IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST

Size: px
Start display at page:

Download "IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST 2006 809"

Transcription

1 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST Voice Quality Prediction Models and Their Application in VoIP Networks Lingfen Sun, Member, IEEE, and Emmanuel C. Ifeachor, Member, IEEE Abstract The primary aim of this paper is to present new models for objective, nonintrusive, prediction of voice quality for IP networks and to illustrate their application to voice quality monitoring and playout buffer control in VoIP networks. The contributions of the paper are threefold. First, we present a new methodology for developing perceptually accurate models for nonintrusive prediction of voice quality which avoids timeconsuming subjective tests. The methodology is generic and as such it has wide applicability in multimedia applications. Second, based on the new methodology, we present efficient regression models for predicting conversational voice quality nonintrusively for four modern codecs (G.729, G.723.1, AMR and ilbc). Third, we illustrate the usefulness of the models in two main applications voice quality prediction for real Internet VoIP traces and perceived quality-driven playout buffer optimization. For voice quality prediction, the results show that the models have accuracy close to the combined ITU PESQ/E-model method using real Internet traces (correlation coefficient over 0.98). For playout buffer optimization, the proposed buffer algorithm provides an optimum voice quality when compared to five other buffer algorithms for all the traces considered. Index Terms Conversational speech quality, E-model, jitter buffer optimization, nonintrusive, perceptual evaluation of speech quality (PESQ), regression model, voice over IP, voice quality prediction. I. INTRODUCTION IP NETWORKS are on a steep slope of innovation that will make them the long-term carrier of all types of traffic, including voice. However, such networks are not designed to support real-time voice communication because of their variable characteristics (e.g., due to delay, delay variation and packet loss) which lead to a deterioration in voice quality [1], [2]. A major challenge in such networks is how to measure or predict voice quality accurately and efficiently for Quality-of-Service (QoS) monitoring and/or control purposes to meet technical/ commercial requirements (e.g., service level agreements). Voice quality measurement can be carried out using either subjective or objective methods. The Mean Opinion Score ( ) is the most widely used subjective measure of voice quality and is recommended by the ITU [3]. A value is normally obtained as an average opinion of quality based Manuscript received May 16, 2005; revised October 20, The work is supported in part by an EU grant under the Sixth Framework Programme (BIOPATTERN Project ) and by Acterna. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Anna Hac. The authors are with the School of Computing, Communications and Electronics, University of Plymouth, Plymouth PL4 8AA, U.K. ( plymouth.ac.uk; Digital Object Identifier /TMM on asking people to grade the quality of speech signals on a five-point scale (Excellent, Good, Fair, Poor, and Bad) under controlled conditions as set out in the ITU-T standard P.800 [3]. The subjective test can be listening only (i.e., one way) or conversational (i.e., it involves interactivity). In the later case, the voice quality scores are sometimes referred to as conversational (i.e., ). In this paper, we use the term to represent conversational voice quality. In voice communication systems, is the internationally accepted metric as it provides a direct link to voice quality as perceived by the end user. The inherent problem in subjective measurement is that it is time consuming, expensive, lack repeatability, and cannot be used for long-term or large scale voice quality monitoring in an operational network infrastructure. This has made objective methods very attractive for meeting the demands for voice quality measurement in communications networks. Objective measurement of voice quality can be intrusive or nonintrusive. Intrusive methods are more accurate, but normally are unsuitable for monitoring live traffic because of the need for a reference data and to utilize the network. The ITU-T P.862 Perceptual Evaluation of Speech Quality (PESQ) [4] [6], is the most commonly used intrusive measurement method for voice quality in current VoIP applications. It is designed for listening voice quality measurement and involves a comparison of a degraded speech signal to a reference speech signal to predict the value. Nonintrusive techniques do not need a reference signal and can be used to monitor/predict voice quality directly either from the network and other relevant system parameters (e.g., packet loss, delay, jitter and codec) or from the degraded voice signal itself. The ITU-T E-model [7], [8] is a computational model that can be used to predict voice quality nonintrusively and directly from the network and other system parameters. ITU-T P.563 [9], on the other hand, can be used to estimate score from analysis of the degraded voice signal. In this paper, we focus on nonintrusive prediction of voice quality directly from network and other system parameters. Although the ITU E-model is the most attractive and commonly used nonintrusive method for voice quality prediction for VoIP applications [10] [12], the current E-model is applicable to a restricted number of codecs and network conditions (because subjective tests are required to derive model parameters [13]) and this hinders its use in new and emerging applications. To address this, experimental methods for deriving the model parameters objectively have been proposed [14], but this is limited to a consideration of only the effects of codecs. Further more, the E-model is based on a complex set of fixed and empirical formulae which is not efficient for real-time /$ IEEE

