New Curricular Material for Science Classes: How Do Students Evaluate It?

Size: px
Start display at page:

Download "New Curricular Material for Science Classes: How Do Students Evaluate It?"

Transcription

1 DOI /s New Curricular Material for Science Classes: How Do Students Evaluate It? Sofia Freire & Cláudia Faria & Cecília Galvão & Pedro Reis # Springer Science+Business Media B.V Abstract Living in an unpredictable and ever changing society demands from its citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-european Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students. Keywords Students interest. Science relevance. Science popularity. Science education Introduction Science has been acknowledged not only as a structuring dimension of today s society (Osborne and Dillon 2008) but also, as a means of economical and social development (European Commission 2004, 2007). Important goals of science education nowadays are to S. Freire (*) : C. Faria : C. Galvão : P. Reis Institute of Education, University of Lisbon, Alameda da Universidade, Lisbon, Portugal asraposo@ie.ul.pt C. Faria cbfaria@ie.ul.pt C. Galvão cgalvao@ie.ul.pt P. Reis pedrorochareis@netcabo.pt

2 educate enlightened citizens, who are aware of the potential and the limitations of scientific and technological knowledge, who are able to reflect critically about the world around them and to make responsible and informed decisions concerning issues related to their lives (European Commission 2004; Osborne and Dillon 2008; Schreiner and SjØberg 2004). However, empirical evidence illustrates that scientific literacy levels in the general population are low (Autio et al. 2007; European Commission 2004), making us wonder about the competencies that citizens have for using scientific knowledge to understand the surrounding world and to make informed decision about issues that emerge from science, but whose consequences (social and human) go far beyond science. In addition, science education faces another challenge: students disinterest with school science (Schreiner and SjØberg 2004). Indeed, several studies have illuminated that not only students disinterest in school science increases along with school progression (European Commission 2007; Murphy and Beggs 2003) but also that science subjects are perceived as less interesting by the students (Osborne and Collins 2001). Besides, many students do not choose science subjects at school or pursue science careers (European Commission 2004; Juuti et al. 2009). Considering this overall scenario, many authors have been questioning what should be the goals of science education and how best to achieve those goals. Recently, interest in science subjects has been gaining increased attention. Several studies centered on interest in science subjects revealed that the arguments most frequently reported by students themselves for explaining their disinterest in school science is essentially its degree of difficulty (Osborne and Collins 2001), the perception of low self-efficacy concerning science subjects (Lavonen et al. 2005; Trumper 2006) and the lack of relevancy of the studied themes (Osborne and Collins 2001; Schreiner and SjØberg 2004). In addition, students also mention that another source of disinterest are the teaching practices that, according to them, do not allow for participation and questioning, and are not based on their curiosity and amazement concerning the surrounding world (Lyons 2006; Murphy and Beggs 2003; Osborne and Collins 2001). Numerous studies suggest that challenging learning situations, which facilitate choice, which allow students autonomy to explore issues and to make decisions and which foster curiosity and imagination, are factors associated with the promotion of students interest (Lavonen et al. 2005; Osborne and Collins 2001; Palmer 2009). Alongside these factors, the connection to students previous knowledge and experiences, and the active involvement of students in discussion and argumentation activities, which allow and promote critical thinking and reasoning also seem to be associated with the promotion of a greater interest in science subjects (Lavonen et al. 2005; Osborne and Collins 2001). Therefore, it seems that teachers strategies can play an important role in activating and maintaining interest (Juuti et al. 2009; Lavonen et al. 2005). Based on these considerations, PARSEL was developed with the objective to build and test a set of teaching-learning materials (modules). These modules include activities with certain characteristics and a strategy for implementing those activities (three stage model). These modules aim at making science classes more popular and relevant in the eyes of the students. After modules have been implemented, it is now worth knowing how students evaluated it. The present paper aims at understanding how did students react to PARSEL s innovations and how they evaluate the distinctive characteristics of PARSEL modules. Introducing PARSEL PARSEL emerged from the need of the educational systems to respond to the increased disinterest of students in science subjects. Its main purpose was to create innovative science modules that would make science subjects more relevant and popular in the eyes of the students

3 ( So, one of the goals with the implementation of the PARSEL modules was to make students find a purpose in the study of science and in Science itself; i.e., that students would be able to understand the importance that Science has in their lives and, hence, the importance of studying science (relevance) (Holbrook 2008). Another goal was that students would experience enjoyment in developing the proposed activities, leading them to wonder more about a topic and to want to develop more activities such as the ones proposed within PARSEL (popularity) (Holbrook 2008). In addition, PARSEL aimed at developing complex cognitive competencies, as well as social, communication and attitudinal competencies, among others. Taking these goals into consideration, modules present certain specific characteristics. Firstly, they were meant to be joyful and meaningful, and to promote involvement and arousal in students. Secondly, the proposed activities (such as experimentation, discussion and argumentation, role-playing, investigation activities, mathematical modulation, texts reading and analysis, graphs reading and interpretation, writing reports, questionnaire construction, among others) involved a practical component, were student centered and involved questioning and manipulation and an element of problem solving and decision making. Finally, two further important characteristics of the modules were: contextualization of the activities and linking school science with socio-scientific issues. These are main ideas underlying the three stage model the idea that all learning should be contextualized and that it is essential to establish a clear link between science and society, as a means to increase interest. Thus, the modules begin with a social theme, linked to daily lives of students (Stage 1. Scenario construction). The theme will then be analyzed through scientific procedures and using knowledge and scientific concepts (Stage 2. Inquiry-based problem solving stage), leading students to make a decision concerning the initial topic (Stage 3. Socio-Scientific Decision Making). As modules are not primarily chosen considering students interests but its suitability to curriculum (as evaluated by the teacher), the scenario construction plays an important role in activating students interest with the theme. This is a very important stage for teachers to create certain conditions that enact students interest about a topic. Our general literature review shows that the teacher can play a key role in expanding students understanding about the relevance of the topic for their own learning (Lavonen et al. 2008). Also, the teacher can play a key role in illuminating the personal relevance of the topic, by allowing students to relate it to personal experiences (Waden 2001), or to relate it to daily issues, their needs and their social and physical contexts (Schraw et al. 2001; Trumper 2006). The teacher s role at this stage is even more important for capturing students interest, as often students reactions to certain topics are not based on informed choices; i.e., students are not interested in a topic because they do not understand its importance to aspects of their life or because they do not understand the importance of certain concepts or scientific procedures to highlight certain phenomena (Jenkins and Nelson 2005). After this stage, students are supposed to implement the activity in order to answer the initial raised question (Stage 2). One important characteristic is that activities should have a clear objective in the eyes of students, who should be able to see a purpose in activities that they are developing, i.e., they should realize that they are developing the activity in order to solve a problem and that the reached solution will facilitate their decision-making concerning the initial problem. Developing activities in order to solve a relevant problem, for which students do not know the answer, confers authenticity and meaning to the activities, which is extremely important to engage students with science learning (Koballa and Glynn 2007). Finally, the last stage consists in making a decision based on the evidence collected in stage 2. This is also a very important moment, as in order to make a socio-scientific decision, students have to communicate evidence collected from their previous actions, to

4 present their positions, to discuss and to argue, all essential steps for helping students to consolidate ideas and to construct new meanings (Abell et al. 2000). In addition, when students present and explain their positions to others (peers and the wider school community), they develop not only complex cognitive competences but communication and social competences as well. Methodology In order to know how students evaluate innovative PARSEL s modules we used a quantitative methodology, through the application of a questionnaire. In order to gain a deeper understanding of students evaluation, we complemented the quantitative data with qualitative data collected by way of interviews and written documents. Sample All participant students (n=134) were following science curricula and most of them wanted to pursue studies within scientific areas. The students, who were distributed among different secondary school grades (from 10th to 12th grade), came from four different schools, one of which has a private school, where students come from a high social and economic class. The other schools receive students from low and average social classes. One of the teachers implemented the modules in a chemistry class that was part of a program of special education and training. These are special classes designed for students aged 15 years or older, who are at risk of dropping out of school (Law nº. 453/ 2004). All classes were formed by a similar number of male and female students, except the class from the program of special education and training, which was just composed of ten male students. One important characteristic of PARSEL was to facilitate teachers ownership of the modules. So after being introduced to all the modules, teachers were encouraged to choose those modules that they thought were more adequate to curriculum and to students interests and characteristics. As teachers were teaching different science subjects and school grades, they choose to implement different modules. Some of the teachers implemented more than one module and students had to fill out one questionnaire per module. In all, 207 questionnaires were analysed. In this study there were five teachers involved. Four of them had a formal connection with the Institute of Education, either because they were studying for their PhD in the area of science education (three of the teachers), or they had been studying for their master s degree (one of the teachers). All of them had graduated in either geology or chemistry (Table 1). Next we will describe the modules that were used by the teachers and for which the students appreciated (for a fuller description, see Modules Characterization A Big Problem for Magellan: Food Preservation. (Food Preservation) The objective of this module is to learn more about food preservation. For that, students will read texts, search for information on the web, develop an investigation activity about food preservation and present their findings and communicate them to the whole class.

