ANALYTICAL CHARACTERIZATION OF WLANS FOR QUALITY-OF-SERVICE WITH ACTIVE QUEUE MANAGEMENT

Size: px
Start display at page:

Download "ANALYTICAL CHARACTERIZATION OF WLANS FOR QUALITY-OF-SERVICE WITH ACTIVE QUEUE MANAGEMENT"

Transcription

1 M USHA AND K MADHANA: ANALYTICAL CHARACTERIZATION OF WLANS FOR QUALITY-OF-SERVICE WITH ACTIVE QUEUE MANAGEMENT ANALYTICAL CHARACTERIZATION OF WLANS FOR QUALITY-OF-SERVICE WITH ACTIVE QUEUE MANAGEMENT M. Usa 1 and K. Madana 2 1 SonaNET Network Computng Researc Center, Sona Coege of Tecnoogy, Inda E-ma: usa@sonatec.ac.n 2 Department of Computer Scence, Sona Coege of Tecnoogy, Inda E-ma: ksmadana11@gma.com Abstract Desgn of an Actve Queue Management sceme at te Access Pont to address te probem of congeston contro, packet deay varaton and packet oss rate s dscussed. Te proposed mecansm cacuates and adjusts redundancy rate adaptvey at te access pont by consderng bot network traffc oad and wreess canne condton. Rea-tme appcatons suc as Mobe earnng and smart earnng need te speca treatment and requre dfferentated QoS to satsfy te cent wo s ready to pay more tan oters. Mantanng te jtter vaue of te mutmeda packets beow te tresod s essenta to guarantee te desrabe quaty of te vdeo at te recever. Te work ntay concentrates on mnmzng te packet oss of suc prorty fows and tey ave to be gven pace n te queue even at te tme of buffer overfow. Tus te proposed work uses pus-out pocy to provde dfferentated servces to te mutmeda fow wc aceves consderabe mprovement n te vdeo quaty at te recever. Te consderabe decrease n packet oss rate and speca treatment n te queue of te access pont owers te packet deay varaton of te mutmeda fow. Te resuts sow tat te AQM used at te access pont effectvey aceves ow packet oss, ow jtter usng dfferentated FEC rate cacuaton wtout generatng congeston n te wreess network. Keywords: Actve Queue Management, Wreess Access Pont, Quaty of Servce, Pus-Out Pocy 1. INTRODUCTION As Tecnoogy s attanng vast growt, numbers of users prefer to connect to te Internet troug wreess devces. A varety of mutmeda servces ke vdeo conferencng, Ondemand earnng, mobe earnng are n g demand and tus face dverse caenges suc as attenuaton, fadng, nterference from actve sources durng transmsson n wreess network envronments. Suc caenges ead to packet osses wc are recovered by two tecnques: Automatc Repeat Request (ARQ) and Forward Error Correcton (FEC). ARQ recovers packets by retransmttng te ost packets durng tmeouts or respondng to te expct requests from te recever wereas FEC [9], [10] acts n advance by sendng redundant packets aong wt orgna packets to recover successfuy at te recever n case of packet osses. Out of te two approaces, FEC guarantees te ow retransmsson deay and varaton n deay (aso known as jtter ) and tus sutabe for rea-tme data transmsson. Mutmeda data fnds te way dffcut to transmt troug wreess network because of ow bandwdt, packet osses and deay. Wt te rapd ncrease of data transmsson ncudng data, voce, vdeo and mobty supported by a common IP patform, quaty-of-servce provsonng as grabbed prmary focus from te probem of congeston contro. Snce varous types of traffc are carred troug te Internet, mutmeda fow requres dfferentated servces from oter network servces. Te Actve Queue Management (AQM) mecansms are epfu for provdng dfferentated servces to reduce deay varaton or jtter, packet oss and bandwdt dependng on mutuay agreed upon servce eve agreements (SLA). Rea-tme appcatons requre QoS guarantees suc as g trougput, bandwdt [1]- [3], ow deay and jtter to transmt te audo or vdeo wt better quaty. A guarantee, n te sense, fxes a maxmum tresod above wc degradaton n quaty must not ncrease. In te mutmeda transmsson used n appcatons suc as Learnng-on-Demand, packet deay varaton s not acceptabe. Jtter