ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS

Size: px
Start display at page:

Download "ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS"

Transcription

1 ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS Erin-Ee-Lin Lau +, Boon-Giin Lee ++, Seung-Chul Lee +++, Wan-Young Chung , ++, +++ Dept. of Ubiquitous IT, Graduate School of Design & IT, Dongseo University, San 69-1, Churye-2-Dong, Sasang-Gu, Busan, Korea Division of Computer & Information Engineering, Dongseo University, San-69-1, Churye-2 Dong, Sasang-Gu, Busan, Korea. s: Abstract- Existing researches on location tracking focus either entirely on indoor or entirely on outdoor by using different devices and techniques. Several solutions have been proposed to adopt a single location sensing technology that fits in both situations. This paper aims to track a user position in both indoor and outdoor environments by using a single wireless device with minimal tracking error. RSSI (Received Signal Strength Indication) technique together with enhancement algorithms is proposed to cater this solution. The proposed RSSI-based tracking technique is divided into two main phases, namely the calibration of RSSI coefficients (deterministic phase) and the distance along with position estimation of user location by iterative trilateration (probabilistic phase). A low complexity RSSI smoothing algorithm is implemented to minimize the dynamic fluctuation of radio signal received from each reference node when the target node is moving. Experiment measurements are carried out to analyze the sensitivity of RSSI. The results reveal the feasibility of these algorithms in designing a more accurate real-time position monitoring system. Index terms: location sensing technology, Received Signal Strength Indication, deterministic phase, iterative trilateration, probabilistic phase, smoothing algorithm, dynamic fluctuation, real-time position. 534

2 ERIN-EE-LIN LAU, BOON-GIIN LEE, SEUNG-CHUL LEE, WAN-YOUNG CHUNG, ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS I. INTRODUCTION Due to the maturity in the wireless technology, location-tracking of objects and people in indoor or outdoor environments has received ample attention from researchers lately. There are various methods for identifying and tracking user position such as Cricket [1], Mote Track [2] or GPS [3]. GPS offers a scalable, efficient and cost effective location services that are available to the large public. However, the satellite emitted signals cannot be exploited indoor to effectively determine the location. Due to different environmental characteristics, none of the above methods is used for tracking user in both indoor and outdoor environment using the same sensor device and sensing method. Hence, accurate estimation of location in both environments remains a longstanding difficult task. The aim of this research is to track a user position in both indoor and outdoor environments with a minimal tracking error by incorporating a radiolocation device (CC2431 [4], Chipcon, Norway) which uses IEEE standard. The device possesses a location estimation capability via Received Signal Strength Indicator (RSSI). This method computes distances based on the transmitted and received signal strengths between blind node and reference nodes. Blind node, which is embedded within CC2431 location engine, will collect signals from all reference nodes responding to a request, reads out the calculated position and sends the position information to a monitoring application. Much of the researches on RSSI are done by utilizing existing WLAN infrastructure [5, 6]. This approach is no doubt a cost effective solution, however, the uses for this WLAN suffers from the elimination of rays. Some signals are too weak to contribute in the calculation of distance and therefore, they must be eliminated from the system. Such signal elimination process is done in this radiolocation device. As the prototype has been designed and constructed, the objective behind this work is to improve the accuracy of the system. Accuracy of location tracking system which caters the solution for hybrid environments is obligatory to ensure the effectiveness in estimating a user position. Therefore, instead of capturing the position information sent from the blind node, raw RSSI values processed by blind node are captured and sent to the monitoring application. Several refining algorithms are proposed and developed in addition to the current radiolocation s algorithm so that the error is reduced to a more acceptable level. 535

3 From application perspective, this hybrid environment tracking scheme can be utilized for various applications such as locating in-demand personnel like doctors or patients with vital sign sensor in hospital environment. It can also serve as a basis for context-aware application. II. SYSTEM DESIGN Figure 1 depicts the system design for this real time location tracking system. The system consists of a set of static reference nodes at preset coordinates, and a blind node carried by the mobile target. Blind node broadcasts signal to the reference nodes nearby and reference nodes reply by sending their coordinates and RSSI values at that distance back to the blind node. Blind node then selects the best eight highest RSSI signals (from -40dBm to -95dBm) to be dispatched to the base station, which is connected to a laptop, using RF transmission from CC2420 radio chip. Refining algorithm and estimation of blind node s position are implemented in the base station after the reference nodes RSSI data (RSSI i ) and position information (X i, Y i ) are received. Estimated position is continuously updated and visually represented on a monitoring application. The position information can be accessed remotely from other personal computer (PC) via Wireless LAN. a. Deterministic Phase Deterministic phase involves calibrating RSSI values for each reference node. In the previous studies on radio propagation patterns [7, 8] in different environments exhibits the feature of nonisotropic path loss due to the various transmission medium and direction. Therefore, there is a need for the analysis of real radio propagation pattern to cater for this irregularity. Using a blind node, raw RSSI values are collected at several predefined distances from the respective reference node at the test area where it is implemented. The calibrated values are then processed to obtain a suitable propagation constant for each reference node. Chipcon [9] specifies the following formula to compute the RSSI. RSSI = 10n log 10 d + A (1) where n is signal propagation constant or exponent, d is the distance from sender and A is the received signal strength at 1 meter distance. 536

4 ERIN-EE-LIN LAU, BOON-GIIN LEE, SEUNG-CHUL LEE, WAN-YOUNG CHUNG, ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS A series of calibration shows that uniform computation of signal propagation constant in order to determine the distance according to signal strength exhibits some drawbacks. This verified that different mediums (free space, glass, and wall) surrounding the reference nodes affect the signal attenuation differently. Therefore, if only a single propagation constant is used for all reference nodes, miscalculation of the distance occurs. The calibrated propagation constant takes obstacles into account and it is calculated by reversing the linear RSSI equation as shown in (1). n i = RSSI i A 10 log 10 d i (2) The value A is obtained in a no-obstacle one-meter distance signal strength measurements from the reference nodes. Figure 1. System architecture 537

5 Figure 2. Refinement algorithm b. Probabilistic Phase Probabilistic phase involves two tasks, namely the distance estimation and the position estimation. 538