5 Table 1 Characterization of teachers Name of teachers Initial training Academic degree Modules implemented Subject School level Alice Geology Science Education Master (still to be concluded) Margaret Physics and Chemistry Food Preservation Biology 12th Milk Science education master Energy losses Chemistry 12th from a second Science education Ph.D (still to be concluded) Analysis of news Trip to Mars Cigarettes chance programme Oscar Chemistry Science education master Zero emission Chemistry 10th and 11th Science education Ph.D (still to be concluded) Driving 50 not 60 Energy losses Saul Geology Science education master Food preservation Biology 12th Science Education Ph.D (still to be concluded) GMO Lara Chemistry Graduation in chemistry Electricity bill Chemistry 11th Analysis of a Journal Article and/or Magazine News (Analysis of News) The objective of this module is to facilitate comprehension of the possible tensions that often surround scientific enterprise and technology and impact society. To promote this comprehension, students will collect newspaper or magazine news stories related to controversial issues in Science, Technology, Society and Environment. They will analyse newspaper or magazine news stories by taking into consideration some critical points, present their analyses to the class, and discuss the main ideas with peers. How Can We Avoid Energy Losses in Our School? (Energy Losses) In this module, students are to investigate how their school manages energy use, in order for the school to remain warm during the winter and cool during the summer. For that, students will develop a plan for resolving the initial problem (How can we avoid energy losses in school?), identify places and equipments from where energy losses or gains might occur, during winter as during summer, and search for relevant information. Based on their research, students will suggest a number of actions for reducing energy transference, they will develop a pamphlet or a model about ways to render school energetically efficient and they will present it to the school community. Shall We Create New Organisms?(GMO) The objective of this module is to evaluate the impact of different applications of genetic engineering on our society, with the aim of deciding on the allocation, or not, of a large funding for research in this field. For that, students will have to search for information on the web, analyse information concerning their initial questions, write an individual report where they present their decisions and their arguments, work in group to make a decision

6 concerning allocation of funding for research in the field, present their decision to the class, and defend their ideas and discuss other s ideas and arguments. Planning a Space Trip to Mars (Trip to Mars) The objective of this module is to facilitate reflection on environmental issues, namely on the need to adequately manage environmental resources in order to survive. For that, students are expected to search for information on the website, analyse information concerning their initial questions, write an individual report where they present their decisions and their arguments, work in groups to make an overall plan of the trip to Mars, present their proposed plan to the class and defend their ideas and discuss other s ideas and arguments. How Happy are You and Your Family with the Electricity Bill? (Electricity Bill) This module leads to a decision making activity, designed to consolidate learning about consuming energy, and energy saving, taking examples from everyday life and to introduce the concept of power. It involves the reading of an electricity bill and checking that the calculation of the bill is correct and the construction and application of a questionnaire concerning habits of energy consumption. It introduces students to the (kilo)watt as a unit of power and the kilowatt hour as the unit used in the home for energy consumption. It Wouldn t Do Any Harm to Drive 60 km/h in a City Instead of 50 km/h Would It?(Driving 50 not 60) This module involves a series of student centred activities that engages groups of students to apply modelling tools in relation to braking distances of cars. It will allow them to construct their own rules of thumb in relation to driving within a safe distance. Milk Keep Refrigerated (Milk) In this module, students get to know the composition of milk and various kinds of milk. Furthermore they study and understand the role of acidity in the spoiling/turning sour of milk, as well as the effect of temperature on increasing of the acidity of milk. In addition, students prepare yogurt at home. Finally, a distinction is made between healthy food and non-healthy food products. Should Zero Emission Cars be Made Compulsory Is It Feasible? (Zero Emission) This module involves a set of activities that allows students to consider factors which need to be considered if a car is to give zero emission (or the emission of water vapour only). The module is planned so that students suggest the scientific learning they need to understand about hydrogen and how fuel cells have a potential advantage over hydrogen itself, once the technology has been developed. The discussion centres around the feasibility of a zero emission car given the many social factors involved and the properties of hydrogen. What is Worse, Cigarettes or Narghile? (Cigarettes) This module describes laboratory activities that examines the chemical process of smoking and the components of smoke, of both cigarettes and water-pipes (narghiles also known as

7 hookah ). The aim of this activity is to expose adolescents to the scientific findings related to smoking and to present the relevance of chemistry in everyday life situations. [This module was adapted for the Portuguese culture and so narghile was not considered.] Data Collection This study is part of a larger study aimed at collecting evidence of the effectiveness of implementation of these modules from the perspective of both students and teachers. In the present paper we consider only the perspective of the students. For analysing students evaluation of the modules, we used mainly inquiry by questionnaire, which was complemented by an interview with a few students. Besides these methods, we collected written documents (students papers and written comments about the modules). Finally, one of the researchers carried out participant observation of one of the modules (Food Preservation) during four lessons. The questionnaire was applied to all participating students at the end of each module and the interviews were carried out with only four students, from a 12th grade class. Lack of agreement either from the school or parents, as well as time constraints, explain such a small number of interviewed students. Questionnaires, developed by the PARSEL group, were composed of 30 items, which students had to answer by selecting one of the following options: totally agree, partially agree, partially disagree or totally disagree. The main goals of the questionnaire were to understand: 1) Students overall evaluation of the modules, concerning cognitive and affective dimensions; 2) Students perceptions about the process of implementation and about the characteristics of the modules. Students were interviewed in groups of two, after the implementation of the modules GMO and Food Preservation. As the researcher had carried out a participant observation for the module Food Preservation during four lessons, she was already familiar with interviewed students and she was able to question them concerning specific issues of implementation. Interviewees were recommended by their science teacher, considering their gender (two males and two females), their performance in science classes (high versus low achieving students) and also taking into consideration their ability to reflect and to express their opinions and positions. According to the teacher, their demographic as well as academic characteristics were representative of the class. Interviews were open ended (and lasted for about 1 h), and the main goal was to gain further understanding of the students experience with the modules and their evaluation of the modules relevance and popularity, achieved learning goals, and the modules impact on students vision of science and science classes, as well as the students overall perception of science. Data Analysis In order to analyse all 30 items presented in the questionnaire, a Principal Components Analysis, followed by Varimax Rotation, was used (KMO=0.80), from which eight components were extracted (61% of the variance explained). To establish the internal consistency of each factor, the Cronbach s alpha coefficient was computed for each component. Any items that substantially reduced the homogeneity of each factor were subsequently removed. As a result, three items were removed from the analysis, leaving in a 27 item-instrument structured into eight components that were considered indicative of the following dimensions: Promotion of Cognitive Competencies (structured by five items; α=0.73); Engagement with the Module (mainly structured by six items; α=0.77); STS Relation (structured by four items, α=0.79); Development of an Interventive Attitude

8 (structured by three items, α=0.73); Teacher Feedback (structured by three items, α=0.75); Rhythm of the Module (structured by two items, α=0.69); Importance of Experimental Work (structured by two items, α=0.60); Relevance of the Social Topic (structured by two items, α=0.35). Table 2 presents the items in each scale with their corrected item-total correlations. As the internal consistency of the first six dimensions was acceptable, a score for each student was computed for each dimension (i.e. the average of the answers for all the structural items of the dimension) as a measure of the student s opinion about the modules. These computed scores were compared between the different modules by a Kruskall-Wallis analysis, followed by a post-hoc Dunnett s Test for unequal variances. Statistical analysis was performed using the computer program SPSS for Windows (Ver.16.0, SPSS Inc.). For analysing qualitative data, arising from interviews and written documents, we used a method of content analysis. Through an iterative process, of reading and re-reading data (Milles and Huberman 1994), we assigned meaningful pieces of text to previously defined categories (relevancy and popularity, enacted learning, modules impact on students vision of science and science classes, and their overall perception of science). Results In general, the great majority of students gave a very favourable evaluation of the modules tested (see Table 3). Although there was some heterogeneity among the students opinions, with the answers ranging from fully agree to fully disagree, in general the patterns were very similar within dimensions, and even between them, with more than 80% to 90% of students agreeing with the majority of the statements. The students fully appreciated the activities (Engagement with the Module dimension, mean value = 2, partly agree, see Table 3), and they experienced the promotion of some cognitive competencies like critical thinking, reasoning and a better understanding of science and technology (Promotion of Cognitive Competencies dimension, mean value = 2, partly agree, see Table 3). Data from interviews is consistent with these findings. One male student defined the modules as: They make us engaged. We learn in a different way. We became more motivated to learn some science content. In general, the interviewed students mentioned that they appreciated the modules and pointed out the possibility for doing research work, and having to discuss and to argue with others in order to defend a position. Commenting on one of the modules, a female student explained her position: What we liked the most was the discussion between the groups and the fact that some of us were against and the others of us in favour of a position. We had to make the others change their mind about the issues regarding topic. (Group interview) One female student, commenting on the discussion, wrote: it was a very interesting and stimulating moment. We could really see the way they work in the scientific world. We were able to recognize that it is not a simple thing to reach a conclusion and make a decision about such important and polemic themes. (Written document) Learning was another much valued issue in the interviews. Students liked the modules because they thought that they learned things. For instance, one female student reflected on what she learned with the module, We learned about genetically modified organisms. I

