Big Data & Analytics for Semiconductor Manufacturing

Size: px
Start display at page:

Download "Big Data & Analytics for Semiconductor Manufacturing"

Transcription

1 Big Data & Analytics for Semiconductor Manufacturing 半 導 体 生 産 におけるビッグデータ 活 用 Ryuichiro Hattori 服 部 隆 一 郎 Intelligent SCM and MFG solution Leader Global CoC (Center of Competence) Electronics team General Business Services IBM

2 Agenda What is Big Data? Big Data in Semiconductor Manufacturing Big Data and Analytics architecture Big Data Analytics use case in IBM Microelectronics Summary

3 What is Big Data? - Big data is about All Data Volume Velocity Variety Veracity* Data at rest Terabytes to exabytes of existing data to process Data in motion Streaming data, milliseconds to seconds to respond Data in many forms Structured, unstructured, text, multimedia Data in doubt Uncertainty due to data inconsistency & incompleteness, ambiguities, latency, deception, model approximations 3

4 Big Data in Semiconductor Manufacturing Fall 2013 Problem statement: Conventional or standard analytical methods and technologies are built for predictive modeling on a small scale, not for investigation of hundreds or thousands of potential factors and interactions Engineers with standard analytical techniques and tools have become the bottleneck, outpaced by data volumes and complexity New methods and software are needed to bridge the gap between analysis and action Automated data mining and analysis tools are needed to explore and uncover problems and opportunities that lead to action and potential manufacturing operation improvements that differentiate one company from its competition

5 Big Data Hadoop There s a belief that if you want big data, you need to go out and buy Hadoop and then you re pretty much set. People shouldn t get ideas about turning off their relational systems and replacing them with Hadoop As we start thinking about big data from the perspective of business needs, we re realizing that Hadoop isn t always the best tool for everything we need to do, and that using the wrong tool can sometimes be painful. Ken Rudin Head of Analytics at Facebook

6 IBM PoV on Big Data and Analytics architecture All Data New/Enhanced Applications Real-time Data Processing & Analytics Operational data zone Landing, Exploration and Archive data zone Deep Analytics data zone EDW and data mart zone What action should I take? Decision management What is happening? Discovery and exploration What did I learn, what s best? Cognitive What could happen? Predictive and modeling Why did it happen? Reporting and analysis Information Integration & Governance Systems Security Storage On premise, Cloud, As a service

7 Transformation to target architecture - start Leverage column-store and in-memory capabilities to improve performance and enable reporting & analysis directly against operational data Data types Actionable insight Operational systems Staging area Enterprise Warehouse Predictive and modeling Transaction and application data Reporting & interactive analysis Reporting and analysis Archive

8 Transformation to target architecture stage1 Provide dedicated processing for faster, deeper analysis and modeling Data types Actionable insight Operational systems Staging area Enterprise Warehouse Deep & modeling Predictive and modeling Transaction and application data Reporting & interactive analysis Reporting and analysis Archive

9 Transformation to target architecture stage2 Leverage Hadoop to capture operational data, leverage additional data types and enable exploration of data prior to normalization Data types Actionable insight Image and video Enterprise content Transaction and application data Operational systems Exploration and landing Trusted data Deep & modeling Reporting & interactive analysis Predictive and modeling Reporting, analysis, content Social data Third-party data Archive Discovery and exploration

10 Transformation to target architecture stage3 Leverage Hadoop for queryable archive Data types Actionable insight Image and video Enterprise content Transaction and application data Operational systems Exploration, landing and archive Trusted data Deep & modeling Reporting & interactive analysis Predictive and modeling Reporting, analysis, content Social data Third-party data Archive Discovery and exploration

11 Transformation to target architecture stage4 Leverage data in motion and streamline processing of extreme volumes Data types Real-time processing & Actionable insight Machine and sensor data Image and video Enterprise content Transaction and application data Operational systems Exploration, landing and archive Trusted data Deep & modeling Reporting & interactive analysis Decision management Predictive and modeling Reporting, analysis, content Social data Third-party data Discovery and exploration

12 Transformation to target architecture stage5 Extend transformation, matching, security and governance capabilities to ALL data Data types Real-time processing & Actionable insight Machine and sensor data Image and video Enterprise content Transaction and application data Operational systems Exploration, landing and archive Trusted data Deep & modeling Reporting & interactive analysis Decision management Predictive and modeling Reporting, analysis, content Social data Third-party data Discovery and exploration Information Integration Metadata & Lineage Information Integration & Governance Data Matching & MDM Security & Privacy Lifecycle Management

13 IBM Big Data & Analytics Offerings Watson Foundations Data types Machine and sensor data Image and video Enterprise content Transaction and application data Social data Third-party data Operational systems DB2, INFORMIX PUREDATA TRANSACTIONS Real-time processing & STREAMS, DATA REPLICATION Exploration, landing and archive BIGINSIGHTS PUREDATA HADOOP Trusted data DB2 WAREHOUSE PUREDATA OPERATIONA L ANALYTICS Deep & modeling PUREDATA ANALYTICS Reporting & interactive analysis DB2 BLU PUREDATA ANALYTICS Information Integration & Governance INFORMATION SERVER, MDM, G2, GUARDIUM, OPTIM Actionable insight Decision management SPSS MODELER GOLD Predictive and modeling SPSS MODELER Reporting, analysis, content COGNOS BI COGNOS TM1 Discovery and exploration DATA EXPLORER SPSS ANALYTIC CATALYST