6 ERIN-EE-LIN LAU, BOON-GIIN LEE, SEUNG-CHUL LEE, WAN-YOUNG CHUNG, ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS b.i. Distance Estimation The main challenge in RSSI-based location tracking is its high sensitivity to the environmental changes. The vacillating nature of RSSI measurement limits the accuracy in the estimation. In other word, if the radio propagation signal strength is tightly correlated with the distance between emitter and receiver, location determination would be a trivial problem that could be solved easily. However, in practice, the relationship between signal strength and distance is not straightforward and is dynamic in nature. This happens even when the mobile target does not move and yet, signal strength varies over time. This is the nature of signal s behavior. Therefore, a low complexity smoothing algorithm is proposed to minimize the dynamic fluctuation of radio signal received from each reference node when the blind node is moving. The method is based on the fact that the mobile user does not move arbitrarily within the testbed. There is a correlation between current positions with previous location. The basic assumption for this smoothing algorithm is that the constant velocity motion will result in constant data change rate and stationary noise processes. The selection of gains is based on the optimal trade-off between the filter coefficients and the blind node s motion change rate, so that the noise is reduced to an optimal value. The estimation stages for the smoothing algorithm used are shown as below R est i = R pred i + a R prev i R pred i (3) V est i = V pred i + b T s R prev i R pred i (4) The prediction stages for the smoothing algorithm used are shown as below R pred i+1 = R est i + V est i T s (5) V pred i+1 = V est i (6) where R est i is the ith smoothed estimation range, R pred i is the ith predicted range while R prev i is the ith predicted range. V est i and V pred i are the ith smoothed estimation range rate and the ith predicted range rate respectively. a and b is the gain constant and T s is time segment upon the ith update. Filtered RSSI values obtained from the equations above are converted to distances using equation stated in (1) with calibrated propagation constant derived from previous phase. 539

7 b.ii. Position Estimation To estimate the position of the blind node, at least three reference nodes in the network must be able to detect and measure the blind node s signal strength. Trilateration is a method to determine the position of an object based on simultaneous range measurements from three reference nodes at known location. Iterative method is applied to derive blind node position according to the estimated distance resolved from filtered RSSI and the calibrated constant. The algorithm requires the coordinates of at least three reference nodes (x i,y i ) and the distances di between the blind node and the respective reference nodes, which are estimated in the previous subsection. A trivial estimated position ( x e, y e ) is needed to start the algorithm. This estimated position represents the latest calculated position. The algorithm then calculates the difference between the measured and estimated distance by f i = (x e, y e ) = d i (x i x e ) 2 + (y i y e ) 2 (7) Applying the first degree Taylor series approximation, the adjustment (Δx, Δy) used in iteration of (x e, y e ) can be determined using matrix calculation with the following equation where B is given by B = F 1 F 1 x e y e F i F i x e y e while f is calculated by where = (B T B) 1 B T f or = x y = f = (8) (x 1 x e ) (y 1 y e ) (x 1 x e ) 2 + (y 1 y e ) 2 (x 1 x e ) 2 + (y 1 y e ) 2 (x i x e ) (y i y e ) (x i x e ) 2 + (y i y e ) 2 (x i x e ) 2 + (y i y e ) 2 d 1 (x 1 x e ) 2 + (y 1 y e ) 2 d i (x i x e ) 2 + (y i y e ) 2 x e = x e + x, y e = y e + y (9) New estimated position (x e, y e ) is obtained by solving equation 9. The iteration continues until the error is acceptable. By calculating the mean value of the points, the final position is computed. Both CC2431 position estimation results and this iterative trilateration algorithm are analyzed to observe the improvement achieved. 540

8 ERIN-EE-LIN LAU, BOON-GIIN LEE, SEUNG-CHUL LEE, WAN-YOUNG CHUNG, ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS III. EXPERIMENT SETUP Experiments were carried out in a combined indoor and outdoor environment to test and validate the proposed model mentioned in previous section. Error caused by reflection due to the antenna diversity can be reduced by setting the antenna of each reference node and blind node at the angle of 90 degrees at the mounting surface. Different measurement campaigns pertinent to each parameter in the model are implemented to analyze the sensitivity of RSSI. TIP sensor node [9] which features the Chipcon CC2420 [10] radio for wireless communication is used as a base station to receive raw RSSI values from blind node. The base station is connected to a personal computer via USB serial port. In order to track the real-time position of the moving target, an application with Graphical User Interface (GUI) is developed in C# to depict the floor plan of the building. The position of the blind node is displayed as a red dot whilst the reference nodes are depicted as blue dots. A snapshot of the tracking system is shown in Figure 3. The monitoring application collects and processes the raw RSSI data received by the base station node. Figure 3. Real-time monitoring application GUI The layout of the experiment test-bed is shown in Figure 4. The physical dimension of the indoor environment is 34m x 30m, with a corridor in the middle measuring 24.7m x 3m (see Figure 5). The outdoor environment (balcony) has a physical dimension of 29m x 27m (see Figure 6). A 541

9 total of six reference nodes were placed from the corridor indoor to the balcony outdoor, in such a way that a distance of approximately 10m exists between the two nearest reference nodes. These reference nodes thus formed a rectangular test area with physical dimension of 47.5m x 3m (see Figure 4). The reference nodes in the corridor indoor were placed approximately 2.5m above the ground, whereas the reference nodes deployed in outdoor were raised at approximately 1.4m above the ground. The experiment was conducted at a time when the interference from human activities was minimal. Before the experiment was carried out, several preparation steps were conducted. Firstly, the available radio frequency channels were scanned to avoid interference from Wireless LAN at the test area. Secondly, the blind node was rotated slowly in all orientations to examine the orientation effect. After that, the signal propagation constant was calibrated for each reference node in this experiment environment. Figure 4. Layout plan of the experiment testbed 542

10 ERIN-EE-LIN LAU, BOON-GIIN LEE, SEUNG-CHUL LEE, WAN-YOUNG CHUNG, ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS Figure 5. Outdoor testbed setup During the experiment, a user carrying the blind node walked from an indoor starting point with coordinate (1.5, 0) to an outdoor ending point with coordinate (1.5, 47.5). The movement was tracked at real-time with 1.3 second of interval. The accuracy of the proposed system with refining algorithms was found by comparing the position estimated by this system with the predicted position calculated mathematically. Figure 6. Indoor testbed setup 543

