ibm.com,
More informationOptimized Asynchronous Passive MultiChannel Discovery of BeaconEnabled Networks
t t Technische Universität Berlin Telecommunication Networks Group arxiv:1506.05255v1 [cs.ni] 17 Jun 2015 Optimized Asynchronous Passive MultiChannel Discovery of BeaconEnabled Networks Niels Karowski,
More informationThe Feasibility of Supporting LargeScale Live Streaming Applications with Dynamic Application EndPoints
The Feasibility of Supporting LargeScale Live Streaming Applications with Dynamic Application EndPoints Kay Sripanidkulchai, Aditya Ganjam, Bruce Maggs, and Hui Zhang Instructor: Fabian Bustamante Presented
More informationQoS for Cloud Computing!
PIREGRID EFA53/08 QoS for Cloud Computing! PIREGRID THEMATIC DAY! May, 10thn 2011! University of Pau! Prof. Congduc Pham! http://www.univpau.fr/~cpham! Université de Pau, France! What is Quality of Service?!
More informationPeriodic Capacity Management under a Lead Time Performance Constraint
Periodic Capacity Management under a Lead Time Performance Constraint N.C. Buyukkaramikli 1,2 J.W.M. Bertrand 1 H.P.G. van Ooijen 1 1 TU/e IE&IS 2 EURANDOM INTRODUCTION Using Lead time to attract customers
More informationDualside Dynamic Controls for Cost Minimization in Mobile Cloud Computing Systems
Dualside Dynamic Controls for Cost Minimization in Mobile Cloud Computing Systems Yeongin Kim, Jeongho Kwak and Song Chong Department of Electrical Engineering, KAIST Email: y.kim, h.kwak}@netsys.kaist.ac.kr,
More informationOn the Operation and Value of Storage in Consumer Demand Response
On the Operation and Value of Storage in Consumer Demand Response Yunjian Xu and Lang Tong Abstract We study the optimal operation and economic value of energy storage operated by a consumer who faces
More informationThe Ergodic Theorem and randomness
The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction
More informationOptimization of Supply Chain Networks
Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal
More informationBinomial lattice model for stock prices
Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }
More informationAn AvailabletoPromise ProductionInventory. An ATP System with Pseudo Orders
An AvailabletoPromise ProductionInventory System with Pseudo Orders joint work with Susan Xu University of Dayton Penn State University MSOM Conference, June 6, 2008 Outline Introduction 1 Introduction
More informationNotes from Week 1: Algorithms for sequential prediction
CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 2226 Jan 2007 1 Introduction In this course we will be looking
More informationOn the dynamic programming principle for static and dynamic inverse problems
On the dynamic programming principle for static and dynamic inverse problems Stefan Kindermann, Industrial Mathematics Institute Johannes Kepler University Linz, Austria joint work with Antonio Leitao,
More informationSingle and MultiPeriod Optimal Inventory Control Models with RiskAverse Constraints
Single and MultiPeriod Optimal Inventory Control Models with RiskAverse Constraints Dali Zhang and Huifu Xu School of Mathematics University of Southampton Southampton, SO17 1BJ, UK Yue Wu School of
More informationOptimal Email routing in a MultiChannel Call Center
Optimal Email routing in a MultiChannel Call Center Benjamin Legros Oualid Jouini Ger Koole Ecole Centrale Paris, Laboratoire Génie Industriel, Grande Voie des Vignes, 99 ChâtenayMalabry, France VU University
More informationGraph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents
More informationProbability and Statistics
CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b  0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute  Systems and Modeling GIGA  Bioinformatics ULg kristel.vansteen@ulg.ac.be
More informationCoursework 3: PseudoRandom Numbers and Monte Carlo Methods
Coursework 3: PseudoRandom Numbers and Monte Carlo Methods The aim of this project is to explore random number generation and its use in simulation. It is, of course, impossible to generate a truly random
More informationSerial Agile Production Systems with Automation
OPERATIONS RESEARCH Vol. 53, No. 5, September October 25, pp. 852 866 issn 3364X eissn 15265463 5 535 852 informs doi.1287/opre.5.226 25 INFORMS Serial Agile Production Systems with Automation Wallace
More informationCooperative Multiple Access for Wireless Networks: Protocols Design and Stability Analysis
Cooperative Multiple Access for Wireless Networks: Protocols Design and Stability Analysis Ahmed K. Sadek, K. J. Ray Liu, and Anthony Ephremides Department of Electrical and Computer Engineering, and Institute
More informationDMD20 Satellite Control Channel (SCC)
DMD20 Satellite Control Channel (SCC) White Paper WP016 Rev. 1.0 October 2004 Radyne ComStream, Inc. 3138 E. Elwood St. Phoenix, AZ 85034 (602) 4379620 Fax: (602) 4374811 Introduction This white paper
More information6.6 Scheduling and Policing Mechanisms
02068 C06 pp4 6/14/02 3:11 PM Page 572 572 CHAPTER 6 Multimedia Networking 6.6 Scheduling and Policing Mechanisms In the previous section, we identified the important underlying principles in providing
More informationFluid Approximation of Smart Grid Systems: Optimal Control of Energy Storage Units
Fluid Approximation of Smart Grid Systems: Optimal Control of Energy Storage Units by Rasha Ibrahim Sakr, B.Sc. A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment
More informationBindel, Fall 2012 Matrix Computations (CS 6210) Week 8: Friday, Oct 12
Why eigenvalues? Week 8: Friday, Oct 12 I spend a lot of time thinking about eigenvalue problems. In part, this is because I look for problems that can be solved via eigenvalues. But I might have fewer
More informationDiscrete Dynamic Optimization: Six Examples
Discrete Dynamic Optimization: Six Examples Dr. Taikuang Ho Associate Professor. Department of Quantitative Finance, National Tsing Hua University, No. 101, Section 2, KuangFu Road, Hsinchu, Taiwan 30013,
More informationM/M/1 and M/M/m Queueing Systems
M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General  can be any distribution. First letter: Arrival process; M: memoryless  exponential
More informationPortfolio Using Queuing Theory
Modeling the Number of Insured Households in an Insurance Portfolio Using Queuing Theory JeanPhilippe Boucher and Guillaume CouturePiché December 8, 2015 Quantact / Département de mathématiques, UQAM.