14 Big Data Analytics approach in IBM Microelectronics Combination of : 1) IBM s Big Data platform and 2) custom applications largely developed, built and driven by IBM Research expertise Leverages all data available in fab: logistics, metrology, inspection, test, tool sensors Equipment Sensor Data Yield analysis routines ~10 Billion data points per day Identifies variables and provides prediction

15 Big Data Analytics use case in IBM Microelectronics Several real use cases are described on following pages Information Warehouse & E-biz interface Demand/Supply Planning Product Demand Management Part Number Build Enterprise Recipe Mgt Equipment Maintenance And Scheduling Energy Management Sensor Systems Manufacturing Execution System (MES) Equipment Control AMHS Control Product Dispatch Engineering Analysis Advanced Process Controls Factory Adaptive Test Engine Process, Measurement and Test Equipment Communications Tools Automated Material Handling Automated Reticle Handling

16 Use Case 1: Big Data approach to the problem of large dataset analysis Traditional Tester Data Ware house Large dataset retrieval Large analysis routine Review reports Challenge: Existing analysis methods struggle with current data volumes pulling and manipulating data takes too long thousands of charts and graphs that require manual review analysis may not be complete before product is shipped New approach In-flight Analytics Tester InfoSphere Streams Near real-time analysis Interactive review Model results in-memory

17 Use Case 1: Real-time multivariate analysis of wafer test patterns with Streams Partial Least Squares (PLS) model compares actual yield to previous results analysis output highlights what has changed Automated Streams solution: Yield Contribution By Pattern compares yield by test pattern to historical data identifies unusual yield behavior, based on multivariate model larger bars indicate larger deviation from historical yield has been used to immediately identify problems on leading edge of new production problem identified before the first wafer had completed testing new data added to existing model and kept in memory for fast and easy analysis Not enough All Goods Too many Partial Goods Benefits: 20% reduction in engineering labor first quality escape prevented - $650k in avoided warranty expense

18 Use Case 2: Adaptive Testing that enables global visibility and decision-making with Big Data From IBM presentation at SemiKorea, Feb2014

19 Use Case 3: Usage of Sensor data in IBM fab for yield control and asset optimization Challenge: Yield learning is the most direct contributor to fab profitability and time to market Huge volume of data (billions of points per day) with many subtle interpretations Want to maximize usefulness of semi-structured tool sensor data for variety of problem solving Large engineering team, with varying skills in analysis, statistics, data mining What we did: Collected and enabled quick review of massive amounts of sensor data, in a simple dashboard Identified tool issues and parameters that influence critical product measurements Developed scoring algorithms, including advanced info theory to highlight relationships ease of use, guides analyst to significant findings Fully automated, with linked reports for full drill-down capability Benefits: Documented savings > $13M during first two years of use Drives actions for tool stability and control, process centering, yield learning, scrap avoidance Systematic implementation has continued throughout the fab

20 Use Case 3: Visualization of Sensor data with scoring algorithms and full drill-down capability

21 Use Case 4: Quality Early Warning System (QEWS) to identify trends in Supply Chain before traditional SPC Challenge Solution Business Value at IBM Quality and supply chain managers need advanced techniques to examine quality date from tens of thousands of parts (incoming, manufactured, deployed) and to provide better, more proactive quality management Software system which uses proprietary IBM technology to detect & prioritize quality problems earlier with fewer false alarms, coupled with push alert functionality for IBM & suppliers to proactively detect & manage quality issues at any stage of product lifecycle Results from QEWS Proof of Concept at external client Cost savings $39M in hard warranty savings, with additional soft savings and benefits in other areas Proactive quality mgt identify and resolve issues before they become problems, up to 6 weeks earlier than traditional SPC Improved quality processes improves quality process efficiency & effectiveness Key Innovations Earlier identification of quality issues through proprietary analytic techniques Fewer false alarms Structured issue prioritization, management, follow-up Distills an ocean of supply chain quality data into prioritized, actionable issues

22 Semiconductor firms see significant opportunities for Big Data to optimize the way they execute GPS across functions Market Research & Product Ideation... align product concepts with consumer desires, improve new product ideas, and new product launch effectiveness for IoT External Data Supply Chain & Distribution... optimize inventory and assets and deliver a reduction in supply chain and distribution costs with single view product Product Development & Manufacturing compress design, development & manufacturing lead time and improve yield and asset utilization Field and Warranty Management... collect field data from connected devices, understand part behavior, predict failures, reduce warranty cost Massive Internal Data Marketing & Sales... design and execute more effective marketing with optimized product assortments, affinities and pricing Procurement & Vendor Management... embed insight into business processes from Manufacturer to Distributor to Customer to Consumer Finance...grow revenue and improve margins with greater business performance insight, and improved forecasting and planning

23 Summary Three Key Imperatives for Big Data & Analytics Success Build a culture that infuses everywhere Invest in a big data & platform Be confident with privacy, security and governance Imagine It. Realize It. Trust It. Focus on business needs Apply how well use data