11 IV. RESULTS AND DISCUSSIONS Calibration results based on several static locations reveal the drawback of uniform computation for propagation constant applied in CC2431, as the propagation constants are different for different reference nodes in the RSSI-distance conversion formula. The variation of signals is due to the difference in the attenuation of signal on the medium surrounding the reference point. In deterministic phase, RSSI values are collected at several static points in all orientation and the average data are processed to obtain the propagation constants via linear regression equation. In Figure 7, the signal fluctuation exhibited by the blind node is significantly reduced after implementing the smoothing algorithm. Although the fluctuation still exist, the smoothing algorithm yields smoother linear curves with less extreme vacillation than before, which corresponds better with the actual blind node s motion. In the experiment, the total time spent by blind node s movement from coordinate (1.5, 0) to (1.5, 47.5) was 88.4s, in which the user was moving indoor from time 0s to 48.1s, and outdoor from 48.1s onwards. Figure 8 shows a comparison of filtered and unfiltered distance with the predicted distance for reference node located at coordinate (0, 19) in the indoor environment and that for the reference node at coordinate (3, 28.5) in the outdoor environment. The predicted distance is computed by assuming blind node moves with a constant velocity. Result shows that the reduction of RSSI signal fluctuation corresponds more accurately with the actual blind node motion as the blind node does not change its motion rapidly The average variation of the filtered distance from the predicted distance is reduced, which implies that the accuracy is improved compared with the unfiltered data. Figure 9 shows the comparison of position estimation for both CC2431and iterative trilateration with the predicted position. The average error of coordinates computed is around 1.7m, which is smaller than the average error of approximately 2.8m computed by CC2431. Iterative trilateration results in which the distances are computed according to the filtered signal strength reveals the effectiveness of this calculation in contributing a more accurate position. The results obtained through the combined algorithms validate the feasibility of the proposed technique and algorithms to be applied in both indoor and outdoor environments. 544

12 ERIN-EE-LIN LAU, BOON-GIIN LEE, SEUNG-CHUL LEE, WAN-YOUNG CHUNG, ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS Figure 7. Smoothing algorithm applied on the raw RSSI data received from reference nodes Figure 8. Comparison of distances between filtered RSSI and unfiltered data 545

13 Figure 9. Comparison of location coordinates (X, Y) computed by iterative trilateration algorithm and CC2431 V. CONCLUSIONS AND FUTURE WORKS In this paper, a real-time indoor and outdoor tracking application prototype is presented. RSSI technique is employed to estimate user s location in a hybrid of indoor and outdoor environments. Refining algorithms were proposed to improve the accuracy on tracking a mobile target and the results were evaluated. Several tests were conducted to show its improvements compared to the current CC2431 location estimation engine. Comparing with other existing RSSI-based location tracking systems [5, 11, 12], the system discussed in this paper exhibits similarity in terms of propagation constants calibration, but the smoothing algorithm is not proposed in other systems. Using this smoothing algorithm, it outperforms the other systems in terms of accuracy. Besides, due to the low complexity, the smoothing algorithm can be easily embedded in the microprocessor to filter the RSSI values. This prototype experiment is used as a proof-of-concept implementation of the proposed technique. In conclusion, the application implemented in this research provides an enhanced solution to track user position in both indoor and outdoor 546

14 ERIN-EE-LIN LAU, BOON-GIIN LEE, SEUNG-CHUL LEE, WAN-YOUNG CHUNG, ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS environments. Overall average accuracy is improved through the refining algorithms that combine the calibration of signal propagation constants, reduction of dynamic signal fluctuation and trilateration. Experimental results from this paper indicate that good signal strength estimates can be achieved. However, considerable estimation errors at certain positions remain. A number of extensions can be studied to further improve the performance of the location estimation techniques. The study of the impact of using different propagation models such as to obtain the minimum, average and maximum RSSI signal propagation constant instead of considering only the average value and to apply the smoothing algorithm on distances instead of RSSI in location accuracy are in progress. Besides, current experiments are carried out along the hallways where all reference nodes are located at the line-of-sight to the target node. A more complicated experiment will be designed to verify the effectiveness of the proposed algorithm to be relocated to a different testbed with the same propagation model proposed in determining a user's location. REFERENCES [1] N. Priyantha, A. Chakaborty, H. Balakrishnan, The Cricket Location-support System, ACM Mobicom Conference, Boston, MA, August [2] K. Lorincz, and M. Welsh, "MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking", In Proceedings of the International Workshop on Location- and Context- Awareness (LoCA 2005) at Pervasive 2005, Oberpfaffenhofen, Germany, May [3] Stoleru, R.; Tian He; Stankovic, J.A., "Walking GPS: a practical solution for localization in manually deployed wireless sensor networks," Local Computer Networks, th Annual IEEE International Conference on, vol., no.pp , Nov [4] CC2431 Development Kit User Manual, fhipcon.com [5] F. Lassabe, P. Canalda, P. Chatonnay, F. Spies, A Friis-based Calibrated Model for WiFi Terminals Positioning, In Proceedings of the Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Network,

15 [6] Cesare Alippi, Giovanni Vanini, A RSSI-based and Calibrated Localization Technique for Wireless Sensor Networks, In Proceeding of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW 06),2006. [7] Tereus Scott, Kui Wu, Daniel Hoffman, Radio Propagation Patterns in Wireless Sensor Networks: New Experimental Resutls, In Proceeding of the 2006 international conference on Communications and mobile computing IWCMC '06, July [8] Saad Biaz, Yiming Ji, Bing Qi, Shaoen Wu, Dynamic Signal Strength Estimates for Indoor Wireless Communications, In Proceeding of 2005 International Conference on Wireless Communications, Networking and Mobile Computing, pp , Sept [9] TIP Data Sheet, [10] Chipcon: CC compliant radio, [11] Castano.J.G, Svensson.M, Esktrom.M, Local Positioning for Wireless Sensors Based on Bluetooth, In Proceeding of IEEE Radio and Wireless Conference, [12] Ekahau Inc., 548

Integrating GPS, GSM and Cellular Phone for Location Tracking and Monitoring

Integrating GPS, GSM and Cellular Phone for Location Tracking and Monitoring Proceedings of the International Conference on Geospatial Technologies and Applications, Geomatrix 12 February 26 29, 2012, IIT Bombay, Mumbai, India Integrating GPS, GSM and Cellular Phone for Location

More information

Outdoor Propagation Prediction in Wireless Local Area Network (WLAN)

