Fridolin Weber San Diego State University San Diego, California USA

Size: px
Start display at page:

Download "Fridolin Weber San Diego State University San Diego, California USA"

Transcription

1 Fridolin Weber San Diego State University San Diego, California USA IAU Symposium 291 Neutron Stars and Pulsars: Challenges and OpportuniEes afer 80 years IAU General Assembly XXVIII August 2012, Beijing, China

2 Ø Strange Quark Stars versus Neutron Stars Ø Explore Testable Predic<ons q Rapid rotaeon q Ultra- high electric fields q OscillaEons of electron sea q Meissner effect (vortex expulsion) q Pycnonuclear reaceons Ø Summary

3 Strange Quark Star Neutron Star Surface Hydrogen/Helium plasma Iron nuclei Surface Outer Crust Ions Electron gas Outer Crust Inner Crust Heavy ions Relativistic electron gas Superfluid neutrons Outer Core Neutrons, protons Electrons, muons Core Electrons u,d,s quarks (color-superconducting) F. Weber (SDSU, 2012) I Radii < 10 km Masses ~1 to 2 M sun Radii > 10 km Inner Core Neutrons Superconducting protons Electrons, muons Hyperons (Σ, Λ, Ξ) Deltas (Δ) Boson (π, K) condensates Deconfined (u,d,s) quarks / colorsuperconducting quark matter

4 Quark Stars* vs Neutron Stars Ø Made enerely of deconfined quarks and leptons Ø Self- bound (M ~ R 3 ) Ø Baryon number O(1) < B < Ø Electron sea at surface (super- high electric fields) Ø May posses outer crusts Ø No inner crusts Ø Two- parameter stellar sequences Ø May contain deconfined quark maaer only in stellar core Ø Bound by gravity Ø to Ø Absent Ø Outer crusts Ø Inner crusts Ø One- parameter stellar sequence *E. Wiaen, Phys. Rev. D 30 (1984) 272; Alcock, Farhi, Olinto, ApJ 310 (1986) 261; Alcock & Olinto, Ann. Rev. Nucl. Part. Sci. 38 (1988) 161; Madsen, Lecture Notes Phys. 516 (1999) 162.

5 M/M sun Mass- radius relaeonship of neutron stars Black holes 1 Neutron stars void of compact stars 2 unstable equilibrium 3 configurations White dwarfs Planets R (km)

6 Mass- radius relaeonship of neutron stars and strange quark stars d bc b a d b a b a

7 RotaEon at Sub- Millisecond Periods Kepler Period (msec) Observed masses and rotaeonal periods Neutron stars Strange quark stars

8 Electrically Charged Quark Stars Energy density of electric field is of same order as energy density of quark maaer! µ F kl F kl T µ =(P + )u u µ + P µ ideal fluid F µl F l GravitaEonal mass Increases by up to 15%. Radius increases by up to 5%. R. Negreiros, FW, M. Malheiro, V. Usov, PRD 80 (2009)

9 Electrically Charged Quark Stars (cont.) Electron sphere may be differeneally rotaeng! I = ( + ) B = const E ( + )R Could explain observed magneec fields of CCOs R. Negreiros, I. Mishustin, S. Schramm, FW, PRD 82 (2010)

10 Electron sea may perform global (hydrodynamical cyclotron) oscillaeons Frequency spectrum calculated by R. X. Xu et al.* *R. X. Xu, Bastrukov, FW, Yu, Molodtsova, PRD 85 (2012)

11 AbsorpEon features in spectrum of 1E at 0.7, 1.4 and 2.1 kev* 0.7 kev 1.4 kev 2.1 kev *G. F. Bignami, P. A. Caraveo, A. De Luca, & S. Mereghen, Nature 423 (2003) 725