24 Big Data and Analytics to Cognitive Computing All Data New/Enhanced Applications Real-time Data Processing & Analytics Operational data zone Landing, Exploration and Archive data zone Deep Analytics data zone EDW and data mart zone What action should I take? Decision management What is happening? Discovery and exploration What did I learn, what s best? Cognitive What could happen? Predictive and modeling Why did it happen? Reporting and analysis Information Integration & Governance Systems Security Storage On premise, Cloud, As a service

25

Let Big Data connect the dots in your business

Let Big Data connect the dots in your business Let Big Data connect the dots in your business Big Data Conven-on - September 25, 2014 Golden Tulip Brussels Airport Falke Van Onacker Segment Leader for Big Data Analy4cs IBM SoIware Group Belgium & Luxembourg

More information

Building Confidence in Big Data Innovations in Information Integration & Governance for Big Data

Building Confidence in Big Data Innovations in Information Integration & Governance for Big Data Building Confidence in Big Data Innovations in Information Integration & Governance for Big Data IBM Software Group Important Disclaimer THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL

More information

Big Data, Integration and Governance: Ask the Experts

Big Data, Integration and Governance: Ask the Experts Big, Integration and Governance: Ask the Experts January 29, 2013 1 The fourth dimension of Big : Veracity handling data in doubt Volume Velocity Variety Veracity* at Rest Terabytes to exabytes of existing

More information

IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS!

IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS! The Bloor Group IBM AND NEXT GENERATION ARCHITECTURE FOR BIG DATA & ANALYTICS VENDOR PROFILE The IBM Big Data Landscape IBM can legitimately claim to have been involved in Big Data and to have a much broader

More information

IBM Big Data in Government

IBM Big Data in Government IBM Big in Government Turning big data into smarter decisions Deepak Mohapatra Sr. Consultant Government IBM Software Group dmohapatra@us.ibm.com The Big Paradigm Shift 2 Big Creates A Challenge And an

More information

Driving Business Value with Big Data and Analytics

Driving Business Value with Big Data and Analytics Emily Plachy informsny September 17, 2014 Driving Business Value with Big Data and Analytics Business Analytics Transformation Making IBM a Smarter Enterprise Agenda Case studies Human Resources: Detect

More information

Predictive Analytics in Quality Early Warning Systems Smarter with Analytics

Predictive Analytics in Quality Early Warning Systems Smarter with Analytics Predictive Analytics in Quality Early Warning Systems Smarter with Analytics SC Lim Growth Markets Leader Integrated Supply Chain Engineering Agenda: IBM Point of View Maintenance & Quality Management

More information

Business Analytics for Big Data

Business Analytics for Big Data IBM Software Business Analytics Big Data Business Analytics for Big Data Unlock value to fuel performance 2 Business Analytics for Big Data Contents 2 Introduction 3 Extracting insights from big data 4

More information

The Future of Business Analytics is Now! 2013 IBM Corporation

The Future of Business Analytics is Now! 2013 IBM Corporation The Future of Business Analytics is Now! 1 The pressures on organizations are at a point where analytics has evolved from a business initiative to a BUSINESS IMPERATIVE More organization are using analytics

More information

IBM Big Data Platform

IBM Big Data Platform IBM Big Data Platform Turning big data into smarter decisions Stefan Söderlund. IBM kundarkitekt, Försvarsmakten Sesam vår-seminarie Big Data, Bigga byte kräver Pigga Hertz! May 16, 2013 By 2015, 80% of

More information

Beyond the Single View with IBM InfoSphere

Beyond the Single View with IBM InfoSphere Ian Bowring MDM & Information Integration Sales Leader, NE Europe Beyond the Single View with IBM InfoSphere We are at a pivotal point with our information intensive projects 10-40% of each initiative

More information

How the oil and gas industry can gain value from Big Data?

How the oil and gas industry can gain value from Big Data? How the oil and gas industry can gain value from Big Data? Arild Kristensen Nordic Sales Manager, Big Data Analytics arild.kristensen@no.ibm.com, tlf. +4790532591 April 25, 2013 2013 IBM Corporation Dilbert

More information

Leveraging Information For Smarter Business Outcomes With IBM Information Management Software

Leveraging Information For Smarter Business Outcomes With IBM Information Management Software Leveraging Information For Smarter Business Outcomes With IBM Information Management Software Tony Mignardi WW Information Management Sales IBM Software Group April 1 2009 Agenda Our Smarter Planet and

More information

Real World Use of BIG DATA. Tim Brown Information Management Technical Pre-Sales Aruna Kolluru Information Management Technical Pre-Sales 04/2013

Real World Use of BIG DATA. Tim Brown Information Management Technical Pre-Sales Aruna Kolluru Information Management Technical Pre-Sales 04/2013 Real World Use of BIG DATA Tim Brown Information Management Technical Pre-Sales Aruna Kolluru Information Management Technical Pre-Sales 04/2013 Building a smarter planet Gaining Insight from your Information