Outdoor Propagation Prediction in Wireless Local Area Network (WLAN) Outdoor Propagation Prediction in Wireless Local Area Network (WLAN) Akpado K.A 1, Oguejiofor O.S 1, Abe Adewale 2, Femijemilohun O.J 2 1 Department of Electronic and Computer Engineering, Nnamdi Azikiwe

More information

Π8: Indoor Positioning System using WLAN Received Signal Strength Measurements Preface

Π8: Indoor Positioning System using WLAN Received Signal Strength Measurements Preface Π8: Indoor Positioning System using WLAN Received Signal Strength Measurements Preface In this deliverable we provide the details of building an indoor positioning system using WLAN Received Signal Strength

More information

REROUTING VOICE OVER IP CALLS BASED IN QOS

REROUTING VOICE OVER IP CALLS BASED IN QOS 1 REROUTING VOICE OVER IP CALLS BASED IN QOS DESCRIPTION BACKGROUND OF THE INVENTION 1.- Field of the invention The present invention relates to telecommunications field. More specifically, in the contextaware

More information

Motion Sensing without Sensors: Information. Harvesting from Signal Strength Measurements

Motion Sensing without Sensors: Information. Harvesting from Signal Strength Measurements Motion Sensing without Sensors: Information Harvesting from Signal Strength Measurements D. Puccinelli and M. Haenggi Department of Electrical Engineering University of Notre Dame Notre Dame, Indiana,

More information

Estimation of Position and Orientation of Mobile Systems in a Wireless LAN

Estimation of Position and Orientation of Mobile Systems in a Wireless LAN Proceedings of the 46th IEEE Conference on Decision and Control New Orleans, LA, USA, Dec. 12-14, 2007 Estimation of Position and Orientation of Mobile Systems in a Wireless LAN Christof Röhrig and Frank

More information

Outdoor Localization System Using RSSI Measurement of Wireless Sensor Network

Outdoor Localization System Using RSSI Measurement of Wireless Sensor Network International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 78-3075, Volume-, Issue-, January 013 Outdoor Localization System Using RSSI Measurement of Wireless Sensor Network

More information

New Insights into WiFi-based Device-free Localization

New Insights into WiFi-based Device-free Localization New Insights into WiFi-based Device-free Localization Heba Aly Dept. of Computer and Systems Engineering Alexandria University, Egypt heba.aly@alexu.edu.eg Moustafa Youssef Wireless Research Center Egypt-Japan

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

A Routing Algorithm Designed for Wireless Sensor Networks: Balanced Load-Latency Convergecast Tree with Dynamic Modification

A Routing Algorithm Designed for Wireless Sensor Networks: Balanced Load-Latency Convergecast Tree with Dynamic Modification A Routing Algorithm Designed for Wireless Sensor Networks: Balanced Load-Latency Convergecast Tree with Dynamic Modification Sheng-Cong Hu r00631036@ntu.edu.tw Jen-Hou Liu r99631038@ntu.edu.tw Min-Sheng

More information

Portable Gas Analyzer with Wireless Transmission of Gas Concentrations and GPS Coordinates

Portable Gas Analyzer with Wireless Transmission of Gas Concentrations and GPS Coordinates Portable Gas Analyzer with Wireless Transmission of Gas Concentrations and GPS Coordinates Jack Driscoll, Jack Hamm & Nick Hennigar, PID Analyzers, LLC, 780 Corporate Park Dr. Pembroke, MA 0239 Pat Hogan,

More information

Int. J. Advanced Networking and Applications Volume: 6 Issue: 4 Pages: 2404-2408 (2015) ISSN: 0975-0290

Int. J. Advanced Networking and Applications Volume: 6 Issue: 4 Pages: 2404-2408 (2015) ISSN: 0975-0290 2404 Nuzzer algorithm based Human Tracking and Security System for Device-Free Passive System in Smart Phones Environment R.Ranjani Assistant Professor, Department of Computer Science and Engineering,

More information

RF Coverage Validation and Prediction with GPS Technology

RF Coverage Validation and Prediction with GPS Technology RF Coverage Validation and Prediction with GPS Technology By: Jin Yu Berkeley Varitronics Systems, Inc. 255 Liberty Street Metuchen, NJ 08840 It has taken many years for wireless engineers to tame wireless

More information

Indoor Location Tracking using Received Signal Strength Indicator

Indoor Location Tracking using Received Signal Strength Indicator Indoor Location Tracking using Received Signal Strength Indicator 9 11 X Indoor Location Tracking using Received Signal Strength Indicator Chuan-Chin Pu 1, Chuan-Hsian Pu, and Hoon-Jae Lee 3 1 Sunway University

More information

Wearable Finger-Braille Interface for Navigation of Deaf-Blind in Ubiquitous Barrier-Free Space

Wearable Finger-Braille Interface for Navigation of Deaf-Blind in Ubiquitous Barrier-Free Space Wearable Finger-Braille Interface for Navigation of Deaf-Blind in Ubiquitous Barrier-Free Space Michitaka Hirose Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

VEHICLE TRACKING SYSTEM USING GPS. 1 Student, ME (IT) Pursuing, SCOE, Vadgaon, Pune. 2 Asst. Professor, SCOE, Vadgaon, Pune

VEHICLE TRACKING SYSTEM USING GPS. 1 Student, ME (IT) Pursuing, SCOE, Vadgaon, Pune. 2 Asst. Professor, SCOE, Vadgaon, Pune VEHICLE TRACKING SYSTEM USING GPS Pooja P. Dehankar 1, 1 Student, ME (IT) Pursuing, SCOE, Vadgaon, Pune Prof. S. P. Potdar 2 2 Asst. Professor, SCOE, Vadgaon, Pune Abstract- Global Positioning System is

More information

Raitoharju, Matti; Dashti, Marzieh; Ali-Löytty, Simo; Piché, Robert

Raitoharju, Matti; Dashti, Marzieh; Ali-Löytty, Simo; Piché, Robert Tampere University of Technology Author(s) Title Citation Raitoharju, Matti; Dashti, Marzieh; Ali-Löytty, Simo; Piché, Robert Positioning with multilevel coverage area models Raitoharju, Matti; Dashti,

More information

Indoor Positioning Systems WLAN Positioning

Indoor Positioning Systems WLAN Positioning Praktikum Mobile und Verteilte Systeme Indoor Positioning Systems WLAN Positioning Prof. Dr. Claudia Linnhoff-Popien Michael Beck, André Ebert http://www.mobile.ifi.lmu.de Wintersemester 2015/16 WLAN Positioning