12 Meissner Effect in Quark Stars made of CFL Quark Maaer Vortex expulsion reheats the quark star

13 Cooling of CFL Quark Stars via Vortex Expulsion SGRs/AXPs Negreiros, Niebergal, Ouyed, FW, PRD 81 (2010)

14 SGRs/AXPs Neutron stars Negreiros, Niebergal, Ouyed, FW, PRD 81 (2010)

15 Pycnonuclear Reactions in the Crusts of Neutron Stars White dwarf Neutron star Neutron star crust Pycnonuclear reactions

16 Pycnonuclear Reactions in the Crusts of Neutron Stars White dwarf Neutron star Strange quark matter nuggets embedded in the nuclear crust

17 Strange Quark Matter Nuggets l N u ~ N d ~ N s l A > A min (~10 to 100) l Charge-to-baryon number ratio depends on whether SQM is made of Ø ordinary quark matter, Z 0.1 (m 150 ) 2 A, or Ø color superconducting quark matter, Z 0.3 m 150 A 2/3 Farhi & Jaffe, PRD 30 (1984) 2379; Berger & Jaffe, PRC 35 (1987) 213; Alcock, Farhi, Olinto, ApJ 310 (1986) 261; Madsen, PRL 87 (2001) Madsen, PRL 87 (2001) ; Rajagopal & Wilczek, PRL 86 (2001) 3492; Oertel & Urban PRD 77 (2008)

18 R = (lattice pairs) x T Coulomb barrier x S x E -1 ) " #!! "#$% " &% '( & # * $ * * & $ * % $ &% & +'' ' (*#("(')& ( (& # & # # *!"#!$%&'()* +"#,-,'(*.'#'/&*0, 1"#2&33#4526,* 7"#2&33#8,43.(9 :"#.4;,*3,#-,40(/#<&*&2,(,* Gasques et al. PRC 72 (2005) ! Yakovlev et al. PRC 74 (2006) ! 6)89#',4(,*,8#'56.'#=6''>#-&((.',

19 Impact of quark maaer nuggets on pycnonuclear reaceon rates B. Golf, J. Hellmers, F. Weber, PRC 80 (2009)

20 q True ground state of the strong interaceon is not known q Key differences between neutron stars and quark stars emerge from the fact that quark stars are self- bound and possess electron seas at their surfaces. q Peculiar stellar properees/phenomena to watch out for: superfast rotaeon, unusually small objects (CCOs), unusually hot objects (SGRs, AGRs), absorpeon features (XDIN, CCOs), superbursts, drifing sub- pulses (R. X. Xu), quark novae (R. Ouyed),...? q Need more observed data (e.g. SkA, FAST)

on Recent Developments on Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories

on Recent Developments on Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories Thirteenth Marcel Grossman Meeting on Recent Developments on Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories ON GENERAL RELATIVISTIC UNIFORMLY ROTATING WHITE

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

Foreword. Acknowledgments. References 20

Foreword. Acknowledgments. References 20 Foreword Acknowledgments xv xvii Part I Compact Stars Dynamic stability of compact stars 3 G. S. Bisnovatyi-Kogan 1 Introduction 3 2 Early development of the theory of compact stars: 1931-1965 4 3 Criteria

More information

Main sequence stars. Haris Ðapo. Antalya Lecture 3. 1 Akdeniz University, Antalya

Main sequence stars. Haris Ðapo. Antalya Lecture 3. 1 Akdeniz University, Antalya Main sequence stars Haris Ðapo 1 Akdeniz University, Antalya Antalya Lecture 3. Haris Ðapo (Akdeniz University) Main sequence stars Main sequence stars 1 / 22 Outline 1 Introduction 2 Hydrogen burning

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

A Universe of Galaxies

A Universe of Galaxies A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions Maya SHIMOMURA Brookhaven National Laboratory, Upton, NY, 11973, U.S.A. PROFILE I am an experimentalist working for high-energy heavy ion at Iowa State University as a postdoctoral research associate.