9 Table 2 Items structuring student perception dimensions, reliabilities and corrected item-total correlations Dimension α Items Corrected itemtotal correlations Promotion of cognitive competencies Engagement with the module 0.73 Q.05 [Having to think a lot makes science more interesting] 0.33 Q.15[I liked the discussion leading to making a socio-scientific 0.54 decision] Q.17[I believe the discussions in this module were relevant for 0.54 improving my reasoning skills] Q.18 [Knowing why I was studying the science in this module made me understand the importance of learning science for my daily life] 0.58 Q.26 [This module provided me with opportunities to get answers to my questions] 0.77 Q.02 [I wish I could study more modules like this one] 0.62 Q.03[The tasks given to me through studying this module were 0.65 interesting] Q.04 [This module made me think a lot] 0.49 Q.08 [Studying more modules like this one would make science 0.39 learning more useful for my life] Q.21 [This module provided me with opportunities to participate in 0.52 activities] Q.28[With this module I was able to plan and develop my own experiments] 0.43 STS relation 0.79 Q.09 [The social issue helped me to know why I needed to study the 0.53 science] Q.10 [I solved practical scientific problems, related to everyday issues] 0.55 Q.11 [Solving practical scientific problems, related to everyday 0.68 issues, can be important and useful for my life] Q.12 [The tasks given to me during the studying of this module allowed me to learn scientific knowledge that is useful for my daily life] 0.67 Development of an interventive attitude 0.73 Q.23 [This module encouraged me to share ideas with my friends] 0.51 Q.24 [This module helped me to be critical about scientific news in 0.54 the media] Q.25 [This module encouraged me to ask questions] 0.60 Teacher feedback 0.75 Q.07 [Feedback from the teacher in class made the study of sciences 0.52 more interesting] Q.14 [Feedback from the teacher in class made me understand the 0.64 importance of learning science for my daily life] Q.16 [The teacher introduced the module in a manner which I came to 0.58 understand the importance and usefulness of science for my daily life] Rhythm of the module 0.69 Q.06 [The pace of teaching this module was so fast that it made my 0.53 learning difficult] a Q.13 [The pace of lessons in studying this module did not make the topic interesting] a 0.53 Importance of experimental work Relevance of the social topic a Inverted item 0.60 Q.29 [Planning my own experiments made me appreciate the 0.44 importance and usefulness of the science for my everyday life] Q.30 [I like to devise experiments] Q.01 [Science learning is useful and important when it involves a discussion of a social issue that includes a science component] Q.20 [This module showed me the importance of science for decision making about social issues]

10 Table 3 Descriptive measures of the computed scores Dimension n Average SD Range Promotion of cognitive competencies Engagement with the module STS relation 207 1, Development of an interventive attitude 207 1, Teacher feedback 207 1, Rhythm of the module a 207 2, Each score could vary between 1 (fully agree) and 4 (fully disagree) a Inverted item didn t know much about it. Now, I can make a decision based on my knowledge, for instance when I hear news on TV about the GMO. Another female student, reflecting on the modules, mentioned that we have been born within a certain state of affairs, about which we have little concern. But I think that these modules may help us think about all those things that make up our lives, they will help us question those things. The importance of science and of science classes for understanding the students daily reality was another issue that emerged from the questionnaires. Indeed, students stressed the interaction between the activities performed and the understanding of the importance of science, both in general and for their daily life (STS Relation dimension, mean value = 1, fully agree, see Table 3). Concerning the relevance of science, one of the male students stated that: We were taught certain subjects, certain methods and we started to acknowledge that all that we have at home comes from science That is why we have so much comfort at home. This is a lifestyle completely different from the old times. (Group interview) Finally, the questionnaire analysis revealed that almost all students (99 100%) agreed about the importance of the inclusion of a social problem in the activities (Relevance of the Social Topic dimension). Concerning students personal attitudes, they felt that the activities changed their will to participate in society, referring to the fact that they became more critical about actual scientific issues and more secure to share and discuss their opinion with others (Development of an Interventive Attitude dimension, mean value = 2, partly agree, see Table 3). As one male student explained in the interview, In the case of genetically modified organisms, we know more details about different opinions public opinion, specialized opinions And that make us more critical ( ). This topic is extremely useful nowadays and it will be further useful in the future with all the technological evolution. So it is extremely significant that we can make up our mind concerning this topic. In that sense, this module was important for us. (Group interview) Concerning the development of the classroom activities, students stressed the importance of the teachers behaviour for success (Teacher Feedback dimension, mean value = 2, partly agree, see Table 3), and they felt that the rhythm of the activities was all right (Rhythm of the Module dimension, mean value = 2, partly disagree, see Table 3). Lastly, the questionnaire analysis highlighted the importance for students to plan their own experiments (Importance of Experimental Work dimension) (99 100% agree).

11 This was another salient issue in the interview. Students stressed positively the practical character of the activities (namely, having to plan and to decide about a course of action). One female student explained her position on an aspect of one of the modules. [I liked] the experiment part. Manipulating the food and then planning [an experiment] and then having to make conclusions. Additionally, one of the male students stressed in the interview the type of learning that arose from the possibility of taking full responsibility for planning and implementing an experimental activity. By implementing an experiment we started to understand the methods that the scientists use and we were not used to it. We had to plan and to implement our own experimental plan, something that we were not expecting to do. We are used to starting with a ready-made experimental plan and, then, having to implement it. But now we started to understand the difficulties that the scientists also have in posing questions, in identifying problems and in solving problems. They have to develop new plans; they have to be constantly changing old practices and plans. They realize that some procedure is not perfect and they have to change. We acknowledged that it is a very demanding work. (Group interview) Finally, mention should be made of the collaborative process involved in solving a socio-scientific problem. The students felt that it was not only important for facilitating the development of communication and argumentation competencies, but also for facilitating learning. According to one female student, I think that when we develop cooperative work, if someone does not understand something, there is always another member of the group who understood and who can help explain it. That person will explain differently from the teacher and in a certain way he will be able to make us understand. (Group interview) Another student pointed to the joyful dimension of collaborative work. I think that working in groups and the fact that so many professions (doctor, vet, farmer, environmentalist, animal rights activist) were involved, made the work more dynamic and fun, as each of us had to face his/her profession. And this made us more conscious about the different positions and interests included in the theme. (Written document of a male student) Considering the comparison of the students evaluations between the different modules tested (Table 4) (Kruskall-Wallis Analysis: χ 2 =51.63, df=9, p<0.001 for Promotion of Cognitive Competencies dimension; χ 2 =82,59, df=9, p<0.001 for Engagement with the module dimension; χ 2 =35,86, df=9, p<0.001 for STS relation dimension; χ 2 =45,27, df=9, p< for Development of an interventive attitude dimension; χ 2 =62,18, df=9, p<0.001 for Teacher feedback dimension; χ 2 =32,47, df=9, p<0.001 for Rhythm of the module dimension), there were three modules that stood out: Trip to Mars, Analysis of News and Cigarettes. The first two modules were fully appreciated by the students, presenting the lowest score (fully agree) in all considered dimensions. On the contrary, the third module presented the higher score (fully disagree) for the Engagement with the Module dimension and the lowest score (fully agree) for the Rhythm of the Module dimension. However, in this module, the Teacher Feedback dimension revealed a very positive appreciation by the students. It should be noted that these three modules were only implemented with the class from the special education and training program which was composed of just 10 students. Thus, the findings related to the evaluation of these particular modules should be interpreted with caution.

12 Table 4 Descriptive measures of the computed scores for each module (n=207) Module Dimension Average SD Range GMO Cognitive competencies Engagement with the module STS relation 1, Interventive attitude 1, Teacher feedback 1, Rhythm of the module a 2, Food preservation Cognitive competencies Engagement with the module STS relation 1, Interventive attitude 2, Teacher feedback 2, Rhythm of the module a 2, Trip to Mars Cognitive competencies Engagement with the module STS relation Interventive attitude Teacher feedback Rhythm of the module a Analysis of news Cognitive competencies Engagement with the module STS relation Interventive attitude Teacher feedback Rhythm of the module a Energy losses Cognitive competencies Engagement with the module STS relation Interventive attitude Teacher feedback Rhythm of the module a Milk Cognitive competencies Engagement with the module STS relation Interventive attitude Teacher feedback Rhythm of the module a Electricity bill? Cognitive competencies Engagement with the module STS relation Interventive attitude Teacher feedback Rhythm of the module a Cigarettes Cognitive competencies Engagement with the module STS relation

13 Table 4 (continued) Module Dimension Average SD Range Interventive attitude Teacher feedback Rhythm of the module a Zero emission Cognitive competencies Engagement with the module STS relation Interventive attitude Teacher feedback Rhythm of the module a km/h not 60 km/h Cognitive competencies Engagement with the module STS relation Interventive attitude Teacher feedback Rhythm of the module a Each score could vary between 1 (fully agree) and 4 (fully disagree) a Inverted item Concerning the module Cigarettes, the majority of students seemed to consider it difficult to understand (80%) and saw it as a closed activity, giving them little autonomy. This attitude was reflected by their disagreement with the following statements: This module provided me with opportunities to participate in activities (100% disagreement), This module made me think a lot (100% disagreement), This module provided me with opportunities to get answers to my questions (80% disagreement), and With this module I was able to plan and develop my own experiments (80% disagreement). The other two modules (Trip to Mars, Analysis of News) were not only popular with the students but they also seemed to have been considered relevant for their lives, as evidenced by the total agreement (100% of the students) with the statements: The tasks given to me during the studying of this module allowed me to learn scientific knowledge that is useful for my daily life ; Studying more modules like this one would make science learning more useful for my life ; The social issue helped me to know why I needed to study science ; Solving practical scientific problems, coming from everyday issues, can be important and useful for my life. This idea that science learning can be useful for their life is also evident in the written report concerning the module Analysis of News. One male student expressed his willingness to share with his father what he learned in science classes concerning radioactivity. I also learned about Radon gas. My father is from Guarda (an inner Portuguese town) and I have to tell him some things about granite. (Written document) Discussion Evidence collected for this study is consistent with the recent literature concerning the importance of developing contextualized and meaningful activities in the eyes of the students for increasing interest (Lavonen et al. 2008; Osborne and Collins 2001; Schraw et