More information

A Wireless Medical Monitoring Over a Heterogeneous Sensor Network

A Wireless Medical Monitoring Over a Heterogeneous Sensor Network A Wireless Medical Monitoring Over a Heterogeneous Sensor Network Mehmet R. Yuce, Peng Choong Ng, Chin K. Lee, Jamil Y. Khan, and Wentai Liu Abstract This paper presents a heterogeneous sensor network

More information

A survey on Spectrum Management in Cognitive Radio Networks

A survey on Spectrum Management in Cognitive Radio Networks A survey on Spectrum Management in Cognitive Radio Networks Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty Georgia Institute of Technology Communications Magazine, vol 46, April 2008,

More information

Using Received Signal Strength Variation for Surveillance In Residential Areas

Using Received Signal Strength Variation for Surveillance In Residential Areas Using Received Signal Strength Variation for Surveillance In Residential Areas Sajid Hussain, Richard Peters, and Daniel L. Silver Jodrey School of Computer Science, Acadia University, Wolfville, Canada.

More information

Analysis of a Device-free Passive Tracking System in Typical Wireless Environments

Analysis of a Device-free Passive Tracking System in Typical Wireless Environments Analysis of a Device-free Passive Tracking System in Typical Wireless Environments Ahmed E. Kosba, Ahmed Abdelkader Department of Computer Engineering Faculty of Engineering, Alexandria University, Egypt

More information

Improving SCADA Operations Using Wireless Instrumentation

Improving SCADA Operations Using Wireless Instrumentation Improving SCADA Operations Using Wireless Instrumentation April 2010 / White paper by Hany Fouda Make the most of your energy Summary Executive Summary... p 2 Introduction... p 3 The Evolution of Wireless...

More information

HDMI / Video Wall over IP Transmitter with PoE

HDMI / Video Wall over IP Transmitter with PoE / Wall over IP Transmitter with Key Features Network 1080P ultra high quality video transmitter Assigns video sources to any monitor of the video wall Up to 8 x 8 Screen Array supported Extends high definition

More information

An Algorithm for Automatic Base Station Placement in Cellular Network Deployment

An Algorithm for Automatic Base Station Placement in Cellular Network Deployment An Algorithm for Automatic Base Station Placement in Cellular Network Deployment István Törős and Péter Fazekas High Speed Networks Laboratory Dept. of Telecommunications, Budapest University of Technology

More information

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing www.anite.com Propsim enabled Aerospace, Satellite and Airborne Radio System Testing Anite is now part of Keysight Technologies Realistic and repeatable real-time radio channel emulation solutions for

More information

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions Environmental Monitoring: Guide to Selecting Wireless Communication Solutions By: Scott South Published in WaterWorld, January 2005 (Page 48) Rapidly growing demands for information and increased productivity

More information

XBee Wireless Sensor Networks for Temperature Monitoring

XBee Wireless Sensor Networks for Temperature Monitoring XBee Wireless Sensor Networks for Temperature Monitoring Vongsagon Boonsawat, Jurarat Ekchamanonta, Kulwadee Bumrungkhet, and Somsak Kittipiyakul School of Information, Computer, and Communication Technology

More information

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2 On the Traffic Capacity of Cellular Data Networks T. Bonald 1,2, A. Proutière 1,2 1 France Telecom Division R&D, 38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France {thomas.bonald, alexandre.proutiere}@francetelecom.com

More information

The Need for Precise Timing in RF Power Measurements

The Need for Precise Timing in RF Power Measurements Introduction This application note explains the functions and applications of a powerful unique feature of the SeeGull EX and MX Scanning Receivers: the Enhanced Power Scan (EPS). Unlike standard tools,

More information

Device-Free Passive Localization

Device-Free Passive Localization Device-Free Passive Localization Matthew Mah Abstract This report describes a Device-Free Passive Localization System (DfP). The system provides a software solution over nominal WiFi equipment to detect

More information

Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters

Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters I. Guvenc EECE Department, UNM (505) 2771165 ismail@eece.unm.edu C.T. Abdallah, R. Jordan EECE Department, UNM (505) 2770298 chaouki@eece.unm.edu

More information

Fig. 1 BAN Architecture III. ATMEL BOARD

Fig. 1 BAN Architecture III. ATMEL BOARD Volume 2, Issue 9, September 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

More information

Divvela.Santhosh Raghava Rao [1],Sreevardhan cheerla [2]

Divvela.Santhosh Raghava Rao [1],Sreevardhan cheerla [2] Signal Strength Enhancement Using Cellular Repeater On Three Frequency Bands For Low Signal Coverage Areas (GSM900, GSM 1800/DCS, 3G) Divvela.Santhosh Raghava Rao [1],Sreevardhan cheerla [2] [1] B.tech

More information

Novel AMR technologies and Remote Monitoring

Novel AMR technologies and Remote Monitoring Novel AMR technologies and Remote Monitoring Marios Milis, SignalGeneriX Ltd marios.milis@signalgenerix.com 1 AMR Overview AMR is the technology of automatically collecting consumption, diagnostic, and

More information

Omni Antenna vs. Directional Antenna

Omni Antenna vs. Directional Antenna Omni Antenna vs. Directional Antenna Document ID: 82068 Contents Introduction Prerequisites Requirements Components Used Conventions Basic Definitions and Antenna Concepts Indoor Effects Omni Antenna Pros

More information

Analysis of Methods for Mobile Device Tracking. David Nix Chief Scientific Advisor

Analysis of Methods for Mobile Device Tracking. David Nix Chief Scientific Advisor Analysis of Methods for Mobile Device Tracking David Nix Chief Scientific Advisor October 2013 Table of Contents 1. Document Purpose and Scope 3 2. Overview 3 2.1 Mobile Device Penetration 3 2.2 Mobile

More information

Radio Frequency (RF) Survey

Radio Frequency (RF) Survey Municipal Wireless Broadband and the Digital Community Report Radio Frequency (RF) Survey for the City and County of San Francisco July 21, 2006 Preface This document describes Civitium s findings and

More information

Research Article ISSN 2277 9140 Copyright by the authors - Licensee IJACIT- Under Creative Commons license 3.0

Research Article ISSN 2277 9140 Copyright by the authors - Licensee IJACIT- Under Creative Commons license 3.0 INTERNATIONAL JOURNAL OF ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY An international, online, open access, peer reviewed journal Volume 2 Issue 2 April 2013 Research Article ISSN 2277 9140 Copyright

More information

Antenna Deployment Technical Brief

Antenna Deployment Technical Brief ProCurve Networking Antenna Deployment Technical Brief Introduction... 2 Antenna types... 2 Omni directional antennas... 2 Directional antennas... 2 Diversity antennas... 3 High gain directional antennas...