More information

Exploiting Data at Rest and Data in Motion with a Big Data Platform

Exploiting Data at Rest and Data in Motion with a Big Data Platform Exploiting Data at Rest and Data in Motion with a Big Data Platform Sarah Brader, sarah_brader@uk.ibm.com What is Big Data? Where does it come from? 12+ TBs of tweet data every day 30 billion RFID tags

More information

Smarter Analytics. Barbara Cain. Driving Value from Big Data

Smarter Analytics. Barbara Cain. Driving Value from Big Data Smarter Analytics Driving Value from Big Data Barbara Cain Vice President Product Management - Business Intelligence and Advanced Analytics Business Analytics IBM Software Group 1 Agenda for today 1 Big

More information

Big Data overview. Livio Ventura. SICS Software week, Sept 23-25 Cloud and Big Data Day

Big Data overview. Livio Ventura. SICS Software week, Sept 23-25 Cloud and Big Data Day Big Data overview SICS Software week, Sept 23-25 Cloud and Big Data Day Livio Ventura Big Data European Industry Leader for Telco, Energy and Utilities and Digital Media Agenda some data on Data Big Data

More information

IBM Software Delivering trusted information for the modern data warehouse

IBM Software Delivering trusted information for the modern data warehouse Delivering trusted information for the modern data warehouse Make information integration and governance a best practice in the big data era Contents 2 Introduction In ever-changing business environments,

More information

Luncheon Webinar Series May 13, 2013

Luncheon Webinar Series May 13, 2013 Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration

More information

IBM s Commitment to Quality and Innovation

IBM s Commitment to Quality and Innovation IBM s Commitment to Quality and Innovation Executive Summary IBM has a strong quality heritage. Looking back over 100 years, IBM has diligently built quality into its products, solutions and processes.

More information

Predictive Analytics: Too Important to Ignore The six secrets to success with predictive analytics

Predictive Analytics: Too Important to Ignore The six secrets to success with predictive analytics Predictive Analytics: Too Important to Ignore The six secrets to success with predictive analytics Webinar December 18, 2013 Sponsored by: Tony Cosentino VP & Research Director, Business Analytics Ventana

More information

Smarter Supply Chain The Role of Advanced Analytics in Optimizing Supply Chain and Managing Complexity

Smarter Supply Chain The Role of Advanced Analytics in Optimizing Supply Chain and Managing Complexity Smarter Supply Chain The Role of Advanced Analytics in Optimizing Supply Chain and Managing Complexity Donnie Haye, Vice President Smarter Supply Chain Analytics IBM Integrated Supply Chain Agenda Point

More information

IBM Data Warehousing and Analytics Portfolio Summary

IBM Data Warehousing and Analytics Portfolio Summary IBM Information Management IBM Data Warehousing and Analytics Portfolio Summary Information Management Mike McCarthy IBM Corporation mmccart1@us.ibm.com IBM Information Management Portfolio Current Data

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

Big Data and the new trends for BI and Analytics Juha Teljo Business Intelligence and Predictive Solutions Executive IBM Europe

Big Data and the new trends for BI and Analytics Juha Teljo Business Intelligence and Predictive Solutions Executive IBM Europe Big Data and the new trends for BI and Analytics Juha Teljo Business Intelligence and Predictive Solutions Executive IBM Europe 2012 IBM Corporation The Mega Trends Cloud Mobile Social Analytics 2014 International

More information

Sources: Summary Data is exploding in volume, variety and velocity timely

Sources: Summary Data is exploding in volume, variety and velocity timely 1 Sources: The Guardian, May 2010 IDC Digital Universe, 2010 IBM Institute for Business Value, 2009 IBM CIO Study 2010 TDWI: Next Generation Data Warehouse Platforms Q4 2009 Summary Data is exploding

More information

Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance

Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice

More information

Smarter Planet evolution

Smarter Planet evolution Smarter Planet evolution 13/03/2012 2012 IBM Corporation Ignacio Pérez González Enterprise Architect ignacio.perez@es.ibm.com @ignaciopr Mike May Technologies of the Change Capabilities Tendencies Vision

More information

Business Analytics and the Nexus of Information

Business Analytics and the Nexus of Information Business Analytics and the Nexus of Information 2 The Impact of the Nexus of Forces 4 From the Gartner Files: Information and the Nexus of Forces: Delivering and Analyzing Data 6 About IBM Business Analytics

More information

Test Data Management in the New Era of Computing

Test Data Management in the New Era of Computing Test Data Management in the New Era of Computing Vinod Khader IBM InfoSphere Optim Development Agenda Changing Business Environment and Data Management Challenges What is Test Data Management Best Practices

More information

Supply Chain Management Build Connections

Supply Chain Management Build Connections Build Connections Enabling a business in manufacturing Building High-Value Connections with Partners and Suppliers Build Connections Is your supply chain responsive, adaptive, agile, and efficient? How

More information

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS

EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS EVERYTHING THAT MATTERS IN ADVANCED ANALYTICS Marcia Kaufman, Principal Analyst, Hurwitz & Associates Dan Kirsch, Senior Analyst, Hurwitz & Associates Steve Stover, Sr. Director, Product Management, Predixion

More information

Big Data and Trusted Information

Big Data and Trusted Information Dr. Oliver Adamczak Big Data and Trusted Information CAS Single Point of Truth 7. Mai 2012 The Hype Big Data: The next frontier for innovation, competition and productivity McKinsey Global Institute 2012