14 al. 2001; Swarat 2008). Indeed, the relevance of the modules was a salient issue in the students evaluations. Understanding why it is important to study certain science topics and the usefulness of science for their daily lives and for the promotion of a more critical participation in society, were some of the dimensions much emphasised by the students. But, it was not only the nature of proposed activities that increased students interest; the teachers also played an important role. Indeed, teachers chose modules for the students, and so they were not based on the students explicit interests. In this way teachers played a key role in stimulating students interest by contextualizing the studied topics and linking science with social issues so as to highlight the importance of science for understanding the social issue (as had been pointed already by Jenkins and Nelson 2005; Lavonen et al. 2005; Osborne and Collins 2001). Especially in this study, the students answers to all questions related to the dimensions of Teacher Feedback and Relevance of the Social Topic reveal that the strategy used by the teacher to implement the modules was a crucial issue in promoting the students interest in the studied topics. One other issue that emerged from data concerns popularity. Modules were perceived as popular which involved practical activities based on problem solving and involving planning, decision making and discussion. But more than that, despite accounting for a modules popularity, these characteristics of the modules also promoted the development of critical thinking and reasoning, which were seen as important issues in the eyes of the students. Indeed, students appreciated most the activities that had a practical character as well as those that involved higher order thinking skills. This point was made particularly clear with the module that had a more prescriptive character (Cigarettes). According to the students, this module limited their autonomy in planning and decision making and even in the kind of interpretations they were allowed to make, and it was not perceived as favourably as the other modules. The research literature is rich in evidence supporting the importance of developing hands on activities for enacting meaningful learning and for motivating and engaging students in science and science classes (Holstermann et al. 2009). However, another dimension has been emphasised: minds on. For the kind of finality one wants for science education it is not enough to develop practical activities (hands on), which do not involve higher order thinking and reasoning (Abell et al. 2000; Bybee 2006; Hofstein and Lunetta 2003; Wheeler 2000). This minds on dimension is reflected in the implemented activities that involve decision making, discussion, taking on different roles, argumentation, justification, explanation and interpretation. By developing all these actions, students are required to think critically, to take deeper looks at issues and, as a consequence, they also are required to develop more complex visions of socio-scientific topics. Additionally, all of these minds on related issues were shown to be associated with increased interest in school science themes. Another important issue concerns the students vision of science. These students, who were already familiar with science and were following science curricula, seemed to consider science as a body of distant, de-contextualized facts not related to everyday life. In this work, they mentioned that science became a more familiar process that they can use in their daily activities of producing and negotiating meaning, a process that impregnates their lives. Students accounts suggest that they began to recognize many life situations as involving science and technology, and that they developed an awareness of the complex interactions among science, technology, and society. Developing this kind of understanding about science and about scientific knowledge is an important goal of science education nowadays, as it allows students (future citizens) to act responsibly and to take part in decisions concerning societal and scientific issues (Millar and Osborne 1998). The current aim of scientific literacy in science education not only involves facilitating knowledge of key concepts, but also understanding scientific inquiry as a human enterprise (DeBoer

15 2000; Ryder 2001) and understanding science as an interplay of competing ideas instead of one unique, correct and non-controversial set of theories (Millar and Osborne 1998). According to Millar and Osborne (1998), this image of the scientific enterprise and of science may contribute to the development of a deeper understanding and appreciation of science. This relation was clear in some of the students answers, for whom the experience with the complexity inherent in scientific enterprise made them more conscious about science and about the nature of scientific knowledge and enhanced their appreciation of science and of school science. Conclusion Considering the present sample of students evaluation of the given modules, we emphasize two points that stand out from the data: (a) The importance of providing students with the opportunity for planning empirical experiments and/or researching theoretical evidence, in order to find an answer to one specific problem related to everyday life. (b) The importance of promoting students engagement in discussion tasks, where they can question and argue with peers, based on evidences obtained and researched by them. Although these results are based on a small local sample, they are consistent with other studies (e.g. Lyons 2006; Osborne and Collins 2001). This consistency strengthens the idea that curriculum proposals which are based on methodologies that promote student engagement by stimulating their scientific thinking skills, are seen by the students as worthwhile. These results should be seen by the teachers as an indication that the science curriculum has to be understood not only in terms of content knowledge to be assimilated by students, but especially it has to integrate new forms of teaching and learning that take into account the European recommendations, that stress, among other important points, the introduction of inquiry-based approaches (European Commission 2007) and the importance of facilitating students active intellectual engagement and the creation of situations that facilitate personal and meaningful knowledge construction mediated by social interaction (European Commission 2004). This indication is particularly important for Portuguese teachers, who are often somewhat reluctant to change their practices, citing the difficulties related to the broad expanse of the science curriculum and students negative attitudes toward science. However, the results of this study show exactly the opposite. The curriculum is better managed with integrative activities that appeal to different types of knowledge and competencies. In addition, students attitudes concerning school science are directly related to the creation of stimulating learning environments that provide students with challenging problems and that facilitate the construction of personal meaning in learning science. Acknowledgements Part of this study was supported by the European Commission (6th FWP) as part of the Project PARSEL Popularity and Relevance of Science Education and Scientific Literacy. References Abell, S. K., Anderson, G., & Chezem, J. (2000). Science as argument and explanation: Inquiring into concepts of sound in Third grade. In J. Minstrell & E. van Zee (Eds.), Inquiry into inquiry learning and teaching in science (pp ). New York: American Association for the Advancement of Science. Autio, O., Kaivola, T., & Lavonen, J. (2007). Context-based approach in teaching science and technology. In E. Pehkonen, M. Ahtee, & J. Lavonen (Eds.), How Finns learn mathematics and science. Rotterdam: SensePublishers.

16 Bybee, R. W. (2006). Scientific inquiry and science teaching. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 1 14). Dordrecht: Springer. DeBoer, G. E. (2000). Scientific literacy: another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37, European Commission (Ed.). (2004). Europe needs more scientists. Report by the High Level Group on Increasing Human Resources for Science and Technology in Europe. Brussels: Author. European Commission (Ed.). (2007). Science education now: A renewed pedagogy for the future of Europe. Report by the High Level Group on Science Education. Brussels: Author. Hofstein, A., & Lunetta, V. N. (2003). The laboratory in science education: foundations for the twenty-first century. Science Education, 88(1), Holbrook, J. (2008). Introduction to the Special Issue of Science Education International devoted to PARSEL. Science Education International, 19(3), Holstermann, N., Grube, D., & Bögeholz, S. (2009). Hands-on activities and their influence on student interest. Research in Science Education. doi: /s Jenkins, E. W., & Nelson, N. W. (2005). Important but not for me: students attitudes towards secondary school science in England. Research in Science & Technological Education, 23(1), Juuti, K., Lavonen, J., Uitto, A., Byman, R., & Meisalo, V. (2009). Science teaching methods preferred by grade 9 students in Finland. International Journal of Science and Mathematics Education, 8, Koballa, T. R., & Glynn, S. M. (2007). Attitudinal and motivational constructs in science learning. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp ). New Jersey: Erlbaum. Lavonen, J., Byman, R., Juuti, K., Meisalo, V., & Uitto, A. (2005). Pupil interest in physics: a survey in Finland. Nordina, 2, Lavonen, J., Byman, R., Uitto, A., Juuti, K., & Meisalo, V. (2008). Students interest and experiences in physics and chemistry related themes: reflections based on a ROSE-survey in Finland. Themes in Science and Technology Education, 1(1), Lyons, T. (2006). Different countries, same science classes: students experiences of school science in their own words. International Journal of Science Education, 28(6), Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. London: Kings College. Milles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks: Sage. Murphy, C., & Beggs, J. (2003). Children s perceptions of school science. School Science Review, 84(308), Osborne, J., & Collins, S. (2001). Pupils views of the role and value of the science curriculum: a focusgroup study. International Journal of Science Education, 23(5), Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. King s College London: The Nuffield Foundation. Palmer, D. (2009). Student interest generated during an inquiry skills lesson. Journal of Research in Science Teaching, 46(2), Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36, Schraw, G., Flowerday, T., & Lehman, S. (2001). Increasing situational interest in the classroom. Educational Psychology Review, 13(3), Schreiner, C., & SjØberg, S. (2004). ROSE The relevance of science education. Oslo: Department of Teacher Education and School Development of University of Oslo. Swarat, S. (2008). What makes a topic interesting? A conceptual and methodological exploration of the underlying dimensions of topic interest. Electronic Journal of Science Education, 12(2), Trumper, R. (2006). Factors affecting junior high school students interest in biology. Science Education International, 17(1), Waden, S. E. (2001). Research on importance and interest: implications for curriculum development and future research. Educational Psychology Review, 13(3), Wheeler, G. F. (2000). The three phases of inquiry. In J. Minstrell & E. van Zee (Eds.), Inquiry into inquiry learning and teaching in science (pp ). Washington: Corwin Press.

Students Attitude towards Science and Technology

Students Attitude towards Science and Technology Students Attitude towards Science and Technology Najafi, Mohammad PhD, Dept. of Education, Faculty of Educational Sciences and Psychology, University of Isfahan, Isfahan, Iran. Ebrahimitabass, Ebrahim,

More information

Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy

Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy Kindergarten to Grade 4 Manitoba Foundations for Scientific Literacy The Five Foundations Manitoba Foundations for Scientific Literacy To develop scientifically literate students, science learning experiences

More information

Wanngam Marakrong Khon Kaen University, Thailand <ao_uki@hotmail.com> Chokchai Yuenyong Khon Kaen University, Thailand <ychok@kku.ac.