s defned as an end-to-end deay between te seected packets n a partcuar fow. Te nter-packet arrva tme pays an mportant roe n provdng QoS for rea-tme appcatons. Te dfferentated servces are needed to reduce packet deay and varaton to mprove mutmeda quaty. Congeston contro s agan a bg caenge n wreess networks. Congeston affects te QoS caracterstcs and so t soud be effectvey managed by te queue management mecansms. Ta drop s one suc mecansm to contro congeston [4]. It drops te packets at te ta of te queue durng buffer overfow. It s not sutabe for rea-tme data transmsson. AQM [5]-[7] s proposed to contro end-to-end congeston by adaptng Random Eary Detecton (RED) [8] wc drops te packets earer to avod congeston to emnate buffer overfow. Tus t aceves g system utzaton and ow packet deay and suts for rea-tme appcatons. Te fundamenta contrbutons of ts work are: Reducng packet oss rate by usng FEC mecansm. Controng congeston usng AQM mecansm. Reducng packet deay and jtter to aceve mutmeda quaty. Te mecansm caed prorty-based FEC (PFEC) s proposed to attan above acevements. To dffer from te prevous study [35], we ncude Jtter anayss at te Access Pont (AP) eve for rea-tme data transmsson. 2. RELATED WORK Tere are many researces wc ave been done on AQM mecansms and FEC cacuaton to provde QoS. Many sender based FEC cacuatons takes fnte duraton and degrades te receved data performance. Many tradtona AQM mecansms adapt RED wc randomy drops packets wen te buffer overfows and not sutabe for rea tme mutmeda appcatons. 970

2 ISSN: (ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: AQM MECHANISM Foyd proposed RED agortm [8] wc s a smpe mecansm and contros congeston by accompanyng te transport ayer congeston contro protoco. Te RED gateways can detect congeston pror by contnuousy montorng te average queue sze. RED works n contrast to oter tradtona queue mecansms. RED drops te packets wt a probabty accordng to te queue sze. Wen te average queue sze grows, te droppng probabty aso ncreases and reaces 1 wen te buffer s fu. Te dsadvantage of RED agortm s tat t does not provde dfferentated QOS [15]. Snce a snge set of RED parameters are not avaabe t does not react we to dfferent congeston scenaros [19]. Te ntegraton of te RED mecansm wt te prorty scedung paves souton for congeston contro and servce dfferentaton n [12]-[14]. Te sceme uses parttoned buffer wt correspondng tresods. If te sze of a partcuar cass s fed ten te packets wt ger prorty tan tat of te fed cass w enter nto te queue and tose wt ower prorty w be dropped. But ts sceme uses Sort-Range-Dependent (SRD) arrva processes and so SRD cannot capture mutmeda traffc nature [15]. To remove ts compexty an anaytca mode [15] s ntroduced, wc aceves servce dfferentaton for dfferent types of traffc fowng troug te traffc. Te buffer [X 0 - X k ] s vrtuay dvded nto many parttons suc as [X 0 -X 1,,X - X +1,,X k-1 -X k ] as n buffer partton [16]. Te packets of eac fow occupy te correspondng partton. If any partcuar partton gets fed ten te packets of correspondng fow w be dropped and ony te packets of ger prorty fow w be aowed. Te ssue presented ere s tat te sceme foows norma FIFO tecnque for vrtua buffers wc drops te ncomng ger prorty fows wen te capacty of te respectve partton overfows. Te buffer partton sceme [16] s ntroduced to manage mut-cass buffer and admsson contro for te buffer. It extends te bandwdt concept to utze te bandwdt effcenty by te Markovan traffc. Te tresods of te parttoned buffer are adaptvey canged to toerate te oss probabtes of te ncomng traffc and to manage te nput traffc oad nto te network. An agortm caed Loss Rato-based RED (LRED) [6] s deveoped to contro congeston, aceve nk utzaton and ow deay. It mantans stabty of te network by adaptve adjustment of te network parameters. It montors te average packet oss rato to adjust te droppng probabty of te packet adaptvey to mantan te queue engt stabe. It aceves fast response tme and good robustness. 