More information

Understanding the Value of In-Memory in the IT Landscape

Understanding the Value of In-Memory in the IT Landscape February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to

More information

Making confident decisions with the full spectrum of analysis capabilities

Making confident decisions with the full spectrum of analysis capabilities IBM Software Business Analytics Analysis Making confident decisions with the full spectrum of analysis capabilities Making confident decisions with the full spectrum of analysis capabilities Contents 2

More information

IBM Business Analytics software for Insurance

IBM Business Analytics software for Insurance IBM Business Analytics software for Insurance Nischal Kapoor Global Insurance Leader - APAC 2 Non-Life Insurance in Thailand Rising vehicle sales and mandatory motor third-party insurance supported the

More information

Delivering new insights and value to consumer products companies through big data

Delivering new insights and value to consumer products companies through big data IBM Software White Paper Consumer Products Delivering new insights and value to consumer products companies through big data 2 Delivering new insights and value to consumer products companies through big

More information

SAP BusinessObjects. Solutions for Large Enterprises & SME s

SAP BusinessObjects. Solutions for Large Enterprises & SME s SAP BusinessObjects Solutions for Large Enterprises & SME s Since 1993, we have been using our BI experience to ensure you buy the right licences at the lowest price, thus helping to deliver the best and

More information

III JORNADAS DE DATA MINING

III JORNADAS DE DATA MINING III JORNADAS DE DATA MINING EN EL MARCO DE LA MAESTRÍA EN DATA MINING DE LA UNIVERSIDAD AUSTRAL PRESENTACIÓN TECNOLÓGICA IBM Alan Schcolnik, Cognos Technical Sales Team Leader, IBM Software Group. IAE

More information

Raul F. Chong Senior program manager Big data, DB2, and Cloud IM Cloud Computing Center of Competence - IBM Toronto Lab, Canada

Raul F. Chong Senior program manager Big data, DB2, and Cloud IM Cloud Computing Center of Competence - IBM Toronto Lab, Canada What is big data? Raul F. Chong Senior program manager Big data, DB2, and Cloud IM Cloud Computing Center of Competence - IBM Toronto Lab, Canada 1 2011 IBM Corporation Agenda The world is changing What

More information

Big Data, Analytics, Intelligence: Potenziale und Nutzen

Big Data, Analytics, Intelligence: Potenziale und Nutzen Dr. Matthias Kaiserswerth Vice President, Europe and Director, IBM Research Big Data, Analytics, Intelligence: Potenziale und Nutzen Market Forces Driving Health Care Transformation Source: If applicable,

More information

DGE /DG Connect. 25-6-2015 www.bdva.eu

DGE /DG Connect. 25-6-2015 www.bdva.eu DGE /DG Connect 1 CHALLENGES, SOLUTIONS AND VISIONS FOR THE EUROPEAN DATA ECONOMY Laure Le Bars SAP 2 BIG DATA WHAT S IT ALL ABOUT www.bdva.eu 25-6-2015 3 When is Data Big? Volume Velocity Variety Veracity

More information

T r a n s f o r m i ng Manufacturing w ith the I n t e r n e t o f Things

T r a n s f o r m i ng Manufacturing w ith the I n t e r n e t o f Things M A R K E T S P O T L I G H T T r a n s f o r m i ng Manufacturing w ith the I n t e r n e t o f Things May 2015 Adapted from Perspective: The Internet of Things Gains Momentum in Manufacturing in 2015,

More information

Information systems architecture for the Oil and Gas industry

Information systems architecture for the Oil and Gas industry IBM Sales and Distribution Thought Leadership White Paper Chemicals & Petroleum Information systems architecture for the Oil and Gas industry 2 Information systems architecture for the Oil and Gas industry

More information

TestScape. On-line, test data management and root cause analysis system. On-line Visibility. Ease of Use. Modular and Scalable.

TestScape. On-line, test data management and root cause analysis system. On-line Visibility. Ease of Use. Modular and Scalable. TestScape On-line, test data management and root cause analysis system On-line Visibility Minimize time to information Rapid root cause analysis Consistent view across all equipment Common view of test

More information

A New Era Of Analytic

A New Era Of Analytic Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness

More information

Big Data & Analytics capabilities are powering the current evolution of SC Integrated Smarter & Transparent Supply Chain

Big Data & Analytics capabilities are powering the current evolution of SC Integrated Smarter & Transparent Supply Chain Supply Chain Transformation A Case Study in the Innovative Use of Analytics Pitipong J. Lin, Ph.D. Senior Technical Staff Member Integrated Supply Chain (ISC) 2 May 2014 Executive Summary IBM s Integrated

More information

Information Architecture

Information Architecture The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to

More information

DATA MANAGEMENT FOR THE INTERNET OF THINGS

DATA MANAGEMENT FOR THE INTERNET OF THINGS DATA MANAGEMENT FOR THE INTERNET OF THINGS February, 2015 Peter Krensky, Research Analyst, Analytics & Business Intelligence Report Highlights p2 p4 p6 p7 Data challenges Managing data at the edge Time

