What is the difference between basal and activated transcription?

Size: px
Start display at page:

Download "What is the difference between basal and activated transcription?"

Transcription

1 What is the difference between basal and activated transcription?

2 Regulation of Transcription I. Basal vs. activated transcription for mrna genes A. General transcription factor (TF) vs. promoterspecific 1. general TFs are required by all mrna genes a. an absolute requirement b. transcription can occur alone with these factors is by definition the basal level of transcription 2. promoter-specific TFs are different for each gene 3. the promoter-specific TFs are required for maximal level of transcription or for activated transcription (induction) B. a third state is that of a repressed state

3

4 Regulation of Transcription What is the role of the response elements and associated factors

5

6

7 How Can You Test the Functional Activity of an Activation Domain?

8

9 Targets of Activation Domains General Transcription Factors TBP (TFIID) TFIIB TFIIA RNA polymerase II Coactivators Mediator TFIID

10 Role of Activation Domains 1. Recruitment Bind Faster Remain bound longer 2. Conformational change Active vs. inactive configuration Blocked vs. accessible 3. Covalent modification

11 Coactivator versus Repressor (corepressor) Activation and Repression of Transcription

12

13

14

15 Regulation of Transcription II. Question of Activation A. diversity of response - combinatorial effect 1. properties of response elements (RE) 2. relatedness of RE and enhancers 3. trans acting factors induction: heat shock, heavy metals, viral infection, growth factors, steroids 4. greater multiplicity with combinatorial approach B. Master gene regulatory proteins 1. response elements shared 2. example of homeodomains

16

17 Regulation of Transcription II. Question of Activation A. diversity of response - combinatorial effect 1. properties of response elements (RE) 2. relatedness of RE and enhancers 3. trans acting factors induction: heat shock, heavy metals, viral infection, growth factors, steroids 4. greater multiplicity with combinatorial approach B. Master gene regulatory proteins 1. response elements shared 2. example of homeodomains C. regulating the activity of the transcription factors

18

19

20 What are the DNA binding domains of the TFs?

21 DNA binding domains A. Zinc fingers 1. Cys2-His2 fingers: Cys-X 2-4 -Cys-X 3 -Phe-X 5 -Leu-X 2 -His-X-His a. example is TFIIIA has 9 Zn finger repeat b. typically the number of fingers range from 2-9 c. can be involved in binding to RNA d. not all Zn fingers are used to bind DNA, nor are they always part of a transcription factor 2. Cys2-Cys2 fingers: Cys-X 2 -Cys-X 13 -Cys-X 2 -Cys a. found in steroid receptors b. typically nonrepetitive c. binding sites are short palindromes d. bind as dimers 3. Binuclear Cys6 finger: Gal4 DNA binding domains

22

23

24

25

26 DNA binding domains B. Steroid receptors

27

28

29

30 DNA binding domains B. Steroid receptors 1. Ligand mediated activation 2. Functional Domains a. DNA binding b. ligand binding - hormone c. activation domain 3. Two classes a. form homodimers: bind consensus half site (TGTTCT, except for ER is TGACCT) b. form heterodimers: bind half sites of TGACCT, direct repeats c. spacing of the half sites is crucial for the degree of specificity

31

32

33

34 DNA binding domains C. Leucine zippers - dimer formation 1. brings 2 DNA binding domains in close juxtaposition example is Gal4 2. amphipathic alpha helices with Leu residues on one face Leu repeats every 7 amino acid 3. interface forms a coiled coil

35

36

37

38

39

40 DNA binding domains D. bzip example is GCN5 1. basic region attached to a leucine zipper 2. is a dimer kept together by the leucine zipper 3. an alpha helic containing basic residues contacts the major groove of DNA 4. contacts are made with the portion of the bases exposed in the major groove and some phosphate backbone contacts

41 DNA binding domains E. bhlh domain 1. basic helix loop helix motif 2. positively charged alpha helix binds to major groove 3. two other alpha helices form a four helix bundle in dimer 4. many will also contain a leucine zipper