Wanngam Marakrong Khon Kaen University, Thailand <ao_uki@hotmail.com> Chokchai Yuenyong Khon Kaen University, Thailand <ychok@kku.ac. ENHANCING THAI STUDENTS SCIENTIFIC LITERACY IN LEARNING ABOUT WORLD PHENOMENON AND SPACE TECHNOLOGY THROUGH YUENYONG (2006) SCIENCE TECHNOLOGY AND SOCIETY (STS) APPROACH Wanngam Marakrong Khon Kaen University,

More information

Critical Inquiry in Educational Research and Professional Practice

Critical Inquiry in Educational Research and Professional Practice DOCTOR IN EDUCATION COURSE DESCRIPTIONS A. CORE COURSES NEDD 800 Professionalism, Ethics, and the Self This introductory core course will explore and interrogate ideas surrounding professionalism and professionalization.

More information

A Study of Iranian Students Attitude towards Science and Technology, School Science and Environment, Based on the ROSE Project

A Study of Iranian Students Attitude towards Science and Technology, School Science and Environment, Based on the ROSE Project A Study of Iranian Students Attitude towards Science and Technology, School Science and Environment, Based on the ROSE Project Azizollah Arbabi Sarjou Zahedan School of Nursing and Midwifery, Zahedan University

More information

Year 2 Evaluation of the Connecticut Clean Energy Climate Solutions Project

Year 2 Evaluation of the Connecticut Clean Energy Climate Solutions Project Year 2 Evaluation of the Connecticut Clean Energy Climate Solutions Project Submitted to Clean Air-Cool Planet Prepared by Rucha Londhe, Ph.D. Irene F. Goodman, Ed.D. Margaret Tiedemann, B.A. October 2008

More information

Student s Video Production as Formative Assessment

Student s Video Production as Formative Assessment Student s Video Production as Formative Assessment Eduardo Gama 1, Marta F. Barroso 2 1 Colégio Pedro II, Rio de Janeiro, Brazil 2 Universidade Federal do Rio de Janeiro, Physics Institute, Rio de Janeiro,

More information

Science teachers pedagogical studies in Finland

Science teachers pedagogical studies in Finland 1 Science teachers pedagogical studies in Finland Jari Lavonen Summary An overview of planning, organising and evaluating of science teachers pedagogical studies in Finland is given. Examples are from

More information

PROFESSIONAL DEVELOPMENT: A VISION FOR SAUDI SCIENCE TEACHERS

PROFESSIONAL DEVELOPMENT: A VISION FOR SAUDI SCIENCE TEACHERS PROFESSIONAL DEVELOPMENT: A VISION FOR SAUDI SCIENCE TEACHERS Hiya Almazroa Pringcess Noura Bint Abdulrahman University, Saudi Arabia Abstract: Professional development is a significant mechanism for maintaining

More information

THE SOCIETAL COMPONENT IN A MODEL OF RELEVANCE IN SCIENCE EDUCATION

THE SOCIETAL COMPONENT IN A MODEL OF RELEVANCE IN SCIENCE EDUCATION THE SOCIETAL COMPONENT IN A MODEL OF RELEVANCE IN SCIENCE EDUCATION Marc Stuckey 1, Jan Sperling 1, Rachel Mamlok-Naaman 2, Avi Hofstein 2 and Ingo Eilks 1 1 Dep. of Biology/Chemistry, Institute of Science

More information

AN INNOVATIVE INTEGRATED MATHEMATICS, SCIENCE, AND TECHNOLOGY EDUCATION TEACHER CERTIFICATION PROGRAM: CHARACTERISTICS AND FORMATIVE EVALUATION

AN INNOVATIVE INTEGRATED MATHEMATICS, SCIENCE, AND TECHNOLOGY EDUCATION TEACHER CERTIFICATION PROGRAM: CHARACTERISTICS AND FORMATIVE EVALUATION AN INNOVATIVE INTEGRATED MATHEMATICS, SCIENCE, AND TECHNOLOGY EDUCATION TEACHER CERTIFICATION PROGRAM: CHARACTERISTICS AND FORMATIVE EVALUATION Donna F. Berlin and Arthur L. White The Ohio State University,

More information

Measuring the response of students to assessment: the Assessment Experience Questionnaire

Measuring the response of students to assessment: the Assessment Experience Questionnaire 11 th Improving Student Learning Symposium, 2003 Measuring the response of students to assessment: the Assessment Experience Questionnaire Graham Gibbs and Claire Simpson, Open University Abstract A review

More information

Research into competency models in arts education

Research into competency models in arts education Research into competency models in arts education Paper presented at the BMBF Workshop International Perspectives of Research in Arts Education, Nov. 4 th and 5 th, 2013. Folkert Haanstra, Amsterdam School

More information

Standards for Certification in Early Childhood Education [26.110-26.270]

Standards for Certification in Early Childhood Education [26.110-26.270] I.B. SPECIFIC TEACHING FIELDS Standards for Certification in Early Childhood Education [26.110-26.270] STANDARD 1 Curriculum The competent early childhood teacher understands and demonstrates the central

More information

Students' Interests and Decision-Making in the Learning of "Social Impact of Technology"

Students' Interests and Decision-Making in the Learning of Social Impact of Technology Students' Interests and Decision-Making in the Learning of "Social Impact of Technology" Jun Moriyama Ph.D, Hyogo University of Teacher Education, Hyogo, Japan junmori@life.hyogo-u.ac.jp Kentaro Shiratani

More information

Building tomorrow s leaders today lessons from the National College for School Leadership

Building tomorrow s leaders today lessons from the National College for School Leadership Building tomorrow s leaders today lessons from the National College for School Leadership If you re looking for innovative ways to engage your would-be leaders through gaming and video role play, the National

More information

OMANI SCIENCE TEACHERS USE OF COOPERATIVE WORK IN BASIC EDUCATION SCHOOLS

OMANI SCIENCE TEACHERS USE OF COOPERATIVE WORK IN BASIC EDUCATION SCHOOLS 8 OMANI SCIENCE TEACHERS USE OF COOPERATIVE WORK IN BASIC EDUCATION SCHOOLS Ali Huwaishel Al-Shuaili Sultan Qaboos University, Oman E-mail: alshuaili@squ.edu.om Abstract The aim of this study is to explore

More information

Jean Chen, Assistant Director, Office of Institutional Research University of North Dakota, Grand Forks, ND 58202-7106

Jean Chen, Assistant Director, Office of Institutional Research University of North Dakota, Grand Forks, ND 58202-7106 Educational Technology in Introductory College Physics Teaching and Learning: The Importance of Students Perception and Performance Jean Chen, Assistant Director, Office of Institutional Research University

More information

Educational research on teaching the nature and process of science

Educational research on teaching the nature and process of science Educational research on teaching the nature and process of science The teaching resources recommended on our site are consistent with what is known about how students learn the nature and process of science.

More information

Undergraduate Psychology Major Learning Goals and Outcomes i

Undergraduate Psychology Major Learning Goals and Outcomes i Undergraduate Psychology Major Learning Goals and Outcomes i Goal 1: Knowledge Base of Psychology Demonstrate familiarity with the major concepts, theoretical perspectives, empirical findings, and historical

More information

Student Intelligence and Academic Achievement in Albanian Universities. Case of Vlora University

Student Intelligence and Academic Achievement in Albanian Universities. Case of Vlora University Student Intelligence and Academic Achievement in Albanian Universities. Case of Vlora University Ilirjan LIPI 1 Abstract: This study involves students of economic faculty that were attending bachelor in

More information

DOCTOR OF PHILOSOPHY DEGREE. Educational Leadership Doctor of Philosophy Degree Major Course Requirements. EDU721 (3.

DOCTOR OF PHILOSOPHY DEGREE. Educational Leadership Doctor of Philosophy Degree Major Course Requirements. EDU721 (3. DOCTOR OF PHILOSOPHY DEGREE Educational Leadership Doctor of Philosophy Degree Major Course Requirements EDU710 (3.0 credit hours) Ethical and Legal Issues in Education/Leadership This course is an intensive

More information

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME.