2.2 PUSH-OUT POLICIES Tere ave been many pus-out poces deveoped to utze te buffer effcenty and to mantan a constant rato of packet oss rate among dfferent traffc fows. Te concept of mantanng mutpe casses for dfferent fows eads to g computng compexty n mut-cass pusout pocy. To overcome ts probem, Parta Buffer Sarng [16] as been desgned. Yet tey drop te ncomng ger prorty packets wen te buffer overfows toug tere are ower prorty packets avaabe n te buffer. An effcent buffer sarng sceme [17] n ATM swtces s aso dscussed to emnate te same above probem. It repaces te ess mportant packets n te queue by te ncomng g prorty packets wen te average queue sze exceeds te maxmum tresod. Ts sceme attracts te researcers for ts smpe mpementaton and g performance. Te droppng of ger prorty packets s emnated by te pus-out pocy [18] wt AQM wc s deveoped n IP routers. It works by ettng te ger prorty packets to enter te queue by dscardng ower prorty packets aready present n te queue even wen te buffer overfows. It reduces packet oss rate compared to RED. Anoter mecansm caed Fow-based Prorty Queung (FPQ) [32] s ntroduced to gve preference to rea-tme UDP fows at ntermedate routers. Tus t reduces packet oss rate, deay and jtter and at te same tme t mantans farness among a te ncomng traffc fows. 2.3 FEC MECHANISM Many FEC mecansms provde dynamc QOS contro of rea-tme mutmeda appcatons. Sender-based mecansms [19], [20] cacuate te redundancy rate at te sender wc takes fnte duraton because of recevng oss reports from te recever. Aso t does not ensure tat te sender predcts te current network condton. It causes varaton n te deay between recevng packets at te recever wc greaty affects te mutmeda quaty. Durng congeston t ncreases te rate of redundant packets wc may furter ncrease te congeston and degrade te network performance. Access-pont based approaces ave been proposed to emnate te duraton needed by te sender for redundancy rate cacuaton. Te RED-FEC mecansm [21] does t and contros congeston by decreasng redundancy rate as queue sze ncreases. It works by ncreasng redundant rate as te queue sze decreases and decreasng te rate wen te average queue sze exceeds te maxmum tresod. Te mtaton ere s tat t does not consder te packet oss rate. Te cross-ayer based FEC mecansm Adaptve Cross Layer FEC Mecansm [22] as been ntroduced to ncude te packet oss rate for redundancy rate cacuaton wc s retreved from te ARQ functon of te MAC ayer. In ts mecansm, te redundant rate canges n proporton to te packet oss percentage. It ncreases te redundant rate wen numbers of packets are ost and decreases wen packet oss s decreasng. But t does not consder network traffc oad for rate cacuaton. ERED-FEC mecansm [23] as been deveoped to cacuate te redundancy rate dependng on bot factors suc as wreess canne condton and network traffc oad to emnate te probem of congeston due to excessve number of ntroductons of redundant packets wc s found n te above two Access Pont based approaces. Te mtaton found ere s tat t cannot provde dfferentated QoS wc s essenta for mutmeda traffc to aceve better QoS. 2.4 JITTER REDUCTION APPROACHES A Jtter Detecton metod [24] as been proposed for gateway-based congeston contro to transmt mutmeda n packet swtced networks. It ntroduces an AQM mecansm to 971