42

43

44 DNA binding domains Dimer formation regulates the activity of the transcription factor

45

46 Activation Domains A. Acidic activators - example of Gal4p B. Glutamine rich domain C. Proline rich domain

47

48

49 Transcription Elongation A. General 1. in vivo rates are nucleotides/min 2. in vitro rates are nucleotides/min 3. elongation is not a monotonic continuous process a. there are strong pause sites b. effects of chromatin on process 4. pausing versus arrest (definition of)

50

51 Transcription Elongation B. Negative elongation factors (N-TEFs) 1. DSIF 2. factor 2 C. Positive elongation factors (P-TEFs) 1. prevent sequence dependent arrest (i.e. TFIIS or SII) nucleolytic cleavage/ backtracking 2. catalytic activity (TFIIF, elongin, ELL complex) 3. regulates the rate of elongation through chromatin (FACT)

52

53

Chem 465 Biochemistry II

Chem 465 Biochemistry II Chem 465 Biochemistry II Name: 2 points Multiple choice (4 points apiece): 1. Formation of the ribosomal initiation complex for bacterial protein synthesis does not require: A) EF-Tu. B) formylmethionyl

More information

Interaktionen von Nukleinsäuren und Proteinen

Interaktionen von Nukleinsäuren und Proteinen Sonja Prohaska Computational EvoDevo Universitaet Leipzig June 9, 2015 DNA is never naked in a cell DNA is usually in association with proteins. In all domains of life there are small, basic chromosomal

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression What is Gene Expression? Gene expression is the process by which informa9on from a gene is used in the synthesis of a func9onal gene product. What is Gene Expression? Figure

More information

DNA Lecture II Protein Synthesis Notes. Using the Code of Life DNA & RNA. Page #1 (Stratton 2010) Name: 2. : production of proteins

DNA Lecture II Protein Synthesis Notes. Using the Code of Life DNA & RNA. Page #1 (Stratton 2010) Name: 2. : production of proteins Page #1 Using the Code of Life DNA & RNA Slide #2 Two process involve DNA : making an copy of DNA a. purpose: b. occurs: c. uses: DNA : production of proteins a. purpose: & b. occurs: between nucleus &

More information

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.

Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION. Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu. Lecture 1 MODULE 3 GENE EXPRESSION AND REGULATION OF GENE EXPRESSION Professor Bharat Patel Office: Science 2, 2.36 Email: b.patel@griffith.edu.au What is Gene Expression & Gene Regulation? 1. Gene Expression

More information

The vast majority of RNA functions are concerned with protein synthesis.

The vast majority of RNA functions are concerned with protein synthesis. RNA Structure, Function, and Synthesis RNA RNA differs from DNA in both structural and functional respects. RNA has two major structural differences: each of the ribose rings contains a 2 -hydroxyl, and

More information

MBLG1001 lecture5 page 1. What determines the conformation a protein will assume?

MBLG1001 lecture5 page 1. What determines the conformation a protein will assume? MBLG1001 lecture5 page 1 What determines the conformation a protein will assume? This question has vexed biochemists for some time. Because each protein has its own unique fold the amino acid sequence

More information

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams. Module 3 Questions Section 1. Essay and Short Answers. Use diagrams wherever possible 1. With the use of a diagram, provide an overview of the general regulation strategies available to a bacterial cell.

More information

Mechanism of hormone action

Mechanism of hormone action Mechanism of hormone action ผศ.ดร.พญ.ส ว ฒณ ค ปต ว ฒ ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Aims What is hormone receptor Type of hormone receptors - cell surface receptor - intracellular receptor

More information

Activity 7.21 Transcription factors

Activity 7.21 Transcription factors Purpose To consolidate understanding of protein synthesis. To explain the role of transcription factors and hormones in switching genes on and off. Play the transcription initiation complex game Regulation

More information

Proteins. Amino Acids. Chapter 3. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 2/5/2013

Proteins. Amino Acids. Chapter 3. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 2/5/2013 Proteins Chapter 3 Amino Acids Nonpolar Alanine, Ala, A Isoleucine, Ile, I Leucine, Leu, L Methionine, Met, M Phenylalanine, Phe, F Tryptophan,Trp, W Valine, Val, V Negatively Charged (Acidic) Aspartic