A CONTENT STANDARD IS NOT MET UNLESS APPLICABLE CHARACTERISTICS OF SCIENCE ARE ALSO ADDRESSED AT THE SAME TIME. Environmental Science Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy

More information

How To Understand The Reactions Of Students Of The Layout And Graphics Design In Computer Course

How To Understand The Reactions Of Students Of The Layout And Graphics Design In Computer Course THE EXPERIENTIAL LEARNING CYCLE IN VISUAL DESIGN Aysu ARSOY & Bahire Efe ÖZAD Abstract Experiential Learning Cycle has been applied to the Layout and Graphics Design in Computer Course provided by the

More information

School Psychology Program Goals, Objectives, & Competencies

School Psychology Program Goals, Objectives, & Competencies RUTGERS SCHOOL PSYCHOLOGY PROGRAM PRACTICUM HANDBOOK Introduction School Psychology is a general practice and health service provider specialty of professional psychology that is concerned with the science

More information

Learning Goals and Assessment Methods: Undergraduate Academic Programs (Non-Accredited)

Learning Goals and Assessment Methods: Undergraduate Academic Programs (Non-Accredited) September 2012 and s: Undergraduate Academic Programs (Non-Accredited) Accounting 1) The knowledge and tools needed to obtain meaningful employment and have successful careers directly or indirectly involving

More information

Creative Education and New Learning as Means of Encouraging Creativity, Original Thinking and Entrepreneurship

Creative Education and New Learning as Means of Encouraging Creativity, Original Thinking and Entrepreneurship Creative Education and New Learning as Means of Encouraging Creativity, Original Thinking and Entrepreneurship Abstract: by Mirjana Radovic-Markovic Lecturer, Dusan Markovic Fellow, World Academy of Art

More information

Georgia Department of Education

Georgia Department of Education Epidemiology Curriculum The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science. The Project 2061 s Benchmarks for Science Literacy is

More information

Chapter 2 Conceptualizing Scientific Inquiry

Chapter 2 Conceptualizing Scientific Inquiry Chapter 2 Conceptualizing Scientific Inquiry 2.1 Introduction In order to develop a strategy for the assessment of scientific inquiry in a laboratory setting, a theoretical construct of the components

More information

SCIENCE-RELATED ATTITUDES AND INTERESTS OF STUDENTS

SCIENCE-RELATED ATTITUDES AND INTERESTS OF STUDENTS SCIENCE-RELATED ATTITUDES AND INTERESTS OF STUDENTS Vivien M. Talisayon, Fe S. de Guzman, and Celia R. Balbin University of the Philippines Diliman, Quezon City, Philippines by Abstract This paper presents

More information

GOGOT SUHARWOTO AND MAGGIE NIESS Oregon State University Corvallis, OR USA suharwog@onid.orst.edu and niessm@onid.orst.edu

GOGOT SUHARWOTO AND MAGGIE NIESS Oregon State University Corvallis, OR USA suharwog@onid.orst.edu and niessm@onid.orst.edu How Do Subject Specific Teacher Preparation Program that Integrate Technology Throughout the Courses Support the Development of Mathematics Preservice Teachers' TPCK (Technology Pedagogical Content Knowledge)?

More information

RELEVANT SCIENCE EDUCATION IN THE EYES OF GRADE NINE STUDENTS. Moonika Teppo, Miia Rannikmäe, University of Tartu

RELEVANT SCIENCE EDUCATION IN THE EYES OF GRADE NINE STUDENTS. Moonika Teppo, Miia Rannikmäe, University of Tartu RELEVANT SCIENCE EDUCATION IN THE EYES OF GRADE NINE STUDENTS Moonika Teppo, Miia Rannikmäe, University of Tartu Abstract Students are motivated to learn, if the science content is interesting, connected

More information

Designing a Discussion: Teacher as Designer

Designing a Discussion: Teacher as Designer Designing a Discussion: Teacher as Designer Margret A. Hjalmarson Purdue University For whole-class discussions, teachers need methods for orchestrating them with their students. This

More information

Cork Education and Training Board. Programme Module for. Child Psychology. leading to. Level 6 FETAC

Cork Education and Training Board. Programme Module for. Child Psychology. leading to. Level 6 FETAC Cork Education and Training Board Programme Module for Child Psychology leading to Level 6 FETAC May 2012/June 2012 1 Introduction This programme module may be delivered as a standalone module leading

More information

LEARNING STYLES AND ACADEMIC PERFORMANCE OF STUDENTS IN ENGLISH AS A SECOND-LANGUAGE CLASS IN IRAN

LEARNING STYLES AND ACADEMIC PERFORMANCE OF STUDENTS IN ENGLISH AS A SECOND-LANGUAGE CLASS IN IRAN Bulgarian Journal of Science and Education Policy (BJSEP), Volume 7, Number 2, 2013 LEARNING STYLES AND ACADEMIC PERFORMANCE OF STUDENTS IN ENGLISH AS A SECOND-LANGUAGE CLASS IN IRAN 1 Soghra AKBARI CHERMAHINI,

More information

Integrated STEM Education through Project-Based Learning

Integrated STEM Education through Project-Based Learning Integrated STEM Education through Project-Based Learning by Diana Laboy-Rush, STEM Solutions Manager at Learning.com Table of Contents: Abstract...2 Math and Science Education Crisis...3 Integrated STEM

More information

Position Statement on Science Education

Position Statement on Science Education Connecticut State Board of Education Hartford Position Statement on Science Education Adopted September 3, 2008 The Connecticut State Board of Education regards scientific literacy as evidence of a high-quality

More information

PRE-SERVICE SCIENCE AND PRIMARY SCHOOL TEACHERS PERCEPTIONS OF SCIENCE LABORATORY ENVIRONMENT

PRE-SERVICE SCIENCE AND PRIMARY SCHOOL TEACHERS PERCEPTIONS OF SCIENCE LABORATORY ENVIRONMENT PRE-SERVICE SCIENCE AND PRIMARY SCHOOL TEACHERS PERCEPTIONS OF SCIENCE LABORATORY ENVIRONMENT Gamze Çetinkaya 1 and Jale Çakıroğlu 1 1 Middle East Technical University Abstract: The associations between

More information

From High School Teaching to Designing Curriculum: Inspiring the Next Generation of Earth Scientists

From High School Teaching to Designing Curriculum: Inspiring the Next Generation of Earth Scientists From High School Teaching to Designing Curriculum: Inspiring the Next Generation of Earth Scientists Sara R. Walkup Science Curriculum Specialist The Learning Design Group at the Lawrence Hall of Science

More information

Core Ideas of Engineering and Technology

Core Ideas of Engineering and Technology Core Ideas of Engineering and Technology Understanding A Framework for K 12 Science Education By Cary Sneider Last month, Rodger Bybee s article, Scientific and Engineering Practices in K 12 Classrooms,

More information

Chartered Science Teacher Register Exemplar Material Secondary School Teacher

Chartered Science Teacher Register Exemplar Material Secondary School Teacher Chartered Science Teacher Register Exemplar Material Secondary School Teacher Applications for the Chartered Science Teacher register are completed through the online registration system. Eligibility for

More information

Analysing Technological Pedagogic Content Knowledge of Science Teacher Candidates According to Various Variables

Analysing Technological Pedagogic Content Knowledge of Science Teacher Candidates According to Various Variables Analysing Technological Pedagogic Content Knowledge of Science Teacher Candidates According to Various Variables 1 Mehmet Barış Horzum, 2 Murat Demirbaş, 1 Mustafa Bayrakcı 1 Sakarya University Education

More information

SECOND CHANCE SCHOOLS IN GREECE: SCIENCE TEACHERS VIEWS AND PRACTICES ON DESIGNING SCIENTIFIC LITERACY CURRICULA 1

SECOND CHANCE SCHOOLS IN GREECE: SCIENCE TEACHERS VIEWS AND PRACTICES ON DESIGNING SCIENTIFIC LITERACY CURRICULA 1 SECOND CHANCE SCHOOLS IN GREECE: SCIENCE TEACHERS VIEWS AND PRACTICES ON DESIGNING SCIENTIFIC LITERACY CURRICULA 1 Spyros Kollas and Krystallia Halkia National and Kapodistrian University of Athens, Faculty

More information

Case Study: Public Relations

Case Study: Public Relations Internationalisation of the Curriculum in Action Case Study: Public Relations This case study was developed as part of an Australian Learning and Teaching Council National Teaching Fellowship, Internationalisation

More information

Master of Science in Early Childhood Education Singapore, 2005 2006

Master of Science in Early Childhood Education Singapore, 2005 2006 Master of Science in Early Childhood Education Singapore, 2005 2006 Offered by RTRC Asia in Collaboration with Wheelock College s Center for International Education, Leadership, and Innovation Background

More information

Master of Arts in Teaching/Science Education Master of Arts in Teaching/Mathematics Education

Master of Arts in Teaching/Science Education Master of Arts in Teaching/Mathematics Education Master of Arts in Teaching/Science Education Master of Arts in Teaching/Mathematics Education Assessment F12-S13 FOR ACADEMIC YEAR: 2012-2013 PROGRAM: MAT/Science and Mathematics Education SCHOOL: NS&M

More information

LEARNING TO IMPLEMENT SCHOOL EXPERIMENTS IN A BLENDED LEARNING APPROACH: AN EVALUATION STUDY

LEARNING TO IMPLEMENT SCHOOL EXPERIMENTS IN A BLENDED LEARNING APPROACH: AN EVALUATION STUDY LEARNING TO IMPLEMENT SCHOOL EXPERIMENTS IN A BLENDED LEARNING APPROACH: AN EVALUATION STUDY Thorid Rabe 1, Olaf Krey 1 and Franco Rau 1 1 University of Potsdam, Germany Abstract: This paper reports about

More information

Alternative Online Pedagogical Models With Identical Contents: A Comparison of Two University-Level Course

Alternative Online Pedagogical Models With Identical Contents: A Comparison of Two University-Level Course The Journal of Interactive Online Learning Volume 2, Number 1, Summer 2003 www.ncolr.org ISSN: 1541-4914 Alternative Online Pedagogical Models With Identical Contents: A Comparison of Two University-Level

More information

Master of Science. Public Health Nutrition

Master of Science. Public Health Nutrition Department of Clinical Sciences and Nutrition Master of Science in Public Health Nutrition Full-Time and Part-Time Taught Modular Masters Programme Module Descriptor Outlines 1 Short Module Descriptors

More information

Completing tasks for online forums: a look through the students eyes

Completing tasks for online forums: a look through the students eyes Completing tasks for online forums: a look through the students eyes Maria Kuteeva Instituto Superior de Contabilidade e Administração de Lisboa Abstract The use of ICT for language teaching has been growing

More information

Developing Teacher Leadership and its Impact in Schools M. Snoek

Developing Teacher Leadership and its Impact in Schools M. Snoek Developing Teacher Leadership and its Impact in Schools M. Snoek SUMMARY DEVELOPING TEACHER LEADERSHIP AND ITS IMPACT IN SCHOOLS Introduction Successful school improvement is dependent on schools capacities

More information

HAMPTON UNIVERSITY ONLINE College of Education and Continuing Studies PhD in Educational Management

HAMPTON UNIVERSITY ONLINE College of Education and Continuing Studies PhD in Educational Management Program Overview The accelerated program provides candidates with an opportunity to develop the critical leadership skills and knowledge that are required in today s increasingly complex, diverse, and

More information

Health Program in the Library of Alexandria

Health Program in the Library of Alexandria Submitted on: 4 August 2015 Health Program in the Library of Alexandria Suzanne Samir Head of Educational Services Section, Library of Alexandria, Alexandria, Egypt. suzanne.samir@bibalex.org Copyright

More information

B. Questions and answers 74. Youthpass in practice. Youthpass in Training Courses. 1 What is Youthpass in Training Courses?