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

X-ray observations and nuclear physics of GW-driven r-modes

X-ray observations and nuclear physics of GW-driven r-modes X-ray observations and nuclear physics of GW-driven r-modes Wynn Ho University of Southampton, UK Nils Andersson Ian Jones University of Southampton, UK Nathalie Degenaar University of Michigan, USA Bryn

More information

Stellar Evolution: a Journey through the H-R Diagram

Stellar Evolution: a Journey through the H-R Diagram Stellar Evolution: a Journey through the H-R Diagram Mike Montgomery 21 Apr, 2001 0-0 The Herztsprung-Russell Diagram (HRD) was independently invented by Herztsprung (1911) and Russell (1913) They plotted

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Condensates in Neutron Star Interiors

Condensates in Neutron Star Interiors Condensates in Neutron Star Interiors Vatsal Dwivedi submitted as a term essay for Phys 569 : Emergent States of Matter Dec 19, 2012 Abstract The pulsars, now identified as neutron stars, are one of the

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

The Sun and Solar Energy

The Sun and Solar Energy I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Evolution of the Universe from 13 to 4 Billion Years Ago

Evolution of the Universe from 13 to 4 Billion Years Ago Evolution of the Universe from 13 to 4 Billion Years Ago Prof. Dr. Harold Geller hgeller@gmu.edu http://physics.gmu.edu/~hgeller/ Department of Physics and Astronomy George Mason University Unity in the

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010

Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010 Enter your answers on the form provided. Be sure to write your name and student ID number on the first blank at the bottom of the form. Please mark the version (B) in the Key ID space at the top of the

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

More information

Be Stars. By Carla Morton

Be Stars. By Carla Morton Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed

More information

Low- and high-energy neutrinos from gamma-ray bursts

Low- and high-energy neutrinos from gamma-ray bursts Low- and high-energy neutrinos from gamma-ray bursts Hylke B.J. Koers Low- and high-energy neutrinos from gamma-ray bursts Hylke B.J. Koers HK and Ralph Wijers, MNRAS 364 (2005), 934 (astro-ph/0505533)

More information

The Physics of Neutron Stars

The Physics of Neutron Stars The Physics of Neutron Stars Alfred Whitehead Physics 518, Fall 009 The Problem Describe how a white dwarf evolves into a neutron star. Compute the neutron degeneracy pressure and balance the gravitational

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Big Bang Cosmology. Big Bang vs. Steady State

Big Bang Cosmology. Big Bang vs. Steady State Big Bang vs. Steady State Big Bang Cosmology Perfect cosmological principle: universe is unchanging in space and time => Steady-State universe - Bondi, Hoyle, Gold. True? No! Hubble s Law => expansion

More information

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0 Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,

More information

thermal history of the universe and big bang nucleosynthesis

thermal history of the universe and big bang nucleosynthesis thermal history of the universe and big bang nucleosynthesis Kosmologie für Nichtphysiker Markus Pössel (vertreten durch Björn Malte Schäfer) Fakultät für Physik und Astronomie, Universität Heidelberg

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967.

Neutron Stars. How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967. Neutron Stars How were neutron stars discovered? The first neutron star was discovered by 24-year-old graduate student Jocelyn Bell in 1967. Using a radio telescope she noticed regular pulses of radio

More information

Neutron stars as laboratories for exotic physics

Neutron stars as laboratories for exotic physics Ian Jones Neutron stars as laboratories for exotic physics 1/20 Neutron stars as laboratories for exotic physics Ian Jones D.I.Jones@soton.ac.uk General Relativity Group, Southampton University Context

More information

The AGATA campaign at GSI. Zsolt Podolyák University of Surrey

The AGATA campaign at GSI. Zsolt Podolyák University of Surrey The AGATA campaign at GSI Zsolt Podolyák University of Surrey γ-ray spectroscopy at GSI AGATA 2012-2014 In-beam Spectroscopy production selection identification reaction spectroscopy identification γ detectors

More information

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory. Basic properties of the Solar System that need to be explained: Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom kw@mssl.ucl.ac.uk

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

Lesson 6: Earth and the Moon

Lesson 6: Earth and the Moon Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Elliptical Galaxies. Old view: ellipticals are boring, simple systems

Elliptical Galaxies. Old view: ellipticals are boring, simple systems Eliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic collapse,

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

1. Degenerate Pressure

1. Degenerate Pressure . Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

More information

HowThe Most Effective Way To Get Rich Fast!