3 M USHA AND K MADHANA: ANALYTICAL CHARACTERIZATION OF WLANS FOR QUALITY-OF-SERVICE WITH ACTIVE QUEUE MANAGEMENT mprove QoS for mutmeda transmsson by jtter detecton. It reduces jtter by detectng and dscardng mutmeda packets wc accumuated more jtter to mantan g bandwdt for oter good mutmeda packets. Te packets wc accumuated jtter more tan te jtter toerance eve become useess for cents to recover tem and tey degrades te QoS of te entre mutmeda fow. Tus ts metod emnates quaty degradng and contros congeston by droppng unwanted packets. Te jtter reducton not ony provdes g bandwdt but aso aceves g trougput for mutmeda fow. It s more essenta to evauate te quaty of mutmeda usng appcaton-eve evauaton metrc ke Decodabe Frame Rate (DFR) tan network-eve metrc suc as packet deay, packet oss rate. Te DFR evauaton [25] s used to anayze te effects of ossy wreess networks. A comparson of dstrbuton packet oss and burst packet oss n wreess networks s done. Te effect of te sze of te pay-out buffer and te sze of te transmsson are dscussed because tey affect te jtter quaty of te receved vdeo. Te packets wc arrve at te recever ater tan te needed tme are dropped from te pay-out buffer wc affects te vdeo quaty. It s now evdent tat PFEC mecansm resuts n controng congeston and reducng jtter for mutmeda transmsson. Tus t mantans farness among a te ncomng fows and gves servce dfferentaton to te preferred fow of mutmeda by dfferentated FEC redundancy rate cacuaton. 3. PROPOSED WORK Te current work focuses on an AQM sceme at te AP to mprove Quaty-of-Servce of te mutmeda data aong wt FEC redundancy rate cacuaton by prortzng te ncomng traffc. Intay te mode of te system s expaned and ten a quatatve study s performed n ts secton. 3.1 SYSTEM MODEL Te topoogy assumed ere s ustrated n Fg.1. Te system cassfes te ncomng packets as TCP avng varabe bt rate and UDP avng constant sendng rate. Wen te sender s ready to send te vdeo fe tey are encapsuated as vdeo packets at te appcaton ayer. Te dentfcaton of mutmeda stream s based on encodng n te protoco fed of te IPv4 eader at te network ayer. Te prorty of te partcuar fow s set by te sender n te Dfferentated Servce Code Pont (DSCP) fed of te IPv4 eader. In te MAC ayer, te ARQ functon s responsbe to contro congeston by adjustng te transmsson rate of te sender after recevng te response from te network. At te access pont, severa functons w be performed as sown n Fg.2. FEC encodng s performed on te ncomng packets we sendng tem out of te access pont. Te prorty of ncomng fow s cecked n te DSCP fed of te IP eader. Te packet oss montor contnuousy montors te wreess canne condton and cacuates te packet oss of eac fow. Snce te evauaton metrc caed Decodabe Frame Rate (DFR) s essenta for appcaton eve users, te quaty of te vdeo s measured usng DFR wc w be expaned ater. Te network traffc montor anayses te network to fnd te oad tat s carred by te network at te gven pont of tme. It s needed to adjust te redundancy rate expaned as foows. Te FEC redundancy rate cacuaton ncudes two pases for eac prorty fows. It frst montors te queue engt and compares t wt tresod vaues. If te queue engt s ess tan te mnmum tresod ten maxmum number of redundant packets w be generated. If te queue engt s more tan te maxmum tresod ten no redundant packets w be generated. Oterwse FEC packets are generated based on te data sze fracton n te queue. It ten adaptvey adjusts te FEC rate accordng to packet retransmsson tme. If te packets of te partcuar fow need maxmum number of retransmsson ten t w sow tat te fow s experencng g oss or error. So te rate ncreases to overcome te oss. Sender Internet Access Pont Recever k k k Fg.1. System Mode FEC Cacuaton Pusout Pocy Network Traffc Load Montor Decodabe Frame Rate Packet Loss Montor Prorty Ceckng Packet Bock Fg.2. Functons of te Access Pont On te oter and, f te packets need zero or mnmum number of retransmsson ten te AP w reaze tat te network condton s good. So tere s no need to send te redundant packets and tus te rate decreases accordngy. 1) If te ncomng packet s of g prorty, packet retransmsson tme s ow snce te queue gves more preference to tem by te preempton of ow prorty packets present n te queue durng te buffer overfow; no or mnmum number of FEC redundant packets ave to be encoded. 972