More informationMaximizing System Throughput Using Cooperative Sensing in MultiChannel Cognitive Radio Networks
Maximizing System Throughput Using Cooperative Sensing in MultiChannel Cognitive Radio Networks Shuang Li, Zizhan Zheng, Eylem Ekici and Ness Shroff Abstract In Cognitive Radio Networks (CRNs), unlicensed
More informationDynamic CostPerAction Mechanisms and Applications to Online Advertising
Dynamic CostPerAction Mechanisms and Applications to Online Advertising Hamid Nazerzadeh Amin Saberi Rakesh Vohra July 13, 2007 Abstract We examine the problem of allocating a resource repeatedly over
More information1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
More informationA Note on the Ruin Probability in the Delayed Renewal Risk Model
Southeast Asian Bulletin of Mathematics 2004 28: 1 5 Southeast Asian Bulletin of Mathematics c SEAMS. 2004 A Note on the Ruin Probability in the Delayed Renewal Risk Model Chun Su Department of Statistics
More informationEXISTENCE AND NONEXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7669. UL: http://ejde.math.txstate.edu
More informationChapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7 In this section, we discuss linear transformations 89 9 CHAPTER
More informationMarkov Chains, Stochastic Processes, and Advanced Matrix Decomposition
Markov Chains, Stochastic Processes, and Advanced Matrix Decomposition Jack Gilbert Copyright (c) 2014 Jack Gilbert. Permission is granted to copy, distribute and/or modify this document under the terms
More informationUnderstanding the division property
Understanding the division property Christina Boura (joint work with Anne Canteaut) ASK 2015, October 1, 2015 1 / 36 Introduction In Eurocrypt 2015, Yosuke Todo introduces a new property, called the division
More informationOptimal Taxation in a Limited Commitment Economy
Optimal Taxation in a Limited Commitment Economy forthcoming in the Review of Economic Studies Yena Park University of Pennsylvania JOB MARKET PAPER Abstract This paper studies optimal Ramsey taxation
More informationOn the Oscillation of Nonlinear Fractional Difference Equations
Mathematica Aeterna, Vol. 4, 2014, no. 1, 9199 On the Oscillation of Nonlinear Fractional Difference Equations M. Reni Sagayaraj, A.George Maria Selvam Sacred Heart College, Tirupattur  635 601, S.India
More informationJoint Optimization of Overlapping Phases in MapReduce
Joint Optimization of Overlapping Phases in MapReduce Minghong Lin, Li Zhang, Adam Wierman, Jian Tan Abstract MapReduce is a scalable parallel computing framework for big data processing. It exhibits multiple
More informationThe Joint Distribution of Server State and Queue Length of M/M/1/1 Retrial Queue with Abandonment and Feedback
The Joint Distribution of Server State and Queue Length of M/M/1/1 Retrial Queue with Abandonment and Feedback Hamada Alshaer Université Pierre et Marie Curie  Lip 6 7515 Paris, France Hamada.alshaer@lip6.fr
More informationIN RECENT years, there have been significant efforts to develop
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 3, MARCH 2006 525 Effective Bandwidth of Multimedia Traffic in Packet Wireless CDMA Networks with LMMSE Receivers: A CrossLayer Perspective Fei
More informationWorked examples Random Processes
Worked examples Random Processes Example 1 Consider patients coming to a doctor s office at random points in time. Let X n denote the time (in hrs) that the n th patient has to wait before being admitted
More informationBasics of information theory and information complexity
Basics of information theory and information complexity a tutorial Mark Braverman Princeton University June 1, 2013 1 Part I: Information theory Information theory, in its modern format was introduced
More informationAsymptotics of discounted aggregate claims for renewal risk model with risky investment
Appl. Math. J. Chinese Univ. 21, 25(2: 29216 Asymptotics of discounted aggregate claims for renewal risk model with risky investment JIANG Tao Abstract. Under the assumption that the claim size is subexponentially
More informationOPTIMAL SEQUENTIAL BACKUP STRATEGY UNDER CONSTRAINED RESOURCES
Journal of the Operations Research Society of Japan Vol. 42, No. 4, December 1999 1999 The Operations Research Society of Japan OPTIMAL SEQUENTIAL BACKUP STRATEGY UNDER CONSTRAINED RESOURCES Toshio Hamada
More information