HowThe Most Effective Way To Get Rich Fast! !"#$%&'()%*+,,,!-'()%*./+&012'%3"#$%3&'()%*!4-'()%*./+,,,!-'(5%./+677!4-'(5%./+,,,!)(*890':#*9-+,,,,,!)(*980':#*9+!;01%+!4;01%+!4)(*980':#*9+,,,!4)(*890':#*9-+,,,!5#12#;%;9-+,,,,,!"#$%&'()%*>#12#;%;9+,,,,,,,!;01%+?:!4;01%+,,,,,,,!9@2%+?0-9:09A3=0*%B%90'!49@2%+,,,,,,,!-8C9@2%+DB.!4-8C9@2%+,,,,,,,!(;9%*E05%-+,,,,,,,,,!;81FE.;9%*E05%-+G!4;81FE.;9%*E05%-+,,,,,,,!4(;9%*E05%-+,,,,,,,!*%-#8*5%+,,,,,,,,,!528+6!4528+,,,,,,,,,!5281#$%+$%$(509%$!45281#$%+,,,,,,,,,!1%1#*@,8;(9HIB=I+JGK!41%1#*@+,,,,,,,!4*%-#8*5%+,,,,,,,!20*01%9%*-+,,,,,,,,,!C##9.10L%+A992M44%N012'%O5#14DB.3C(;0*@,!4C##9.10L%+,,,,,,,,,!C##9:0*01-4+,,,,,,,!420*01%9%*-+,,,,,!4"#$%&'()%*>#12#;%;9+,,,,,!"#$%&'()%*>#12#;%;9+,,,,,,,!;01%+&:!4;01%+,,,,,,,!9@2%+&'#P:09A3QB!49@2%+,,,,,,,!-8C9@2%+RQB!4-8C9@2%+,,,,,,,!(;9%*E05%-+,,,,,,,,,!;81FE.;9%*E05%-+J!4;81FE.;9%*E05%-+,,,,,,,!4(;9%*E05%-+,,,,,,,!*%-#8*5%+,,,,,,,,,!528+6!4528+,,,,,,,,,!5281#$%+$%$(509%$!45281#$%+,,,,,,,,,!1%1#*@,8;(9HI=I+J7ST!41%1#*@+,,,,,,,!4*%-#8*5%+,,,,,,,!20*01%9%*-+,,,,,,,,,!C##9.10L%+A992M44%N012'%O5#14RQB3$(-UO(1L,!4C##9.10L%+,,,,,,,,,!C##9:0*01-4+,,,,,,,!420*01%9%*-+,,,,,!4"#$%&'()%*>#12#;%;9+,,,!45#12#;%;9-+,,,!5#;;%59(#;B02+,,,,,!"#$%>#;;%59(#;,9@2%HI:V9#V:I+,,,,,,,!-#8*5%+,,,,,,,,,!Q(*980'.;9%*E05%+,,,,,,,,,,,!5#12#;%;9+3Q:FDW3!45#12#;%;9+,,,,,,,,,,,!(;9%*E05%+!4(;9%*E05%+,,,,,,,,,!4Q(*980'.;9%*E05%+,,,,,,,!4-#8*5%+,,,,,,,!$%-9(;09(#;+,,,,,,,,,!Q(*980'.;9%*E05%+,,,,,,,,,,,!5#12#;%;9+?0-9:09A!45#12#;%;9+,,,,,,,,,,,!(;9%*E05%+J!4(;9%*E05%+,,,,,,,,,!4Q(*980'.;9%*E05%+,,,,,,,!4$%-9(;09(#;+,,,,,,,!C($(*+WDXY!4C($(*+,,,,,!4"#$%>#;;%59(#;+,,,,,!"#$%>#;;%59(#;,9@2%HI&P(95AI+,,,,,,,!Q(*980'.;9%*E05%+,,,,,,,,,!5#12#;%;9+?0-9:09A!45#12#;%;9+,,,,,,,,,!(;9%*E05%+Z!4(;9%*E05%+,,,,,,,!4Q(*980'.;9%*E05%+,,,,,,,!Q(*980'.;9%*E05%+,,,,,,,,,!5#12#;%;9+?0-9:09A!45#12#;%;9+,,,,,,,,,!(;9%*E05%+S!4(;9%*E05%+,,,,,,,!4Q(*980'.;9%*E05%+,,,,,,,!Q(*980'.;9%*E05%+,,,,,,,,,!5#12#;%;9+&'#P:09A!45#12#;%;9+,,,,,,,,,!(;9%*E05%+7!4(;9%*E05%+,,,,,,,!4Q(*980'.;9%*E05%+,,,,,,,!Q(*980'.;9%*E05%+,,,,,,,,,!5#12#;%;9+&'#P:09A!45#12#;%;9+,,,,,,,,,!(;9%*E05%+6!4(;9%*E05%+,,,,,,,!4Q(*980'.;9%*E05%+,,,,,!4"#$%>#;;%59(#;+,,,!45#;;%59(#;B02+,,,!20*01%9%*-+,,,,,!089AR%@+=0-%KS3Y;5#$%$3&-AR%@?('%!4089AR%@+,,,!420*01%9%*-+,!4"#$%&'()%*+,