4 ISSN: (ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: 03 2) If te ncomng packet s of ow prorty, packet retransmsson tme s g due to te g oss rate of tem wen compared to g prorty packets; FEC redundancy rate s g to baance te oss rate. Ts provdes farness to ow prorty fows. Te Access Pont adjusts te redundancy rate for ncomng traffc to provde dfferentated servce, based on wreess canne condton and network traffc oad to avod packet oss and contro congeston, and to reduce te jtter. 3.2 QUALITATIVE ANALYSIS Consder te sender transmts te vdeo fe wt k packets per transmsson bock. Te tota number of vdeo packets to be sent s N pkt. Accordng to EAFEC, t s proposed tat te effectve packet oss rate s gven by, k 1 k t 1 P P k t C T T 0 max max PFEC Pbock (1) k were, T max defnes te maxmum retransmsson tme, P bock defnes te probabty of a bock tat as not been recovered at te recever. P k 1 P P k k FEC C k Tmax Tmax 1 (2) P Tmax defnes te probabty of a packet tat as not been receved correcty. P T max T max 1 P P (3) correct were, P pkt ndcates te probabty of a packet s faure wen t s transmtted just one tme, P correct ndcates te probabty k of a packet wc s receved correcty and C ndcates a possbe combnatons of packets receved n a bock successfuy. E R Te Pusout Pocy [18] proposed tat pkt C M t C N t E C M t C Nt t 0 1 R 0 1 t were, C = cost of a ost ger prorty packet, C = cost of a ost ower prorty packet, M(t) and N(t) are number of ger and ower prorty packets tose are dropped and E(.) denotes expectaton of cost of dropped packet. R denotes te pocy n wc te buffer s consdered as vrtuay parttoned as two portons Q 1 and Q 2. Te ncomng packets w be dropped wen te woe buffer overfows. If Q 1 s not fed ten a te packets w be aowed to enter te queue. If Q 1 s fed and Q 2 s not fed te ncomng packets w be dropped wt some droppng probabty. R 1 s te subset of R and denotes pus-out pocy. If Q 1 s not fed ten a te fows w enter te queue. If Q 1 overfows and Q 2 s not fed ten ger prorty fows w append at te ta of te queue and ower prorty fows w be dropped wt some droppng probabty. If te woe buffer overfows ten te 1 (4) ncomng ger prorty packets w repace te aready occuped ower prorty packets n te queue. Te prevous study proves tat P bock P bock k 1 k 1 C X 0 k 1 k 2 C X 0 P (5) FEC P FEC 1 X 1 PT max k 1 1 X P T max k 2 PT max P T max k 1 t X k 2 t X were, P FEC and P FEC ndcate te effectve packet oss rate of ger prorty and ower prorty fows respectvey. P T max and T (6) P max denote te maxmum retransmsson rate of g and ow prorty fows respectvey. Snce preempton tecnque foowed by te queue gves more preference to ger prorty fows, tey face mnmum oss. So te retransmsson rate of suc packets s becomng ow and te number of redundant packets to be appended s ess. In contrast, snce ower prorty fows face g oss wen compared to ger prorty fows, retransmsson rate and te number of redundant packets generated for suc fows s g. Ts makes te woe eft and sde term to be esser tan rgt and sde term n Eq.(6) Standard Devaton Cacuaton: To cacuate te standard devaton, te varaton n packet deay soud be known. Deay varaton or jtter s defned as devaton from te dea tmng of an event. In oter words, jtter of a packet denotes te dfference between recevng tme and sendng tme of te packet. Te Eqs.(7-9) present tese. Send_Tme_Dff = send_tme[] - send_tme [-1] (7) Recv_tme_Dff = recv_tme[] - recv_tme [-1] (8) j = Recv_Tme_Dff[] Send_Tme_Dff[] (9) were, j ndcates te jtter for eac transmtted packet. Te term recevng tme of a packet at te recever depends on te factors ke propagaton deay, queung deay, retransmsson tme f t as been ost. Te terms suc as queung deay and retransmsson tme grabbed te major concentraton n ts work. Standard devaton s cacuated as foows: 1 N pkt 2 j 1 (10) N pkt were, µ ndcates mean of jtter vaues n Eq.