B. Questions and answers 74. Youthpass in practice. Youthpass in Training Courses. 1 What is Youthpass in Training Courses? B. Questions and answers 74 B4 Youthpass in practice Mark Taylor 1 What is? The simple answer is that is a Certificate which describes the activity itself and confirms the participation of a youth worker/youth

More information

Supporting the Implementation of NGSS through Research: Curriculum Materials

Supporting the Implementation of NGSS through Research: Curriculum Materials Supporting the Implementation of NGSS through Research: Curriculum Materials Janet Carlson, BSCS/Stanford University Elizabeth A. Davis, University of Michigan Cory Buxton, University of Georgia Curriculum

More information

To answer the secondary question, if hands-on activities would increase student interest and comprehension, several hands-on activities were used:

To answer the secondary question, if hands-on activities would increase student interest and comprehension, several hands-on activities were used: 1 The Effect of an Overarching Topic on Student Performance in Algebra II Christine Consoletti and David Collins J.E.B. Stuart High School Fairfax County (VA) Public Schools June 2003 Question Does an

More information

How To Improve A Child'S Learning Experience

How To Improve A Child'S Learning Experience Effective teaching and classroom management is about whole child - and whole school development for knowledge, skills and human values During the past years as an outcome of the UN Study on Violence against

More information

STAGES OF ENVIRONMENTAL SUSTAINABILITY in UNDERGRADUATE PROGRAMS

STAGES OF ENVIRONMENTAL SUSTAINABILITY in UNDERGRADUATE PROGRAMS STAGES OF ENVIRONMENTAL SUSTAINABILITY in UNDERGRADUATE PROGRAMS ABSTRACT Nowadays, environment, environmental impacts, education for sustainability, sustainable consumption, are terms often used by the

More information

ICT in pre-service teacher education in Portugal: trends and needs emerging from a survey

ICT in pre-service teacher education in Portugal: trends and needs emerging from a survey Interactive Educational Multimedia, Number 11 (October 2005), pp. 153-167 http://www.ub.es/multimedia/iem ICT in pre-service teacher education in Portugal: trends and needs emerging from a survey João

More information

Key Principles for Promoting Quality in Inclusive Education. Recommendations Matrix

Key Principles for Promoting Quality in Inclusive Education. Recommendations Matrix Key Principles for Promoting Quality in Inclusive Education Key Principles for Promoting Quality in Inclusive Education European Agency for Development in Special Needs Education CONTENTS INTRODUCTION...3

More information

CONCEPT MAPS AS MEANINGFUL LEARNING TOOLS IN A WEB BASED CHEMISTRY MATERIAL

CONCEPT MAPS AS MEANINGFUL LEARNING TOOLS IN A WEB BASED CHEMISTRY MATERIAL Concept Mapping: Connecting Educators Proc. of the Third Int. Conference on Concept Mapping Tallinn, Estonia & Helsinki, Finland 2008 CONCEPT MAPS AS MEANINGFUL LEARNING TOOLS IN A WEB BASED CHEMISTRY

More information

Onsite Peer Tutoring in Mathematics Content Courses for Pre-Service Teachers

Onsite Peer Tutoring in Mathematics Content Courses for Pre-Service Teachers IUMPST: The Journal. Vol 2 (Pedagogy), February 2011. [www.k-12prep.math.ttu.edu] Onsite Peer Tutoring in Mathematics Content Courses for Pre-Service Teachers Elaine Young Associate Professor of Mathematics

More information

International Baccalaureate Diploma Programme: Examining college readiness. 1 College persistence was defined as graduation within five years or

International Baccalaureate Diploma Programme: Examining college readiness. 1 College persistence was defined as graduation within five years or RESEARCH SUMMARY International Baccalaureate Diploma Programme: Examining college readiness Based on a research report prepared for the IB by: David Conley, PhD, Charis McGaughy, PhD, Whitney Davis-Molin,

More information

An Investigation on Learning of College Students and the Current Application Situation of the Web-based Courses

An Investigation on Learning of College Students and the Current Application Situation of the Web-based Courses 2011 International Conference on Computer Science and Information Technology (ICCSIT 2011) IPCSIT vol. 51 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V51.127 An Investigation on Learning

More information

Leader Succession and Collective Efficacy: Conditions that Create Continuity in Transition

Leader Succession and Collective Efficacy: Conditions that Create Continuity in Transition Versland, T. M., Quintana, E., & Malloy, J. (2014). Leader succession and collective efficacy: Conditions that create continuity in transition. The Researcher, 26(1), 3-7. Leader Succession and Collective

More information

Being a Female Engineering Student: Lessons from the Industrial Engineering

Being a Female Engineering Student: Lessons from the Industrial Engineering Being a Female Engineering Student: Lessons from the Industrial Engineering Celina P. Leão 1, Carina Pimentel 2, Cristina S. Rodrigues 3 Abstract - The increasing of women engineers participation in a

More information

Activity 4: Planning an Extension Lesson on Energy Using the 5E Model

Activity 4: Planning an Extension Lesson on Energy Using the 5E Model Activity 4: Planning an Extension Lesson on Energy Using the 5E Model 1 Suggested Pre-Planning Questions 1. What is the Big Idea? 2. What are your essential questions? 3. What approach will you use in

More information

ATTITUDES OF ILLINOIS AGRISCIENCE STUDENTS AND THEIR PARENTS TOWARD AGRICULTURE AND AGRICULTURAL EDUCATION PROGRAMS

ATTITUDES OF ILLINOIS AGRISCIENCE STUDENTS AND THEIR PARENTS TOWARD AGRICULTURE AND AGRICULTURAL EDUCATION PROGRAMS ATTITUDES OF ILLINOIS AGRISCIENCE STUDENTS AND THEIR PARENTS TOWARD AGRICULTURE AND AGRICULTURAL EDUCATION PROGRAMS Edward W. Osborne, Professor University of Florida James E. Dyer, Assistant Professor

More information

The MetLife Survey of

The MetLife Survey of The MetLife Survey of Challenges for School Leadership Challenges for School Leadership A Survey of Teachers and Principals Conducted for: MetLife, Inc. Survey Field Dates: Teachers: October 5 November

More information

Principals Use of Computer Technology

Principals Use of Computer Technology Principals Use of Computer Technology 85 Lantry L. Brockmeier James L. Pate Don Leech Abstract: The Principal s Computer Technology Survey, a 40-item instrument, was employed to collect data on Georgia

More information

Section 2: Program Summary Economics (CA): Secondary Major and Minor

Section 2: Program Summary Economics (CA): Secondary Major and Minor Section 2: Program Summary Economics (CA): Secondary Major and Minor The University Detroit Mercy (UDM), a Catholic institution whose mission flows from the educational traditions of the Sisters of Mercy

More information

SCIENTIST-PRACTITIONER INTEREST CHANGES AND COURSE PERFORMANCE IN AN UNDERGRADUATE RESEARCH METHODS PSYCHOLOGY COURSE

SCIENTIST-PRACTITIONER INTEREST CHANGES AND COURSE PERFORMANCE IN AN UNDERGRADUATE RESEARCH METHODS PSYCHOLOGY COURSE SCIENTIST-PRACTITIONER INTEREST CHANGES AND COURSE PERFORMANCE IN AN UNDERGRADUATE RESEARCH METHODS PSYCHOLOGY COURSE Terry F. Pettijohn II & Shujaat F. Ahmed Coastal Carolina University Conway, South

More information

NATIONAL COMPETENCY-BASED TEACHER STANDARDS (NCBTS) A PROFESSIONAL DEVELOPMENT GUIDE FOR FILIPINO TEACHERS

NATIONAL COMPETENCY-BASED TEACHER STANDARDS (NCBTS) A PROFESSIONAL DEVELOPMENT GUIDE FOR FILIPINO TEACHERS NATIONAL COMPETENCY-BASED TEACHER STANDARDS (NCBTS) A PROFESSIONAL DEVELOPMENT GUIDE FOR FILIPINO TEACHERS September 2006 2 NATIONAL COMPETENCY- BASED TEACHER STANDARDS CONTENTS General Introduction to

More information

April 2013 NGSS Release Page 1 of 10

April 2013 NGSS Release Page 1 of 10 APPENDIX H Understanding the Scientific Enterprise: The Nature of Science in the Next Generation Science Standards Scientists and science teachers agree that science is a way of explaining the natural

More information

AN EXPLORATION OF THE ATTITUDE AND LEARNING EFFECTIVENESS OF BUSINESS COLLEGE STUDENTS TOWARDS GAME BASED LEARNING

AN EXPLORATION OF THE ATTITUDE AND LEARNING EFFECTIVENESS OF BUSINESS COLLEGE STUDENTS TOWARDS GAME BASED LEARNING AN EXPLORATION OF THE ATTITUDE AND LEARNING EFFECTIVENESS OF BUSINESS COLLEGE STUDENTS TOWARDS GAME BASED LEARNING Chiung-Sui Chang 1, Ya-Ping Huang 1 and Fei-Ling Chien 2 1 Department of Educational Technology,

More information

Gender Differences in Computer Technology Achievement

Gender Differences in Computer Technology Achievement Gender Differences in Computer Technology Achievement Kimberly V. Hale Abstract This study examined gender differences in computer technology achievement. The setting was a central Georgia middle school.