More information

CORSO DI FISICA NUCLEARE - PAOLO FINELLI DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

CORSO DI FISICA NUCLEARE - PAOLO FINELLI DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA Fission 1 DIP FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA Nuclear Fission 2 DIP FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA 3 DIP FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA Fission timeline - I 4 DIP

More information

A i A i. µ(ion) = Z i X i

A i A i. µ(ion) = Z i X i Lecture 2 Review: calculation of mean atomic weight of an ionized gas (µ) Given a mass fraction X i (or abundance) for an ionic (or atomic) species with atomic weight A i, we can can calculate µ by: For

More information

8. The evolution of stars a more detailed picture

8. The evolution of stars a more detailed picture 8. The evolution of stars a more detailed picture 8.1Pre Main-Sequence Evolution Evolution onto the main sequence begins with a cloud of cold gas which contracts under self-gravity. Potential Energy is

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

Carol and Charles see their pencils fall exactly straight down.

Carol and Charles see their pencils fall exactly straight down. Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along

More information

Curriculum for Excellence. Higher Physics. Success Guide

Curriculum for Excellence. Higher Physics. Success Guide Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with

More information

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy . The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it

More information

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:

More information

Stellar Evolution. The Basic Scheme

Stellar Evolution. The Basic Scheme Stellar Evolution The Basic Scheme Stars live for a very long time compared to human lifetimes. Even though stellar life-spans are enormous, we know how stars are born, live, and die. All stars follow

More information

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size. Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus

More information

NMR - Basic principles

NMR - Basic principles NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons

More information

Phase Transitions in the Early Universe

Phase Transitions in the Early Universe Trick Phase Transitions in the Early Universe Electroweak and QCD Phase Transitions Master Program of Theoretical Physics Student Seminar in Cosmology Author: Doru STICLET Supervisors: Prof. Dr. Tomislav

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

The Universe. The Solar system, Stars and Galaxies

The Universe. The Solar system, Stars and Galaxies The Universe The Universe is everything. All us, the room, the U.S. the earth, the solar system, all the other stars in the Milky way galaxy, all the other galaxies... everything. How big and how old is

More information

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions Meeting the Grand Challenge of Protecting an Astronaut s Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions Ram Tripathi NASA Langley Research Center NIAC 2012 Spring Symposium,

More information

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth ASACUSA ECFA, 4 October 2013, Wigner FK, Budapest p. 1/19 ASACUSA: Measuring the Antiproton Mass and Magnetic Moment Dezső Horváth on behalf of the ASACUSA Collaboration horvath.dezso@wigner.mta.hu