More information

Chapter 7 Gene Regulation in Prokaryotes

Chapter 7 Gene Regulation in Prokaryotes Chapter 7 Gene Regulation in Prokaryotes 1 Outline 1. Principles of Transcriptional Regulation 2. Regulation of Transcription Initiation: Lac Operon 3. The Case of Phage λ: Layers of Regulation 2 Part

More information

chromatic changes Studies with 3C (chromosome conformation capture) have shown:

chromatic changes Studies with 3C (chromosome conformation capture) have shown: What we have seen yesterday in TV... perceptive stimulus chromatic changes histone modifications nucleosome repositioning histone isoform substitution... at the single cell level of resolution Studies

More information

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains Proteins From DNA to Protein Chapter 13 All proteins consist of polypeptide chains A linear sequence of amino acids Each chain corresponds to the nucleotide base sequence of a gene The Path From Genes

More information

Proteins. Molecular Physiology: Enzymes and Cell Signaling. Binding. Protein Specificity. Enzymes. Enzymatic Reactions

Proteins. Molecular Physiology: Enzymes and Cell Signaling. Binding. Protein Specificity. Enzymes. Enzymatic Reactions Proteins Molecular Physiology: Enzymes and Cell Signaling Polymers of amino acids Have complex 3D structures Are the basis of most of the structure and physiological function of cells Binding Much of protein

More information

How many of you have checked out the web site on protein-dna interactions?

How many of you have checked out the web site on protein-dna interactions? How many of you have checked out the web site on protein-dna interactions? Example of an approximately 40,000 probe spotted oligo microarray with enlarged inset to show detail. Find and be ready to discuss

More information

Gene Transcription in Prokaryotes

Gene Transcription in Prokaryotes Gene Transcription in Prokaryotes Operons: in prokaryotes, genes that encode protein participating in a common pathway are organized together. This group of genes, arranged in tandem, is called an OPERON.

More information

Chapter 18 Regulation of Gene Expression

Chapter 18 Regulation of Gene Expression Chapter 18 Regulation of Gene Expression 18.1. Gene Regulation Is Necessary By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection

More information

Transcription and Translation of DNA

Transcription and Translation of DNA Transcription and Translation of DNA Genotype our genetic constitution ( makeup) is determined (controlled) by the sequence of bases in its genes Phenotype determined by the proteins synthesised when genes

More information

From DNA to Protein. Chapter 14

From DNA to Protein. Chapter 14 From DNA to Protein Chapter 14 Impacts, Issues: Ricin and your Ribosomes Ricin is toxic because it inactivates ribosomes, the organelles which assemble amino acids into proteins, critical to life processes

More information

GENE REGULATION. Teacher Packet

GENE REGULATION. Teacher Packet AP * BIOLOGY GENE REGULATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material. Pictures

More information

The Steps. 1. Transcription. 2. Transferal. 3. Translation

The Steps. 1. Transcription. 2. Transferal. 3. Translation Protein Synthesis Protein synthesis is simply the "making of proteins." Although the term itself is easy to understand, the multiple steps that a cell in a plant or animal must go through are not. In order

More information

Eukaryotic gene regulation: Role of chromatin

Eukaryotic gene regulation: Role of chromatin Eukaryotic gene regulation: Role of chromatin Recap.. Eukaryotic RNA polymerases Core promoter elements General transcription factors Enhancers and upstream activation sequences Transcriptional activators:

More information

Control of Gene Expression

Control of Gene Expression Home Gene Regulation Is Necessary? Control of Gene Expression By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication Ch. 12: DNA and RNA 12.1 DNA A. To understand genetics, biologists had to learn the chemical makeup of the gene Genes are made of DNA DNA stores and transmits the genetic information from one generation

More information

Transcription Activation in Eukaryotic Cells

Transcription Activation in Eukaryotic Cells Transcription Activation in Eukaryotic Cells Alcide Barberis, ESBATech AG, Zürich-Schlieren, Switzerland Michael Petrascheck, ESBATech AG, Zürich-Schlieren, Switzerland Transcription activation is the

More information

Complex multicellular organisms are produced by cells that switch genes on and off during development.