2 810 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST 2006 quality monitoring or for optimization/control purposes. Artificial neural networks-based models have recently been used to predict both voice and video quality from network and other system parameters [15] [17], but these rely on subjective tests to create the training sets. Unfortunately, subjective tests are costly and time-consuming and as a result the training sets are limited and cannot cover all the possible scenarios in dynamic and evolving networks, such as the Internet. In addition, the neural networks-based models can only predict one-way listening voice quality [15], [18]. There is a need for an efficient, nonintrusive voice quality prediction model for technical and commercial reasons for voice over IP networks. The model should predict conversational voice quality to account for interactivity. There is a large number of applications for nonintrusive voice quality prediction models. The most direct application is to monitor/predict voice quality from network and other system parameters for live VoIP calls [11]. This is essential for network operators to monitor the health of the network and for service providers to make sure that service agreements are met. Other more challenging applications are for end-to-end, perceived quality-driven QoS optimization and control, such as playout buffer control and codec sender-bit-rate control [19] (see later for more details). The idea in these applications is to move away from the use of individual network parameters, such as packet loss or delay, to control performance. Instead, to move towards perceptual-based, voice quality control in order to achieve the best possible end-to-end voice quality. The main contributions of the paper are threefold. 1) A new methodology for developing models for nonintrusive prediction of voice quality is proposed. The resulting models provide an objective and perceptually accurate prediction of both listening and conversational voice quality, nonintrusively. This avoids time-consuming subjective tests. The method is generic and as such has wide applicability in multimedia applications. 2) Development of new and efficient models, based on the new methodology, to predict conversational voice quality nonintrusively for four modern codecs (i.e., G.729, G.723.1, AMR, and ilbc). This illustrates how to readily extend the ITU E-model to new codecs and new network conditions whilst avoiding time-consuming subjective tests and the use of a set of complex equations as in the current E-model. 3) An illustration of the use of the new models in two important applications: voice quality monitoring and prediction using real Internet VoIP traces and perceived quality-driven playout buffer optimization. The remainder of the paper is structured as follows. In Section II, the novel methodology for nonintrusive prediction of voice quality is introduced, together with the combined PESQ/E-model structure that is used to predict conversational voice quality. In Section III, the development of the regression models for the AMR codec and other codecs are described. Two applications of the new models in voice quality monitoring/prediction and playout buffer optimization are presented in Section IV. Section V concludes the paper. Fig. 1. Conceptual diagram of the new scheme for nonintrusive prediction of voice quality. II. NEW METHODOLOGY FOR NONINTRUSIVE VOICE QUALITY PREDICTION A. Introduction to New Methodology Fig. 1 depicts a simplified, conceptual diagram of the proposed novel methodology for developing and using new models for nonintrusive prediction of voice quality in IP networks. The lower part of the figure illustrates how a new model would be used to predict end-to-end, conversational voice quality, nonintrusively, from network and other system parameters (e.g., packet loss, delay and codec type). In practice, IP packets transporting voice data through the network would be captured at a monitoring point which may be at any suitable location (e.g., at a gateway). Network and other relevant system parameters (e.g., delay, packet loss, jitter and codec type) are then extracted from analysis of the headers (e.g., RTP headers). The parameters are then applied to the new model to provide a prediction of voice quality. The top part of the figure (enclosed in dotted lines) shows how to obtain an objective measure of conversational voice quality using a combined ITU PESQ and E-model structure (see later for more detail). This is an important part of the methodology because it allows us to generate appropriate data for deriving new nonintrusive voice quality prediction models. In the figure, (PESQ) refers to the listening-only mean opinion score obtained from PESQ algorithm by comparing the reference and the degraded speech. Measured refers to the measured conversational voice quality obtained by combining (PESQ) value and the end-to-end delay (see Section III for details). Predicted is the predicted conversational voice quality by using the proposed new model. In this paper, we will focus on the development of efficient regression models for conversational voice quality prediction for different codecs. The advantage of regression models is that they are efficient, straightforward and can be easily used in voice quality monitoring/prediction and perceived quality-driven QoS control (e.g., jitter buffer control and adaptive sender bit rate control). The benefits of the new methodology for nonintrusive applications include that It is generic and based on end-to-end, intrusive measurement of voice quality (in this case, using PESQ). Thus, it can be easily applied to other applications, such as audio