(10) Decodabe Frame Rate: Te vdeo fe s transmtted troug te network as segment of sma packets. A frame s sad to be decodabe frame f and ony f at east enoug number of packets n te frame reaced te recever so tat te woe frame can be recovered at te recever successfuy even f one or more packets n te frame ave been ost. Te MPEG terature [28] defnes a standard n wc tere are tree frame types I, P, B frames n te compressve vdeo streams. Te I frames are encoded ndependenty. Te P frames 973

5 Effectve Packet Loss Rate M USHA AND K MADHANA: ANALYTICAL CHARACTERIZATION OF WLANS FOR QUALITY-OF-SERVICE WITH ACTIVE QUEUE MANAGEMENT are encoded dependng on precedng I or P frames n te vdeo sequence. Te B frames are encoded dependng on te proceedng and succeedng I or P frames n te vdeo sequence. It s customary to cacuate te appcaton eve metrc, DFR, denoted as (Q), as sown n Eq.(11). Ndec Q Ntota Ntota N (11) tota were, N dec = Tota number of decodabe frames n te fow, N tota = Tota number of I frames, N tota P = Tota number of P frames and N tota B = Tota number of B frames. Te vaue of Q ranges between 0 and 1.0. If Q s 1 ten te frame w be competey sensbe tat oss of even one packet w make te frame undecodabe. If Q s 0.6 ten te frame w be consdered as decodabe and at most of 50% packets n te frame can be ost. Te cacuaton of DFR mpes tat te mecansm s aert about te oss of te most mportant frames n te frame. Toug te oss probabty of a packets n a partcuar fow s same, te oss of most mportant frame eads te oter dependent frame on t as undecodabe one. Hence te oss probabty of I frames s gy senstve. 4. RESULTS AND DISCUSSIONS Te proposed system s vadated wt te performance evauaton. Te vdeo fe s transmtted as many bocks eac of wc contans k (assume k = 8) vdeo packets. It s assumed to be transmtted usng uncast transmsson. Te maxmum retransmsson tme needed for eac ost packet s assumed as T max = 4. Consder n traffc fows be enterng te wreess network troug te Access Pont among wc m fows are Vdeo-on-Demand traffc. Te m mutmeda traffc are usng UDP as a transport protoco and remanng n-m traffc are consdered as TCP fows Effectve packet oss rate comparson P B ow_prorty_fow g_prorty_fow Te maxmum number of redundant packets to be generated for eac bock of 8 packets s 8. Te redundant rates for ower prorty fow s assumed ntutvey as 2 = 0,1,2,3,4,5,6 and tat for g prorty fow as 1 = 2,3,4,5,6,7,8. Hence, wen te packet oss s ow te number of redundant packets generated for te ow prorty fow s 6 and tat for QoS requred fow s 8. No redundant packets woud be generated for ow prorty packets and mnmum number of redundant packets (say 2) woud be generated for g prorty packets even at te tme of g packet oss. From te quatatve anayss of te prevous study [35], a grap s sown to compare te effectve packet oss rate of norma TCP fow and user demanded mutmeda fow n Fg.3. Te grap sows tat te effectve packet oss rate of mutmeda fow s consderaby ess tat of norma ower prorty fow. 4.1 JITTER COMPARISON WITH AP-BASED FEC APPROACHES From te extenson of te prevous study [35], anayss s done addtonay on te evauaton metrc.e., jtter. Te performance comparson of jtter vaues obtaned for te mutmeda fow usng ts mecansm are compared wt tat of EAFEC, one of te Access Pont based FEC mecansms. As we ave anayzed n te secton 3.2, te queue at te access pont provdes speca treatment to ger prorty fow. As a resut, te retransmsson tme for suc fow s ess because tey face ess packet oss n te wreess network. Aso te ower prorty packets are gettng repaced by te ger prorty one durng te buffer overfow. So te g prorty fows do not suffer from g deay we watng n te queue.e., queung deay and beng processed n te queue. On te woe te preferred packets reac te recever qucky wen compared to oter fows. Ts, n turn, owers te jtter j for te preferred mutmeda fow. On anayzng Eq.