Complex multicellular organisms are produced by cells that switch genes on and off during development. Home Control of Gene Expression Gene Regulation Is Necessary? By switching genes off when they are not needed, cells can prevent resources from being wasted. There should be natural selection favoring

More information

Molecules of Life. Chapter 3 Part 2

Molecules of Life. Chapter 3 Part 2 Molecules of Life Chapter 3 Part 2 3.5 Proteins Diversity in Structure and Function Proteins are the most diverse biological molecule (structural, nutritious, enzyme, transport, communication, and defense

More information

Biological information flow

Biological information flow BCMB 3100 Chapters 36-38 Transcription & RNA Processing Definition of gene RNA Polymerase Gene coding vs template strand Promoter Transcription in E. coli Transcription factors mrna processing Biological

More information

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. dlu@tamhsc.edu Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal

More information

Microreview. Nucleic acid structure

Microreview. Nucleic acid structure Nucleic acid structure Microreview 1 er : sequence of the nucleotides, each distinguished by its base. 2 ary : antiparallel double helix. 3 ary : folding of sequentially remote secondary structure to form

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell? Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their

More information

Bacterial and Phage Genetic Switches

Bacterial and Phage Genetic Switches Bacterial and Phage Genetic Switches Prof. C. J. Dorman Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin. Lecture 1 The genetic switch controlling the lytic-lysogen

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression (Learning Objectives) Explain the role of gene expression is differentiation of function of cells which leads to the emergence of different tissues, organs, and organ systems

More information

PERSISTENCE: Mechanisms underlying the Central Dogma

PERSISTENCE: Mechanisms underlying the Central Dogma PERSISTENCE: Mechanisms underlying the Central Dogma Annoucements: Lab write-up due Thurs 5/17; Midterm will available xxx Please fill out house ombuds surveys DKN Where are we in the course? What is the

More information

Transcription Annotation Guide

Transcription Annotation Guide Transcription Annotation Guide Purpose: The goal in this guide is to provide an overview of transcription systems from various organisms and provide guidance in annotating gene products involved in transcription,

More information

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1 Proteins are large, linear polymers of amino acids that spontaneously fold into complex 3D shapes. Although protein structure appears to be very complex, the chemical properties that determine protein

More information

AP BIOLOGY 2009 SCORING GUIDELINES

AP BIOLOGY 2009 SCORING GUIDELINES AP BIOLOGY 2009 SCORING GUIDELINES Question 4 The flow of genetic information from DNA to protein in eukaryotic cells is called the central dogma of biology. (a) Explain the role of each of the following

More information

Cells and Their Housekeeping Functions Nucleus and Other Organelles

Cells and Their Housekeeping Functions Nucleus and Other Organelles Cells and Their Housekeeping Functions Nucleus and Other Organelles Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/

More information

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php

More information

From Gene to Protein Transcription and Translation i

From Gene to Protein Transcription and Translation i From Gene to Protein Transcription and Translation i How do the genes in our DNA influence our characteristics? For example, how can a gene determine whether a person is an albino with very pale skin and

More information

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA)

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA) OUTCOMES PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation 3.5.1 Compare the structure of RNA and DNA. 3.5.2 Outline DNA transcription in terms of the formation of an RNA strand

More information

DNA: Molecule of Life

DNA: Molecule of Life DNA: Molecule of Life History DNA Structure Protein Synthesis Gene Regulation History of DNA H I S T O By the 1940 s, scientists knew that chromosomes consisted of both DNA and protein but did not know

More information

Genetics Notes C. Molecular Genetics

Genetics Notes C. Molecular Genetics Genetics Notes C Molecular Genetics Vocabulary central dogma of molecular biology Chargaff's rules messenger RNA (mrna) ribosomal RNA (rrna) transfer RNA (trna) Your DNA, or deoxyribonucleic acid, contains