More information

Reimagining Business with SAP HANA Cloud Platform for the Internet of Things

Reimagining Business with SAP HANA Cloud Platform for the Internet of Things SAP Brief SAP HANA SAP HANA Cloud Platform for the Internet of Things Objectives Reimagining Business with SAP HANA Cloud Platform for the Internet of Things Connect, transform, and reimagine Connect,

More information

Data Refinery with Big Data Aspects

Data Refinery with Big Data Aspects International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data

More information

IBM Analytics. Just the facts: Four critical concepts for planning the logical data warehouse

IBM Analytics. Just the facts: Four critical concepts for planning the logical data warehouse IBM Analytics Just the facts: Four critical concepts for planning the logical data warehouse 1 2 3 4 5 6 Introduction Complexity Speed is businessfriendly Cost reduction is crucial Analytics: The key to

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

The IBM Cognos family

The IBM Cognos family IBM Software Business Analytics Cognos software The IBM Cognos family Analytics in the hands of everyone who needs it The IBM Cognos family Overview Business intelligence (BI) and business analytics have

More information

JOURNAL OF OBJECT TECHNOLOGY

JOURNAL OF OBJECT TECHNOLOGY JOURNAL OF OBJECT TECHNOLOGY Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2008 Vol. 7, No. 8, November-December 2008 What s Your Information Agenda? Mahesh H. Dodani,

More information

Predicting From the Edge in an

Predicting From the Edge in an Predicting From the Edge in an IoT World IoT will produce 4,400 exabytes of data or 4,400 billion terabytes between 2013 and 2020. (IDC) Today, in the Internet of Things (IoT) era, the Internet touches

More information

IBM Unica and Cincom Synchrony : A Smarter Partnership

IBM Unica and Cincom Synchrony : A Smarter Partnership DATA SHEET Smarter Commerce for Smarter Customers Today s customers are deciding when and where the buying process begins, when it ends, who will be part of it, what order it will follow and how all elements

More information

Beyond Watson: The Business Implications of Big Data

Beyond Watson: The Business Implications of Big Data Beyond Watson: The Business Implications of Big Data Shankar Venkataraman IBM Program Director, STSM, Big Data August 10, 2011 The World is Changing and Becoming More INSTRUMENTED INTERCONNECTED INTELLIGENT

More information

Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank

Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Danny Wang, Ph.D. Vice President of Business Strategy and Risk Management Republic Bank Agenda» Overview» What is Big Data?» Accelerates advances in computer & technologies» Revolutionizes data measurement»

More information

Traditional BI vs. Business Data Lake A comparison

Traditional BI vs. Business Data Lake A comparison Traditional BI vs. Business Data Lake A comparison The need for new thinking around data storage and analysis Traditional Business Intelligence (BI) systems provide various levels and kinds of analyses

More information

Real World Application and Usage of IBM Advanced Analytics Technology

Real World Application and Usage of IBM Advanced Analytics Technology Real World Application and Usage of IBM Advanced Analytics Technology Anthony J. Young Pre-Sales Architect for IBM Advanced Analytics February 21, 2014 Welcome Anthony J. Young Lives in Austin, TX Focused

More information

IRMAC SAS INFORMATION MANAGEMENT, TRANSFORMING AN ANALYTICS CULTURE. Copyright 2012, SAS Institute Inc. All rights reserved.

IRMAC SAS INFORMATION MANAGEMENT, TRANSFORMING AN ANALYTICS CULTURE. Copyright 2012, SAS Institute Inc. All rights reserved. IRMAC SAS INFORMATION MANAGEMENT, TRANSFORMING AN ANALYTICS CULTURE ABOUT THE PRESENTER Marc has been with SAS for 10 years and leads the information management practice for canada. Marc s area of specialty

More information

Leverage the Internet of Things to Transform Maintenance and Service Operations

Leverage the Internet of Things to Transform Maintenance and Service Operations SAP Brief SAP s for the Internet of Things SAP Predictive Maintenance and Service SAP Enterprise Asset Management Objectives Leverage the Internet of Things to Transform Maintenance and Service Operations

More information

Deloitte Analytics and IBM Software. See what s inside

Deloitte Analytics and IBM Software. See what s inside Deloitte Analytics and IBM Software See what s inside Table of contents Improving the value of data from the inside out 3 What business leaders are saying 4 Analytics vision 7 Analytics accolades 8 Why

More information

Von Social Media zum Social Business Ein Megatrend für die Geschäftswelt

Von Social Media zum Social Business Ein Megatrend für die Geschäftswelt Stephan Schneider Executive Technology Briefer 07/11/2013 Von Social Media zum Social Business Ein Megatrend für die Geschäftswelt Our experiences are changing in the new Social world How I Buy Interacting

More information

A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY

A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY Analytics for Enterprise Data Warehouse Management and Optimization Executive Summary Successful enterprise data management is an important initiative for growing

More information

ON Semiconductor identified the following critical needs for its solution:

ON Semiconductor identified the following critical needs for its solution: Microsoft Business Intelligence Microsoft Office Business Scorecards Accelerator Case study Harnesses the Power of Business Intelligence to Drive Success Execution excellence is an imperative in order