More information

NanoMon: An Adaptable Sensor Network Monitoring Software

NanoMon: An Adaptable Sensor Network Monitoring Software NanoMon: An Adaptable Sensor Network Monitoring Software Misun Yu, Haeyong Kim, and Pyeongsoo Mah Embedded S/W Research Division Electronics and Telecommunications Research Institute (ETRI) Gajeong-dong

More information

Cisco Context-Aware Mobility Solution: Put Your Assets in Motion

Cisco Context-Aware Mobility Solution: Put Your Assets in Motion Cisco Context-Aware Mobility Solution: Put Your Assets in Motion How Contextual Information Can Drastically Change Your Business Mobility and Allow You to Achieve Unprecedented Efficiency What You Will

More information

Maximizing Throughput and Coverage for Wi Fi and Cellular

Maximizing Throughput and Coverage for Wi Fi and Cellular Maximizing Throughput and Coverage for Wi Fi and Cellular A White Paper Prepared by Sebastian Rowson, Ph.D. Chief Scientist, Ethertronics, Inc. www.ethertronics.com March 2012 Introduction Ask consumers

More information

High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets

High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets 0 High Resolution RF Analysis: The Benefits of Lidar Terrain & Clutter Datasets January 15, 2014 Martin Rais 1 High Resolution Terrain & Clutter Datasets: Why Lidar? There are myriad methods, techniques

More information

University of L Aquila Center of Excellence DEWS Poggio di Roio 67040 L Aquila, Italy http://www.diel.univaq.it/dews

University of L Aquila Center of Excellence DEWS Poggio di Roio 67040 L Aquila, Italy http://www.diel.univaq.it/dews University of L Aquila Center of Excellence DEWS Poggio di Roio 67040 L Aquila, Italy http://www.diel.univaq.it/dews Locating ZigBee Nodes Using the TI s CC2431 Location Engine: A Testbed Platform and

More information

Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform

Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform Results of IMES (Indoor Messaging System) Implementation for Seamless Indoor Navigation and Social Infrastructure Platform Dinesh Manandhar, Seiya Kawaguchi, Hideyuki Torimoto GNSS Technologies Inc., Japan

More information

Electrocardiogram (ECG) Monitoring System using Bluetooth technology

Electrocardiogram (ECG) Monitoring System using Bluetooth technology Electrocardiogram (ECG) Monitoring System using Bluetooth technology Zarina Md Amin, Suryani Ilias, Zunuwanas Mohamad Department of Electrical Engineering, Polytechnic of Sultan Abdul Salahuddin Abdul

More information

Instruction Manual Service Program ULTRA-PROG-IR

Instruction Manual Service Program ULTRA-PROG-IR Instruction Manual Service Program ULTRA-PROG-IR Parameterizing Software for Ultrasonic Sensors with Infrared Interface Contents 1 Installation of the Software ULTRA-PROG-IR... 4 1.1 System Requirements...

More information

Bluetooth voice and data performance in 802.11 DS WLAN environment

Bluetooth voice and data performance in 802.11 DS WLAN environment 1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical

More information

Designing and Embodiment of Software that Creates Middle Ware for Resource Management in Embedded System

Designing and Embodiment of Software that Creates Middle Ware for Resource Management in Embedded System , pp.97-108 http://dx.doi.org/10.14257/ijseia.2014.8.6.08 Designing and Embodiment of Software that Creates Middle Ware for Resource Management in Embedded System Suk Hwan Moon and Cheol sick Lee Department

More information

Physical Layer Research Trends for 5G

Physical Layer Research Trends for 5G Physical Layer Research Trends for 5G Brett T. Walkenhorst, Ph.D. Principal Research Engineer, Georgia Tech Research Institute Adjunct Professor, Georgia Tech, School of Electrical and Computer Engineering

More information

How Cisco Tracks RFID with Active RFID and Wireless LANs

How Cisco Tracks RFID with Active RFID and Wireless LANs How Tracks RFID with Active RFID and Wireless LANs Active RFID tags and WLANs ensure compliance with corporate finance and government regulations. IT Case Study / Wireless / RFID Solutions: Maintaining

More information

EXPERIMENTAL INVESTIGATION OF THE INTEGRATION OF VIRTUAL MODELS AND THE PHYSICAL CONSTRUCTION

EXPERIMENTAL INVESTIGATION OF THE INTEGRATION OF VIRTUAL MODELS AND THE PHYSICAL CONSTRUCTION EXPERIMENTAL INVESTIGATION OF THE INTEGRATION OF VIRTUAL MODELS AND THE PHYSICAL CONSTRUCTION Abiola A. Akanmu 1, Chimay J. Anumba 2, John I. Messner 2, Sanghoon Lee 2, and Deepa Kundur 3 abiola.akanmu@wmich.edu,

More information

Experiment Measurements for Packet Reception Rate in Wireless Underground Sensor Networks

Experiment Measurements for Packet Reception Rate in Wireless Underground Sensor Networks International Journal of Recent Trends in Engineering, Vol, No., November 009 Experiment Measurements for Packet Reception Rate in Wireless Underground Sensor Networks Adel Ali Ahmed 1, Norsheila Fisal

More information

Municipal Mesh Network Design

Municipal Mesh Network Design White Paper Municipal Mesh Network Design Author: Maen Artimy 1 Summary This document provides a wireless mesh network design for the downtown area of the Town of Wolfville, Nova Scotia. This design serves

More information

A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks

A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks A Spectral Clustering Approach to Validating Sensors via Their Peers in Distributed Sensor Networks H. T. Kung Dario Vlah {htk, dario}@eecs.harvard.edu Harvard School of Engineering and Applied Sciences

More information

ADSP Sensor Survey For RTLS Calibration How-To Guide

ADSP Sensor Survey For RTLS Calibration How-To Guide ADSP Sensor Survey For RTLS Calibration How-To Guide Zebra and the Zebra head graphic are registered trademarks of ZIH Corp. The Symbol logo is a registered trademark of Symbol Technologies, Inc., a Zebra