More information

Gene Regulation -- The Lac Operon

Gene Regulation -- The Lac Operon Gene Regulation -- The Lac Operon Specific proteins are present in different tissues and some appear only at certain times during development. All cells of a higher organism have the full set of genes:

More information

Click on Molecular Biology of the Gene, 6 th edition Class code: cm473170

Click on Molecular Biology of the Gene, 6 th edition Class code: cm473170 Interactive Animations http://www.aw-bc.com/watson/ Click on Molecular Biology of the Gene, 6 th edition Class code: cm473170 DNA polymerase http://media.pearsoncmg.com/bc/bc_martini_ap_slim/assets/animations/ch08_polymerization.html

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Transcription in prokaryotes. Elongation and termination

Transcription in prokaryotes. Elongation and termination Transcription in prokaryotes Elongation and termination After initiation the σ factor leaves the scene. Core polymerase is conducting the elongation of the chain. The core polymerase contains main nucleotide

More information

Concluding lesson. Student manual. What kind of protein are you? (Basic)

Concluding lesson. Student manual. What kind of protein are you? (Basic) Concluding lesson Student manual What kind of protein are you? (Basic) Part 1 The hereditary material of an organism is stored in a coded way on the DNA. This code consists of four different nucleotides:

More information

BINF6201/8201. Basics of Molecular Biology

BINF6201/8201. Basics of Molecular Biology BINF6201/8201 Basics of Molecular Biology 08-26-2016 Linear structure of nucleic acids Ø Nucleic acids are polymers of nucleotides Ø Nucleic acids Deoxyribonucleic acids (DNA) Ribonucleic acids (RNA) Phosphate

More information

Interaktionen von RNAs und Proteinen

Interaktionen von RNAs und Proteinen Sonja Prohaska Computational EvoDevo Universitaet Leipzig June 9, 2015 Studying RNA-protein interactions Given: target protein known to bind to RNA problem: find binding partners and binding sites experimental

More information

NUCLEIC ACIDS. An INTRODUCTION. Two classes of Nucleic Acids

NUCLEIC ACIDS. An INTRODUCTION. Two classes of Nucleic Acids NUCLEIC ACIDS An INTRODUCTION Two classes of Nucleic Acids Deoxynucleic Acids (DNA) Hereditary molecule of all cellular life Stores genetic information (encodes) Transmits genetic information Information

More information

Transcription Animations

Transcription Animations Transcription Animations Name: Lew Ports Biology Place http://www.lewport.wnyric.org/jwanamaker/animations/protein%20synthesis%20-%20long.html Protein is the making of proteins from the information found

More information

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T).

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: A and T DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: G and C DNA contains complementary

More information

From DNA to RNA RNA is different from DNA in three (at least significant ways). 1. Ribose verses deoxyribose

From DNA to RNA RNA is different from DNA in three (at least significant ways). 1. Ribose verses deoxyribose Chapter 7 From DNA to a Protein: Two overriding processes: 1. Transcription (to write again) DNA- to RNA (note: no change in language, all nucleic acids.) Fig. 7.1 2. Translation: RNA- protein (change

More information

PRACTICE TEST QUESTIONS

PRACTICE TEST QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS PRACTICE TEST QUESTIONS DNA & PROTEIN SYNTHESIS B 1. One of the functions of DNA is to A. secrete vacuoles. B. make copies of itself. C. join amino acids to each other.

More information

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8 MBLG1001 Lecture 8 page 1 University of Sydney Library Electronic Item CURSE: MBLG1001 Lecturer: Dale ancock Lecture 8 CMMNWEALT F AUSTRALIA Copyright Regulation WARNING This material has been reproduced

More information

Lecture 9: Glycogen phosphorylase

Lecture 9: Glycogen phosphorylase Chem*3560 Lecture 9: Glycogen phosphorylase Glycogen synthesis and breakdown govern availability of glucose in animals Glycogen is stored in the body in liver and in skeletal muscles. A normal 70 kg person

More information

Some functions of most cells

Some functions of most cells Some functions of most cells Take in chemical or solar energy, turn some into mechanical activity or synthesis of molecules Manufacture more of their own internal structure, extracellular matrix, regulatory