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

MCQ - ENERGY and CLIMATE

MCQ - ENERGY and CLIMATE 1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated

More information

How To Understand The Physics Of Electromagnetic Radiation

How To Understand The Physics Of Electromagnetic Radiation Ay 122 - Fall 2004 Electromagnetic Radiation And Its Interactions With Matter (This version has many of the figures missing, in order to keep the pdf file reasonably small) Radiation Processes: An Overview

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

Gamma Ray Detection at RIA

Gamma Ray Detection at RIA Gamma Ray Detection at RIA Summary Report: Physics & Functional Requirements Cyrus Baktash Physics goals Experimental tools: Techniques & Reactions Functional Requirements Physics Questions (Discussed

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of

More information

How the properties of galaxies are affected by the environment?

How the properties of galaxies are affected by the environment? How the properties of galaxies are affected by the environment? Reinaldo R. de Carvalho - DAS/INPE Marina Trevisan Reinaldo Rosa The activities in this project follow from the Tatiana Moura general context

More information

Introduction and Origin of the Earth

Introduction and Origin of the Earth Page 1 of 5 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Introduction and Origin of the Earth This page last updated on 30-Jul-2015 Geology, What is it? Geology is the study of

More information

Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB)

Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System. Man Hoi Lee (UCSB) Resonant Orbital Dynamics in Extrasolar Planetary Systems and the Pluto Satellite System Man Hoi Lee (UCSB) Introduction: Extrasolar Planetary Systems Extrasolar planet searches have yielded ~ 150 planetary

More information

Presentation to the Board on Physics and Astronomy. Office of Nuclear Physics Office of Science Department of Energy April 21, 2006

Presentation to the Board on Physics and Astronomy. Office of Nuclear Physics Office of Science Department of Energy April 21, 2006 Presentation to the Board on Physics and Astronomy Office of Nuclear Physics Department of Energy April 21, 2006 Dennis Kovar Associate Director of the for Nuclear Physics U.S. Department of Energy U.S

More information

Observing the Universe

Observing the Universe Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

More information

Perfect Fluids: From Nano to Tera

Perfect Fluids: From Nano to Tera Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Transcript 22 - Universe

Transcript 22 - Universe Transcript 22 - Universe A few introductory words of explanation about this transcript: This transcript includes the words sent to the narrator for inclusion in the latest version of the associated video.

More information

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Disclaimer We do not know what will be discovered. This is the reason we perform experiments. This is the reason scientific research

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

A SUSY SO(10) GUT with 2 Intermediate Scales

A SUSY SO(10) GUT with 2 Intermediate Scales A SUSY SO(10) GUT with 2 Intermediate Scales Manuel Drees Bonn University & Bethe Center for Theoretical Physics SUSY SO(10) p. 1/25 Contents 1 Motivation: SO(10), intermediate scales SUSY SO(10) p. 2/25

More information

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser V.Nassisi #, G.Caretto #, A. Lorusso #, D.Manno %, L.Famà %, G.Buccolieri %, A.Buccolieri %, U.Mastromatteo* # Laboratory of Applied

More information

Exploring the Universe Through the Hubble Space Telescope

Exploring the Universe Through the Hubble Space Telescope Exploring the Universe Through the Hubble Space Telescope WEEK FIVE: THE HUBBLE DEEP FIELD + LIMITATIONS OF HUBBLE, COLLABORATIONS, AND THE FUTURE OF ASTRONOMY Date: October 14, 2013 Instructor: Robert

More information

Advanced Topics in Physics: Special Relativity Course Syllabus

Advanced Topics in Physics: Special Relativity Course Syllabus Advanced Topics in Physics: Special Relativity Course Syllabus Day Period What How 1. Introduction 2. Course Information 3. Math Pre-Assessment Day 1. Morning 1. Physics Pre-Assessment 2. Coordinate Systems

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC Parte 1: Carlos A. Salgado Universidade de Santiago de Compostela csalgado@usc.es http://cern.ch/csalgado LHC physics program Fundamental

More information