More information

Driving Better Marketing Results with Big Data and Analytics David Corrigan, IBM, Director of Product Marketing

Driving Better Marketing Results with Big Data and Analytics David Corrigan, IBM, Director of Product Marketing Driving Better Marketing Results with Big Data and Analytics David Corrigan, IBM, Director of Product Marketing Optimizing Marketing with Big Data and Analytics Leverage Social Media Datacentric Marketing

More information

Enhancing Decision Making

Enhancing Decision Making Enhancing Decision Making Content Describe the different types of decisions and how the decision-making process works. Explain how information systems support the activities of managers and management

More information

$257,493,225 37.21 22.41 11000101001\00001 00101001001001001001 0010101011000 11000101001\00001 001010100101010 11000101001\00001

$257,493,225 37.21 22.41 11000101001\00001 00101001001001001001 0010101011000 11000101001\00001 001010100101010 11000101001\00001 CDW FINANCIAL SERVICES WE VE GOT YOUR STRATEGY FOR 00101001001001001001 0010101011000 11000101001\00001 001010100101010 2% Big ata WE GET IT 00101001001001001001 0010101011000 11000101001\00001 $348,271,7978

More information

White Paper. Version 1.2 May 2015 RAID Incorporated

White Paper. Version 1.2 May 2015 RAID Incorporated White Paper Version 1.2 May 2015 RAID Incorporated Introduction The abundance of Big Data, structured, partially-structured and unstructured massive datasets, which are too large to be processed effectively

More information

DATA VISUALIZATION: CONVERTING INFORMATION TO DECISIONS DAVID FRONING, PRINCIPAL PRODUCT MANAGER

DATA VISUALIZATION: CONVERTING INFORMATION TO DECISIONS DAVID FRONING, PRINCIPAL PRODUCT MANAGER DATA VISUALIZATION: CONVERTING INFORMATION TO DECISIONS DAVID FRONING, PRINCIPAL PRODUCT MANAGER SAS WHO WE ARE World leader in analytics Founded in 1976 400 offices world-wide Used at 65,000 sites in

More information

Big Data Executive Survey

Big Data Executive Survey Big Data Executive Full Questionnaire Big Date Executive Full Questionnaire Appendix B Questionnaire Welcome The survey has been designed to provide a benchmark for enterprises seeking to understand the

More information

IBM System x reference architecture solutions for big data

IBM System x reference architecture solutions for big data IBM System x reference architecture solutions for big data Easy-to-implement hardware, software and services for analyzing data at rest and data in motion Highlights Accelerates time-to-value with scalable,

More information

Impact of Big Data in Oil & Gas Industry. Pranaya Sangvai Reliance Industries Limited 04 Feb 15, DEJ, Mumbai, India.

Impact of Big Data in Oil & Gas Industry. Pranaya Sangvai Reliance Industries Limited 04 Feb 15, DEJ, Mumbai, India. Impact of Big Data in Oil & Gas Industry Pranaya Sangvai Reliance Industries Limited 04 Feb 15, DEJ, Mumbai, India. New Age Information 2.92 billions Internet Users in 2014 Twitter processes 7 terabytes

More information

Dell Information Management solutions

Dell Information Management solutions Dell Information Management solutions Uday Tekumalla Solutions Marketing, Information Management 1 10/28/2013 Information Management Solutions My introduction Uday Tekumalla, the ponytail guy Information

More information

UNIFY YOUR (BIG) DATA

UNIFY YOUR (BIG) DATA UNIFY YOUR (BIG) DATA ANALYTIC STRATEGY GIVE ANY USER ANY ANALYTIC ON ANY DATA Scott Gnau President, Teradata Labs scott.gnau@teradata.com t Unify Your (Big) Data Analytic Strategy Technology excitement:

More information

Big Data. Fast Forward. Putting data to productive use

Big Data. Fast Forward. Putting data to productive use Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize

More information

Big Data Integration and Governance Considerations for Healthcare

Big Data Integration and Governance Considerations for Healthcare White Paper Big Data Integration and Governance Considerations for Healthcare by Sunil Soares, Founder & Managing Partner, Information Asset, LLC Big Data Integration and Governance Considerations for

More information

Industry Perspective: Big Data and Big Data Analytics. David Barnes Program Director Emerging Internet Technologies IBM Software Group

Industry Perspective: Big Data and Big Data Analytics. David Barnes Program Director Emerging Internet Technologies IBM Software Group Industry Perspective: Big Data and Big Data Analytics David Barnes Program Director Emerging Internet Technologies IBM Software Group What is Big Data? The Adjacent Possible Inexpensive disk + Increased

More information

Tapping the benefits of business analytics and optimization

Tapping the benefits of business analytics and optimization IBM Sales and Distribution Chemicals and Petroleum White Paper Tapping the benefits of business analytics and optimization A rich source of intelligence for the chemicals and petroleum industries 2 Tapping

More information

The Future of Data Management

The Future of Data Management The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class

More information

Analytics In the Cloud

Analytics In the Cloud Analytics In the Cloud 9 th September Presented by: Simon Porter Vice President MidMarket Sales Europe Disruptors are reinventing business processes and leading their industries with digital transformations

More information

White Paper May 2009. Seven reports every supply chain executive needs Supply Chain Performance Management with IBM