More information

GLOBAL-READY TEACHER COMPETENCY FRAMEWORK: STANDARDS AND INDICATORS

GLOBAL-READY TEACHER COMPETENCY FRAMEWORK: STANDARDS AND INDICATORS GLOBAL-READY TEACHER COMPETENCY FRAMEWORK: STANDARDS AND INDICATORS GLOBAL-READY TEACHER COMPETENCY FRAMEWORK All learners whether adult or child acquire the attitudes, skills and knowledge needed for

More information

Why Teach Science Using an Inquiry Approach? Dr. Carl J. Wenning Physics Department Illinois State University Normal, Illinois USA

Why Teach Science Using an Inquiry Approach? Dr. Carl J. Wenning Physics Department Illinois State University Normal, Illinois USA Why Teach Science Using an Inquiry Approach? Dr. Carl J. Wenning Physics Department Illinois State University Normal, Illinois USA Inquiry Teaching! Science teaching has suffered because science has been

More information

of knowledge that is characteristic of the profession and is taught at professional schools. An important author in establishing this notion was

of knowledge that is characteristic of the profession and is taught at professional schools. An important author in establishing this notion was Mathematics teacher education and professional development João Pedro da Ponte jponte@fc.ul.pt Grupo de Investigação DIFMAT Centro de Investigação em Educação e Departamento de Educação Faculdade de Ciências

More information

Utah State Office of Education Elementary STEM Endorsement Course Framework Nature of Science and Engineering

Utah State Office of Education Elementary STEM Endorsement Course Framework Nature of Science and Engineering Course Description: Utah State Office of Education Elementary STEM Endorsement Course Framework Nature of Science and Engineering In this course participants will experience introductory explorations of

More information

November 2014 March 2015

November 2014 March 2015 November 2014 March 2015 April 2015 1 Executive Summary & Acknowledgements Background Aims Objectives National context Local context - Trafford School Nurse Service Methodology Project Outline Firs Primary

More information

Transatlantic online Community of Practice

Transatlantic online Community of Practice Transatlantic online Community of Practice Barbara Schwarz-Bechet, Roelien Bos-Wierda, Ron Barendsen University of Maryland University College, Maryland, USA NHL University of Applied Science, Leeuwarden,

More information

High School Counselors Influence

High School Counselors Influence High School Counselors Influence Katey O Donnell and Katie Logan Undergraduate Students, Human Development and Family Studies Key Words: College freshmen, school counselors, high school, adequately prepared

More information

Mastery approaches to mathematics and the new national curriculum

Mastery approaches to mathematics and the new national curriculum October 2014 Mastery approaches to mathematics and the new national curriculum Mastery in high performing countries The content and principles underpinning the 2014 mathematics curriculum reflect those

More information

Earth Charter Project... in Motor Action

Earth Charter Project... in Motor Action 142 National Institute for Physical Education, University of Lleida, Spain Earth Charter Project... in Motor Action Francisco Lagardera Otero 68 Introduction This is the story of one dream, five miracles,

More information

School of Education MASTER OF ARTS IN TEACHING. Master of Arts in Teaching

School of Education MASTER OF ARTS IN TEACHING. Master of Arts in Teaching School of Education MASTER OF ARTS IN TEACHING Master of Arts in Teaching 2012-2014 The Master of Arts in Teaching Program The Master of Arts in Teaching program is designed for: 1. A person with an appropriate

More information

The Positive Effects of Technology on Teaching and Student Learning

The Positive Effects of Technology on Teaching and Student Learning The Positive Effects of Technology on Teaching and Student Learning Kevin C. Costley, Ph.D. Associate Professor of Curriculum & Instruction Arkansas Tech University kcostley@atu.edu Date of Publication:

More information

International Education and Resource Network Pakistan (A Project of Society for International Education)

International Education and Resource Network Pakistan (A Project of Society for International Education) Workshop Title: International Education and Resource Network Pakistan Food Journalism 101 Training Date: 6-7 January, 2015 Target Professionals: Workshop for Food Bloggers, Food Writers, Food Enthusiast

More information

Financial Education in schools: the experience of the Bank of Italy and the Ministry of Education

Financial Education in schools: the experience of the Bank of Italy and the Ministry of Education Financial Education in schools: the experience of the Bank of Italy and the Ministry of Education Maurizio Trifilidis Bank of Italy Background The individuals decision-making process could be improved

More information

This morning I watched Sesame Street. During

This morning I watched Sesame Street. During Scientific and Engineering Practices in K 12 Classrooms Understanding A Framework for K 12 Science Education by Rodger W. Bybee This morning I watched Sesame Street. During the show, characters acted like

More information

Health education as a new compulsory school subject in Finnish schools

Health education as a new compulsory school subject in Finnish schools Health education as a new compulsory school subject in Finnish schools Lasse Kannas, Professor of Health Education, Department of Health Sciences, Faculty of Sport and Health Sciences University of Jyväskylä,

More information

Instructional Strategies: What Do Online Students Prefer?

Instructional Strategies: What Do Online Students Prefer? Instructional Strategies: What Do Online Students Prefer? Kristen Cuthrell Assistant Professor East Carolina University College of Education Curriculum and Instruction Greenville, NC USA cuthrellma@ecu.edu

More information

flight attendant lawyer journalist programmer sales clerk mechanic secretary / receptionist taxi driver waiter/waitress

flight attendant lawyer journalist programmer sales clerk mechanic secretary / receptionist taxi driver waiter/waitress Work Choices UNIT 3 Getting Ready Discuss these questions with a partner. flight attendant lawyer journalist programmer sales clerk mechanic secretary / receptionist taxi driver waiter/waitress 1 Look

More information

ANALYSIS OF TRAINING COMPONENTS EFFECTING ON STUDENTS ENTREPRENEURSHIP CAPABILITIES IN IRANIAN AGRICULTURAL SCIENTIFIC-APPLIED HIGHER SYSTEM

ANALYSIS OF TRAINING COMPONENTS EFFECTING ON STUDENTS ENTREPRENEURSHIP CAPABILITIES IN IRANIAN AGRICULTURAL SCIENTIFIC-APPLIED HIGHER SYSTEM ANALYSIS OF TRAINING COMPONENTS EFFECTING ON STUDENTS ENTREPRENEURSHIP CAPABILITIES IN IRANIAN AGRICULTURAL SCIENTIFIC-APPLIED HIGHER SYSTEM Mohammad Reza Soleimanpour 1, Bahman Khosravipour 2 and Reza

More information

HAMPTON UNIVERSITY ONLINE School of Education and Human Development PhD in Educational Management

HAMPTON UNIVERSITY ONLINE School of Education and Human Development PhD in Educational Management Program Overview This accelerated program provides candidates with an opportunity to develop the critical leadership skills and knowledge that are required in today s increasingly complex, diverse, and

More information

Inspectorate Guidelines for Schools P R O M O T I N G T H E Q U A L I T Y O F L E A R N I N G

Inspectorate Guidelines for Schools P R O M O T I N G T H E Q U A L I T Y O F L E A R N I N G School Self-Evaluation Guidelines for Primary Schools Inspectorate Guidelines for Schools I N S P E C TO R AT E P R O M O T I N G T H E Q U A L I T Y O F L E A R N I N G 2 School Self-Evaluation Guidelines

More information

Evgenia Theodotou Metropolitan College, Athens, Greece. Abstract. Introduction. Motivation to learn: the theoretical framework

Evgenia Theodotou Metropolitan College, Athens, Greece. Abstract. Introduction. Motivation to learn: the theoretical framework Vol.4, No.1. April 2014 pp. 17 21. Early years education: are young students intrinsically or extrinsically motivated towards school activities? A discussion about the effects of rewards on young children

More information

Short Course. Physical Education. Specification for Junior Cycle

Short Course. Physical Education. Specification for Junior Cycle Short Course Physical Education for June 2014 Contents Page 3 Introduction to junior cycle Page 4 Rationale Page 5 Aim Page 6 Links Page 8 Course overview Page 9 Expectations for students 10 Strand 1:

More information

Bridging the Global Skills Gap

Bridging the Global Skills Gap Bridging the Global Skills Gap Teachers views on how to prepare a Global Generation for the challenges ahead. About the research This report represents the findings of a survey of teachers 1 conducted

More information