(10), te terms j and µ become substantay ess for te cent preferred fow wc consderaby mnmzes te standard devaton (σ) of te fow. Tus te PFEC mecansm aceves ower packet deay varaton for te mutmeda fow as sown n Fg.4. Te grap compares te jtter vaues n some frames of a transmtted vdeo usng EAFEC wt PFEC mecansm. It proves tat te jtter vaues n proposed approac are mantanng ess vaue trougout te transmsson of te vdeo fe wen compared to tat n te exstng approac. 5. CONCLUSION Packet Loss Rate Fg.3. Comparson of effectve packet oss rate of ger and ower prorty fows Adaptve FEC mecansm PFEC s proposed to mprove te QoS of te mutmeda traffc wt congeston contro. Te quatatve anayss for te metrcs packet oss rate and jtter are presented. Te resuts sow ow jtter and ow packet oss due to effectve management of congeston usng adaptve FEC wt effectve AQM. Te redundant rate cacuaton dependng on te prorty of te fows enabes te mecansm to provde servce dfferentaton to te mutmeda packets. Incuson of adaptve bandwdt adjustment based on wreess canne condton w be consdered as a future work. 974

6 Jtter ISSN: (ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, SEPTEMBER 2014, VOLUME: 05, ISSUE: Jtter Comparson EAFEC PFEC Frame Number Fg.4. Comparson of Jtter n Proposed Approac PFEC wt Exstng Approac EAFEC REFERENCES [1] Lu Png, S. C. Evans and Weerakoon Isan, Mutmeda QoS troug Content Aware Trage: An Integrated DffServ Framework, IEEE Mtary Communcatons Conference, pp. 1-6, [2] T. J. F. Omnes, T. Franzett and F. Cattoor, Interactve co-desgn of g trougput embedded mutmeda, Proceedngs of te IEEE Desgn Automaton Conference, pp , [3] C. Overa, Jame Bae Km and T. Suda, An adaptve bandwdt reservaton sceme for g-speed mutmeda wreess networks, IEEE Journa on Seected Areas n Communcatons, Vo. 16, No. 6, pp , [4] Su Gang Lu, Smuaton and evauaton of random eary detecton n congeston contro, Proceedngs of te Internatona Conference on Macne Learnng and Cybernetcs, Vo. 4, pp , [5] K. Cavan, R. G. Kumar, M. N. Beur and A. Karandkar, Robust actve queue management for wreess networks, IEEE Transactons on Contro System Tecnoogy, Vo. 19, No. 6, pp , [6] C. Wang, J. Lu, B. L, K. Soraby and Y. T. Hou, LRED: a robust and responsve AQM agortm usng packet oss rato measurement, IEEE Transactons on Parae and Dstrbuted Systems, Vo. 18, No. 1, pp , [7] Geyong Mn and Xaoong Jn, Performance Modeng of Random Eary Detecton Based Congeston Contro for Mut-Cass Sef-Smar Network Traffc, IEEE Internatona Conference on Communcatons, pp , [8] S. Foyd and V. Jacobson, Random Eary Detecton Gateways for Congeston Avodance, IEEE/ACM Transactons on Networkng, Vo. 1, No. 4, pp , [9] J. Dan, F. Pasca and J. Aeksandar, Forward error correcton for mutpat meda streamng, IEEE/ACM Transactons on Crcuts and Systems for Vdeo Tecnoogy, Vo. 19, No. 9, pp , [10] E. Maan and A. K. Katsaggeos, Unequa error protecton for robust streamng of scaabe vdeo over packet ossy networks, IEEE Transactons on Crcuts and Systems for Vdeo Tecnoogy, Vo. 20, No. 3, pp , [11] A. Nafaa, T. Amed and A. Meaoua, Unequa and ntereaved FEC protoco for robust MPEG-4 mutcastng over wreess LANs, Proceedngs of te IEEE Conference on Communcatons, Vo. 3, pp , [12] Y. Ceng and W. Zuang, Effectve bandwdt of mutcass Markovan traffc sources and admsson contro wt dynamc buffer parttonng, IEEE Transactons on Communcatons, Vo. 51, No. 9, pp , [13] A. Ioannou and M. G. H. Katevens, Ppened eap (prorty queue) management for advanced scedung n g-speed networks, IEEE/ACM Transactons on Networkng, Vo. 15, No. 2, pp , [14] Y. L and S.