White Paper May 2009. Seven reports every supply chain executive needs Supply Chain Performance Management with IBM White Paper May 2009 Seven reports every supply chain executive needs Supply Chain Performance Management with IBM 2 Contents 3 Business problems 3 Business drivers 4 The solution IBM Cognos SCPM Seven

More information

Managing Data in Motion

Managing Data in Motion Managing Data in Motion Data Integration Best Practice Techniques and Technologies April Reeve ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY

More information

!!!!! White Paper. Understanding The Role of Data Governance To Support A Self-Service Environment. Sponsored by

!!!!! White Paper. Understanding The Role of Data Governance To Support A Self-Service Environment. Sponsored by White Paper Understanding The Role of Data Governance To Support A Self-Service Environment Sponsored by Sponsored by MicroStrategy Incorporated Founded in 1989, MicroStrategy (Nasdaq: MSTR) is a leading

More information

Addressing government challenges with big data analytics

Addressing government challenges with big data analytics IBM Software White Paper Government Addressing government challenges with big data analytics 2 Addressing government challenges with big data analytics Contents 2 Introduction 4 How big data analytics

More information

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling

More information

Big Data & Analytics. The. Deal. About. Jacob Büchler jbuechler@dk.ibm.com Cand. Polit. IBM Denmark, Solution Exec. 2013 IBM Corporation

Big Data & Analytics. The. Deal. About. Jacob Büchler jbuechler@dk.ibm.com Cand. Polit. IBM Denmark, Solution Exec. 2013 IBM Corporation The Big Data & Analytics Deal About Jacob Büchler jbuechler@dk.ibm.com Cand. Polit. IBM Denmark, Solution Exec. 1 Big Data is All Data from Everywhere Big Data Is Becoming The Next Natural Resource We

More information

Demystifying Big Data Government Agencies & The Big Data Phenomenon

Demystifying Big Data Government Agencies & The Big Data Phenomenon Demystifying Big Data Government Agencies & The Big Data Phenomenon Today s Discussion If you only remember four things 1 Intensifying business challenges coupled with an explosion in data have pushed

More information

Big Data Are You Ready? Jorge Plascencia Solution Architect Manager

Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something

More information

The Challenge of Handling Large Data Sets within your Measurement System

The Challenge of Handling Large Data Sets within your Measurement System The Challenge of Handling Large Data Sets within your Measurement System The Often Overlooked Big Data Aaron Edgcumbe Marketing Engineer Northern Europe, Automated Test National Instruments Introduction

More information

Top 5 Transformative Analytics Applications in Retail

Top 5 Transformative Analytics Applications in Retail Top 5 Transformative Analytics Applications in Retail Learn how you can boost your bottom line and acquire engaged, happy customers with actionable insight from the world s most comprehensive analytics

More information

The BIg Picture. Dinsdag 17 september 2013

The BIg Picture. Dinsdag 17 september 2013 The BIg Picture Dinsdag 17 september 2013 2 Agenda A short historical overview on BI Current Issues Current trends Future architecture First steps to this architecture 3 MIS/EIS Data Warehouse BI Multidimensional

More information

Gerhard Held EMEA Program Manager Analytical Solutions SAS EMEA HQ Copyright 2003, SAS Institute Inc. All rights reserved.

Gerhard Held EMEA Program Manager Analytical Solutions SAS EMEA HQ Copyright 2003, SAS Institute Inc. All rights reserved. SAS Supply Chain Intelligence Or how to manage the Flood Gerhard Held EMEA Program Manager Analytical Solutions SAS EMEA HQ SAS Supply Chain Intelligence Agenda! What is a Supply Chain?! SAS Supply Chain

More information

High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances

High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances High-Performance Business Analytics: SAS and IBM Netezza Data Warehouse Appliances Highlights IBM Netezza and SAS together provide appliances and analytic software solutions that help organizations improve

More information

Converging Technologies: Real-Time Business Intelligence and Big Data

Converging Technologies: Real-Time Business Intelligence and Big Data Have 40 Converging Technologies: Real-Time Business Intelligence and Big Data Claudia Imhoff, Intelligent Solutions, Inc Colin White, BI Research September 2013 Sponsored by Vitria Technologies, Inc. Converging

More information

Making critical connections: predictive analytics in government

Making critical connections: predictive analytics in government Making critical connections: predictive analytics in government Improve strategic and tactical decision-making Highlights: Support data-driven decisions using IBM SPSS Modeler Reduce fraud, waste and abuse

More information

BIG DATA ANALYTICS: THE TRANSFORMATIVE POWERHOUSE FOR BIOTECH INDUSTRY ADVANCEMENT. David Wiggin October 8, 2013

BIG DATA ANALYTICS: THE TRANSFORMATIVE POWERHOUSE FOR BIOTECH INDUSTRY ADVANCEMENT. David Wiggin October 8, 2013 BIG DATA ANALYTICS: THE TRANSFORMATIVE POWERHOUSE FOR BIOTECH INDUSTRY ADVANCEMENT David Wiggin October 8, 2013 AGENDA Big Data Analytics Four Examples Global Supply Chain Visibility Demand Signal Repository

More information