More information

is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10

is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10 RF Basics - Part 1 This is the first article in the multi-part series on RF Basics. We start the series by reviewing some basic RF concepts: Decibels (db), Antenna Gain, Free-space RF Propagation, RF Attenuation,

More information

USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices

USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices USB 3.0* Radio Frequency Interference Impact on 2.4 GHz Wireless Devices White Paper April 2012 Document: 327216-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

More information

Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ

Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ Q: What is a Wireless LAN (WLAN)? Q: What are the benefits of using a WLAN instead of a wired network connection? Q: Are Intel WLAN products

More information

Water Quality Monitoring System Using Zigbee Based Wireless Sensor Network

Water Quality Monitoring System Using Zigbee Based Wireless Sensor Network 24 Water Quality Monitoring System Using Zigbee Based Wireless Sensor Network Zulhani Rasin Faculty of Electrical Engineering Universiti Teknikal Malaysia Melaka (UTeM) Melaka, Malaysia Email: zulhani@utem.edu.my

More information

4-6-4 Data Collection System

4-6-4 Data Collection System 4-6-4 Data Collection System MIURA Amane, JANG Jae-Hyeuk, NAGAI Seiji, and TAIRA Shinichi We plan to verify the on-orbit antenna patterns in the framework of the electrical characteristics verification

More information

Geometric and Signal Strength Dilution of Precision (DoP) Wi-Fi

Geometric and Signal Strength Dilution of Precision (DoP) Wi-Fi International Journal of Computer Science Issues, Vol. 3, 2009 ISSN (Online): 1694-0784 ISSN (Printed): 1694-0814 35 Geometric and Signal Strength Dilution of Precision (DoP) Wi-Fi Soumaya ZIRARI*, Philippe

More information

WLAN Positioning Technology White Paper

WLAN Positioning Technology White Paper WLAN Positioning Technology White Paper Issue 1.0 Date 2014-04-24 HUAWEI TECHNOLOGIES CO., LTD. 2014. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any

More information

Cisco Wireless Control System (WCS)

Cisco Wireless Control System (WCS) Data Sheet Cisco Wireless Control System (WCS) PRODUCT OVERVIEW Cisco Wireless Control System (WCS) Cisco Wireless Control System (WCS) is the industry s leading platform for wireless LAN planning, configuration,

More information

Node A. Universal Multi-Band, Multi-Service, Software-Based Repeater Platform. So Flexible You Can Accommodate Just About Any Application Requirement

Node A. Universal Multi-Band, Multi-Service, Software-Based Repeater Platform. So Flexible You Can Accommodate Just About Any Application Requirement Node A Universal Multi-Band, Multi-Service, Software-Based Repeater Platform So Flexible You Can Accommodate Just About Any Application Requirement Node A Universal Multi-Band, Multi-Serv The Standard

More information

Optimizing Wireless Networks.

Optimizing Wireless Networks. from the makers of inssider Optimizing Wireless Networks. Over the past few years, MetaGeek has created tools to help users optimize their wireless networks. MetaGeek s tools help visualize the physical

More information

At the completion of this guide you should be comfortable with the following:

At the completion of this guide you should be comfortable with the following: This guide provides instructions and best practices for deployment of the Yealink W52P IP DECT phones and repeaters RT10, which is intended for qualified technicians (or administrator) who will deploy

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

Indoor Path Loss. Contents. Application Note. XST-AN005a-Indoor June Link Margin...2. Indoor Communications...4. Situational Analysis...

Indoor Path Loss. Contents. Application Note. XST-AN005a-Indoor June Link Margin...2. Indoor Communications...4. Situational Analysis... Indoor Path Loss Contents Link Margin...2 Indoor Communications...4 Situational Analysis...5 Conclusion...6 Application Note XST-AN005a-Indoor June 2012 Website: Email: www.digi.com rf-experts@digi.com

More information

Best Practices for Deploying Wireless LANs

Best Practices for Deploying Wireless LANs Best Practices for Deploying Wireless LANs An overview of special considerations in WLAN implementations As wireless LANs (WLANs) continue to grow in popularity, particularly in enterprise networks, the

More information

Networks. The two main network types are: Peer networks

Networks. The two main network types are: Peer networks Networks Networking is all about sharing information and resources. Computers connected to a network can avail of many facilities not available to standalone computers: Share a printer or a plotter among

More information

Delivering broadband internet access for high speed trains passengers using the new WiFi. standard 802.11n for train-to-ground communications

Delivering broadband internet access for high speed trains passengers using the new WiFi. standard 802.11n for train-to-ground communications Delivering broadband internet access for high speed trains passengers using the new WiFi standard 802.11n for train-to-ground communications Hassan GHANNOUM 1, David SANZ 1, Bernadette VILLEFORCEIX 2,

More information

300Mbps Wireless N Ceiling Mount Access Point

300Mbps Wireless N Ceiling Mount Access Point Datasheet Ceiling Mount Access Point 110 Highlights Wireless N speed up to 300Mbps Controller Software enables administrators to easily manage hundreds of s Supports passive PoE for convenient installation

More information

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James

More information

WIRELESS INSTRUMENTATION TECHNOLOGY

WIRELESS INSTRUMENTATION TECHNOLOGY BS&B WIRELESS, L.L.C. BS&B WIRELESS, L.L.C. WIRELESS INSTRUMENTATION TECHNOLOGY Printed February 2004 BS&B WIRELESS, L.L.C. 7422-B East 46th Place, Tulsa, OK74145 Phone: 918-622-5950 Fax: 918-665-3904

More information

High rate and Switched WiFi. WiFi 802.11 QoS, Security 2G. WiFi 802.11a/b/g. PAN LAN Cellular MAN

High rate and Switched WiFi. WiFi 802.11 QoS, Security 2G. WiFi 802.11a/b/g. PAN LAN Cellular MAN Security Issues and Quality of Service in Real Time Wireless PLC/SCADA Process Control Systems Dr. Halit Eren & Dincer Hatipoglu Curtin University of Technology (Perth Australia) 2/27/2008 1 PRESENTATION

More information

Development of Docking System for Mobile Robots Using Cheap Infrared Sensors

Development of Docking System for Mobile Robots Using Cheap Infrared Sensors Development of Docking System for Mobile Robots Using Cheap Infrared Sensors K. H. Kim a, H. D. Choi a, S. Yoon a, K. W. Lee a, H. S. Ryu b, C. K. Woo b, and Y. K. Kwak a, * a Department of Mechanical