-H. Yang, PC-RED for IPv6: agortm and performance, Proceedngs of te IEEE Internatona Conference on Communcatons, pp , [15] Geyong Mn and Xaoong Jn, Anaytca Modeng and Optmzaton of Congeston contro for prortzed Mut- Cass Sef-Smar traffc, IEEE Transactons on Communcatons, Vo. 61, No. 1, pp , [16] Cuang Ln and Yn L, Dynamc Parta Buffer Sarng sceme: Proportona Packet Loss Rate, Proceedngs of te Internatona Conference on Communcaton Tecnoogy, Vo. 1, pp , [17] D. W. Petr and V. S. Frost, Nested tresod ce dscardng for ATM overoad contro: Optmzaton under ce oss constrants, Proceedngs of te Tent Annua Jont Conference of te IEEE/ACM Computer and Communcatons Socetes, Vo. 3, pp , [18] M. Usa and R. S. D. Wada Banu, Pus-out Pocy n Actve Queue Management to support quaty of servce guarantes n IP Routers, Tent IEEE Internatona Conference on Communcaton Systems, pp. 1-5, [19] K. Takaata, N. Ucda and Y. Sbata, Packet error and frame rate contros for rea tme vdeo stream over 975

7 M USHA AND K MADHANA: ANALYTICAL CHARACTERIZATION OF WLANS FOR QUALITY-OF-SERVICE WITH ACTIVE QUEUE MANAGEMENT wreess LANs, Proceedngs of te 23 rd Internatona Conference on Dstrbuted Computng Systems Worksops, pp , [20] I. V. Bajc, Effcent cross-ayer error contro for wreess vdeo mutcast, IEEE Transactons on Broadcastng, Vo. 53, No. 1, pp , [21] C. H. Ln, C. K. Se, N. K. Camkurt, C. H. Ke and W. S. Hwang, A RED-FEC mecansm for vdeo transmsson over WLANs, IEEE Transactons on Broadcastng, Vo. 54, No. 3, pp , [22] L. Han, S. Park, S. Kang and H. P. In, An adaptve crossayer FEC mecansm for vdeo transmsson over WLANs, Proceedngs of te Frst Internatona Conference on Internet, pp , [23] Ceng-Han Ln, Ce-Kuen Se and Wen-Syang Hwang, An Access pont-based FEC mecansm for vdeo transmsson over wreess LANs, IEEE Transactons on Mutmeda, Vo. 15 No. 1, pp , [24] Su-Png Can, C-Wa Kok and Abert K. Wong, Mutmeda Streamng Gateway Wt Jtter Detecton, IEEE Transactons on Mutmeda, Vo. 7, No. 3, pp , [25] Ceng-Han Ln, C-Heng Ke, Ce-Kuen Se and Naveen K Camkurt, Te Packet Loss Effect on MPEG Vdeo Transmsson n Wreess Networks, Proceedngs of te 20 t Internatona Conference on Advanced Informaton Networkng and Appcatons, Vo. 1, pp , [26] Jrka Kaue, EvaVd - A Vdeo Quaty Evauaton Tooset, Avaabe at: [27] NS-2 Mutmeda Communcaton too, Avaabe at: ttp:// /~smako/ns2/mutmedacomm_en. tm. [28] Joan L. Mtce, W. Pennebaker, Cad E. Fogg and Dder J. Lega, MPEG Vdeo: Compresson Standard, Capman and Ha, [29] C. H. Ln, C. H. Ke and C. K. Se, A study of MPEG Vdeo Transmsson n Lossy Wreess Network, Worksop on Wreess, Ad Hoc and Sensor Networks, pp , [30] X. Jn and G. Mn, Modeng and anayss of prorty queueng systems wt mut-cass sef-smar network traffc: a nove and effcent queue decomposton approac, IEEE Transactons on Communcaton, Vo. 57, No. 5, pp , [31] M. Usa and R. S. D. Wada Banu Towards a smpe servce cass for dstrbuted Mutmeda Appcatons n next generaton IP networks, Proceedngs of Internatona Conference on Parae and Dstrbuted Computng and Systems, pp , [32] M. Usa, Enanced Quaty of Servce troug Jtter Contro for Next Generaton Servce Computng, Proceedngs of Natona Conference on Advanced Computng, [33] Sanjeev Merotra, Jn L and Yng-Zong Huang, Optmzng FEC Transmsson Strategy for Mnmzng Deay n Lossess Sequenta Streamng, IEEE Transactons on Mutmeda, Vo. 13, No. 5, pp. 1-23, [34] ZHAO Mn-ceng, GONG Xang-yang, QUE X-rong, WANG Wen-dong and CHENG S-duan, Contextaware adaptve actve queue management mecansm for mprovng vdeo transmsson over IEEE E WLAN, Te Journa of Cna Unverstes of Posts and Teecommuncatons, Vo. 19, No. 2, pp , [35] M. Usa and K. Madana, Dfferentated QoS Framework for Vdeo Transmsson over Wreess LANs Usng Pus-out Pocy, IEEE Internatona Advance Computng Conference, pp ,