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 12 THE STRUCTURE AND INFECTION CYCLE OF VIRUSES Eye of Science / Science Photo Library WHY IS THIS IMPORTANT? More than 80% of infectious diseases are caused by viruses. As a health professional,

More information

Transcription & Translation. Part of Protein Synthesis

Transcription & Translation. Part of Protein Synthesis Transcription & Translation Part of Protein Synthesis Three processes Initiation Transcription Elongation Termination Initiation The RNA polymerase binds to the DNA molecule upstream of the gene at the

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Built from 20 kinds of amino acids

Built from 20 kinds of amino acids Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels

More information

What makes cells different from each other? How do cells respond to information from environment?

What makes cells different from each other? How do cells respond to information from environment? What makes cells different from each other? How do cells respond to information from environment? Regulation of: - Transcription - prokaryotes - eukaryotes - mrna splicing - mrna localisation and translation

More information

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman Slide 1 All of the biological macromolecules are built from smaller subunits. Each subunit features - H and - OH substituents

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

NUCLEAR GENE STRUCTURE

NUCLEAR GENE STRUCTURE PLNT 2530 - Unit 4 NUCLEAR GENE STRUCTURE Plant Biotechnology by A Slater, N Scott, M Fowler Analysis of genes and Genomes by Richard J Reece Plant Biotechnology and Genetics by C Neal Stewart JR Unless

More information

Genetics. Instructor: Dr. Jihad Abdallah Topic 5: Translation of RNA (Protein synthesis)

Genetics. Instructor: Dr. Jihad Abdallah Topic 5: Translation of RNA (Protein synthesis) Genetics Instructor: Dr. Jihad Abdallah Topic 5: Translation of RNA (Protein synthesis) 1 Central dogma of genetics DNA In the nucleus Transcription mrna Translation In the cytoplasm Protein 2 3 The primary

More information

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure Nucleic acids play an important role in the storage and expression of genetic information. They are divided into

More information

RNA & Protein Synthesis

RNA & Protein Synthesis RNA & Protein Synthesis Genes send messages to cellular machinery RNA Plays a major role in process Process has three phases (Genetic) Transcription (Genetic) Translation Protein Synthesis RNA Synthesis

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

Molecular Genetics. RNA, Transcription, & Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis Molecular Genetics RNA, Transcription, & Protein Synthesis Section 1 RNA AND TRANSCRIPTION Objectives Describe the primary functions of RNA Identify how RNA differs from DNA Describe the structure and

More information

Gene Models & Bed format: What they represent.

Gene Models & Bed format: What they represent. GeneModels&Bedformat:Whattheyrepresent. Gene models are hypotheses about the structure of transcripts produced by a gene. Like all models, they may be correct, partly correct, or entirely wrong. Typically,

More information

Chapter 10: Protein Synthesis. Biology

Chapter 10: Protein Synthesis. Biology Chapter 10: Protein Synthesis Biology Let s Review What are proteins? Chains of amino acids Some are enzymes Some are structural components of cells and tissues More Review What are ribosomes? Cell structures

More information

Alison Stewart 11/12/06 Prokaryotic Cells, Eukaryotic cells and HIV: Structures, Transcription and Transport Section Handout Discussion Week #7

Alison Stewart 11/12/06 Prokaryotic Cells, Eukaryotic cells and HIV: Structures, Transcription and Transport Section Handout Discussion Week #7 Alison Stewart 11/12/06 Prokaryotic Cells, Eukaryotic cells and HIV: Structures, Transcription and Transport Section Handout Discussion Week #7 Compare and contrast the organization of eukaryotic, prokaryotic

More information

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription Central Dogma transcription translation DNA RNA Protein replication Discussing DNA replication (Nucleus of eukaryote, cytoplasm of prokaryote) Recall Replication is semi-conservative and bidirectional

More information

Disulfide Bonds at the Hair Salon

Disulfide Bonds at the Hair Salon Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,

More information

Transcription recap What is translation? Short Video Activity. Initiation Elongation Termination. Short Quiz on Thursday! 6.1 and 6.