More information

300Mbps Wireless N Gigabit Ceilling Mount Access Point

300Mbps Wireless N Gigabit Ceilling Mount Access Point Datasheet 300Mbps Wireless N Gigabit Ceilling Mount Access Point 120 Highlights Wireless N speed up to 300Mbps The Controller Software enables administrators to manage hundreds of s easily from any PC

More information

Guide for Performing a Wireless Site Survey. 2.4 GHz IEEE 802.11g/802.11b/802.15.4

Guide for Performing a Wireless Site Survey. 2.4 GHz IEEE 802.11g/802.11b/802.15.4 Guide for Performing a Wireless Site Survey 2.4 GHz IEEE 802.11g/802.11b/802.15.4 1 Table of Contents Table of Contents 2 Introduction 3 Wireless Characteristics 3 AMX Site Survey Tools 5 Creating a Channel

More information

Experiment Design and Analysis of a Mobile Aerial Wireless Mesh Network for Emergencies

Experiment Design and Analysis of a Mobile Aerial Wireless Mesh Network for Emergencies Experiment Design and Analysis of a Mobile Aerial Wireless Mesh Network for Emergencies 1. Introduction 2. Experiment Design 2.1. System Components 2.2. Experiment Topology 3. Experiment Analysis 3.1.

More information

Which antenna for Wi-Fi?

Which antenna for Wi-Fi? Which antenna for Wi-Fi? Introduction Wi-Fi is a brand originally licensed by the Wi-Fi Alliance to describe the underlying technology of wireless local area networks (WLAN) based on the IEEE 802.11 specifications.

More information

Wireless monitoring system for temperature and humidity based on ZigBee

Wireless monitoring system for temperature and humidity based on ZigBee Wireless monitoring system for temperature and humidity based on ZigBee Abstract Jianjun Chen* Shaoxing University uanpei College, Shaoxing, Zhejiang, 3000, China Received March 04, www.cmnt.lv Traditional

More information

Mobile Node Localization Using Cooperation and Static Beacons

Mobile Node Localization Using Cooperation and Static Beacons Mobile Node Localization Using Cooperation and Static Beacons Troy Johnson Department of Computer Science Central Michigan University Mount Pleasant, MI 8859 johnsta@cmich.edu Patrick Seeling Department

More information

Implementing Voice Over Wireless Networks: Realities and Challenges

Implementing Voice Over Wireless Networks: Realities and Challenges WHITE PAPER Implementing Voice Over Wireless Networks: Realities and Challenges August 2006 CONTENTS 1 Implementing Voice Over Wireless Networks 2 The Physical Environment and VoWi-Fi 2 Capacity and VoWi-Fi

More information

Prediction of DDoS Attack Scheme

Prediction of DDoS Attack Scheme Chapter 5 Prediction of DDoS Attack Scheme Distributed denial of service attack can be launched by malicious nodes participating in the attack, exploit the lack of entry point in a wireless network, and

More information

Wireless Mobile Workforce

Wireless Mobile Workforce October 2014 Page 1 The DeltaV Remote Operator Station shown on the Panasonic Toughbook CF-19 (left) and Toughpad FZ-G1. Increased worker productivity and accuracy Mobile operations management Syncade

More information

On the Potential of Network Coding for Cooperative Awareness in Vehicular Networks

On the Potential of Network Coding for Cooperative Awareness in Vehicular Networks On the Potential of Network Coding for Cooperative Awareness in Vehicular Networks Miguel Sepulcre, Javier Gozalvez, Jose Ramon Gisbert UWICORE, Ubiquitous Wireless Communications Research Laboratory,

More information

Smart Integrated Multiple Tracking System Development for IOT based Target-oriented Logistics Location and Resource Service

Smart Integrated Multiple Tracking System Development for IOT based Target-oriented Logistics Location and Resource Service , pp. 195-204 http://dx.doi.org/10.14257/ijsh.2015.9.5.19 Smart Integrated Multiple Tracking System Development for IOT based Target-oriented Logistics Location and Resource Service Ju-Su Kim, Hak-Jun

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research

Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and Motion Optimization for Maritime Robotic Research 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Intelligent Submersible Manipulator-Robot, Design, Modeling, Simulation and

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

A Surveillance Robot with Climbing Capabilities for Home Security

A Surveillance Robot with Climbing Capabilities for Home Security Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 11, November 2013,

More information

Doppler Effect Plug-in in Music Production and Engineering

Doppler Effect Plug-in in Music Production and Engineering , pp.287-292 http://dx.doi.org/10.14257/ijmue.2014.9.8.26 Doppler Effect Plug-in in Music Production and Engineering Yoemun Yun Department of Applied Music, Chungwoon University San 29, Namjang-ri, Hongseong,

More information

Mapping Linear Networks Based on Cellular Phone Tracking

Mapping Linear Networks Based on Cellular Phone Tracking Ronen RYBOWSKI, Aaron BELLER and Yerach DOYTSHER, Israel Key words: Cellular Phones, Cellular Network, Linear Networks, Mapping. ABSTRACT The paper investigates the ability of accurately mapping linear

More information

Real Time Water Quality Monitoring System

Real Time Water Quality Monitoring System Real Time Water Quality Monitoring System Mithila Barabde 1, Shruti Danve 2 ME Student, Dept. of E&TC, MITCOE, Savitribai Phule Pune University, Pune, India 1 Assistant Professor, Dept. of E&TC, MITCOE,

More information

Real Time Bus Monitoring System by Sharing the Location Using Google Cloud Server Messaging

Real Time Bus Monitoring System by Sharing the Location Using Google Cloud Server Messaging Real Time Bus Monitoring System by Sharing the Location Using Google Cloud Server Messaging Aravind. P, Kalaiarasan.A 2, D. Rajini Girinath 3 PG Student, Dept. of CSE, Anand Institute of Higher Technology,

More information

Implementation of Wireless Gateway for Smart Home

Implementation of Wireless Gateway for Smart Home Communications and Network, 2013, 5, 16-20 doi:10.4236/cn.2013.51b005 Published Online February 2013 (http://www.scirp.org/journal/cn) Implementation of Wireless Gateway for Smart Home Yepeng Ni 1, Fang

More information

COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU

COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU Image Processing Group, Landcare Research New Zealand P.O. Box 38491, Wellington

More information