Transcription recap What is translation? Short Video Activity. Initiation Elongation Termination. Short Quiz on Thursday! 6.1 and 6. Protein Synthesis Transcription recap What is translation? Initiation Elongation Termination Short Video Activity Short Quiz on Thursday! 6.1 and 6.2 1. RNA polymerase attaches to promoter region 2. Unwinds/unzips

More information

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Some proteins speed up chemical reactions

More information

DNA, RNA AND PROTEIN SYNTHESIS

DNA, RNA AND PROTEIN SYNTHESIS DNA, RNA AND PROTEIN SYNTHESIS Evolution of Eukaryotic Cells Eukaryotes are larger, more complex cells that contain a nucleus and membrane bound organelles. Oldest eukarytotic fossil is 1800 million years

More information

Protein Folding. Cell/mol bio lab. Proteins are like a long spaghetti noodle, folded back upon itself over and over

Protein Folding. Cell/mol bio lab. Proteins are like a long spaghetti noodle, folded back upon itself over and over Protein Folding Cell/mol bio lab Proteins are like a long spaghetti noodle, folded back upon itself over and over Why study the 3-D 3 D shape of a protein? (go to Cell Biology web site from my home page)

More information

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5 Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational

More information

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA LECTURE-02 CENTRAL DOGMA: BASICS OF DNA, RNA AND PROTEIN TRANSCRIPT Welcome to the proteomics of course. Today we will talk about central dogma: basics of DNA, RNA and proteins. So lecture outline is,

More information

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond 11 Introduction Nucleotide to Cells & Microscopy and Nucleic Acid Structure Structural Components of Nucleotides Base Sugar Phosphate Glycosidic bond H NUCLEOTIDE H 1 RNA DNA Table 3-1 Nucleic acid polymer

More information

A N OVERVIEW OF GENE EXPRESSION

A N OVERVIEW OF GENE EXPRESSION C H A P T E R E I G H T 8 C o n t r o l o f G e n e E x p r e s s i o n An organism's DNA encodes all of the RNA and protein molecules that are needed to make its cells. Yet a complete description of the

More information

Study Guide Chapter 12

Study Guide Chapter 12 Study Guide Chapter 12 1. Know ALL of your vocabulary words! 2. Name the following scientists with their contributions to Discovering DNA: a. Strains can be transformed (or changed) into other forms while

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

DNA (Deoxyribonucleic Acid)

DNA (Deoxyribonucleic Acid) DNA (Deoxyribonucleic Acid) Genetic material of cells GENES units of genetic material that CODES FOR A SPECIFIC TRAIT Called NUCLEIC ACIDS DNA is made up of repeating molecules called NUCLEOTIDES Phosphate

More information

Controls Over Genes. Chapter 15

Controls Over Genes. Chapter 15 Controls Over Genes Chapter 15 Impacts, Issues: Between You and Eternity Mutations in some genes predispose individuals to develop certain kinds of cancer; mutations in BRAC genes cause breast cancer normal

More information

Ch7 Enzymes II: Coenzymes, Regulation, Abzymes, and Ribozymes 阮雪芬 NTU

Ch7 Enzymes II: Coenzymes, Regulation, Abzymes, and Ribozymes 阮雪芬 NTU Ch7 Enzymes II: Coenzymes, Regulation, Abzymes, and Ribozymes 阮雪芬 2004/04/23 @ NTU Enzyme: Coenzyme Partners Vitamins and coenzymes Coenzyme: an organic or organometallic molecule that assists an enzyme.

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section BCOR 011, Exam 3 Name KEY Section Multiple Choice: Select the best possible answer. 1. A parent cell divides to form two genetically identical daughter cells in the nuclear process of mitosis. For mitosis

More information

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

MICROBIAL GENETICS. Gene Regulation: The Operons

MICROBIAL GENETICS. Gene Regulation: The Operons MICROBIAL GENETICS Gene Regulation: The Operons Pradeep Kumar Burma Reader Department of Genetics University of Delhi South Campus Benito Juarez Road New Delhi-110021 E-mail: pburma@hotmail.com 05-May-2006

More information