3 SUN AND IFEACHOR: VOICE QUALITY PREDICTION MODELS AND THEIR APPLICATION IN VOIP NETWORKS 811 Fig. 2. Measurement of conversational voice quality using a combined PESQ and E-model. (e.g., using ITU-T Perceptual Evaluation of Audio Quality (PEAQ) [20]), image (e.g., using a universal image quality index [21]) and video (e.g., using Video Quality Metric (VQM) [22]). For audio, image and video quality prediction, extra parameters will need to be taken into account. For example, for video quality prediction, parameters such as source bit rate, encoded frame type, and frame rate from the source should also be considered [17]. It avoids expensive and time-consuming subjective tests. It can be easily applied to new voice codecs [4], new packet loss conditions (e.g., new packet loss burst patterns) or different speakers/languages. B. Measurement of Conversational Voice Quality Fig. 2 illustrates how a measure of conversational voice quality is obtained using a combined PESQ/E-model structure. PESQ is an accurate and reliable method for voice quality measurement, but it is an intrusive method and can only predict one-way listening-only voice quality. It does not consider the impact of end-to-end delay which is important for interactivity in voice communications. The approach in Fig. 2 exploits the accuracy of PESQ and the delay model of the E-model. As shown in the figure, an estimate of the (PESQ) score is obtained directly from the PESQ algorithm by comparing the reference and the degraded speech. The is converted to a rating factor (the R factor) [7] and then to an equipment impairment value. The is obtained by combining the value and the effects of end-to-end delay (the value). The detailed procedure to derive is as follows: 1) Convert Voice Quality From (PESQ) to : The ITU-T G.107 [7] defines the relationship between the factor and as in (1). for for (1) This is a general relationship between factor and score. Depending on whether delay is considered, here can be referred as listening-only voice quality or conversational voice quality. The conversion from to value can be conducted by a complicated Candono s Formula as in [23] or by a simplified 3rd-order polynomial fitting [24] as shown in (2). (2) For (PESQ) which is a listening-only voice quality, the converted R factor does not consider delay impairment ( value). If we consider only the equipment impairment ( value, for Fig. 3. I versus delay. which is the impairment from packet loss and codec), converted to as in (3). can be The default value for is 93.2 [7]. 2) Obtain From One-Way Delay, : The delay impairment factor,, represents all impairments due to delay of voice signals and includes impairments due to Listener Echo, Talker Echo, and Absolute delay. Assuming a perfect echo cancellation, can be calculated by a series of complex equations in ITU G.107 [7]. The derived curve of vs one way delay is shown in Fig. 3 (the curve labelled G.107). can also be calculated using a simplified version of (4) as provided in [11] (the curve labelled AT&T simplified model in Fig. 3). We note that the simplified model [11] is only accurate (close to the curve from G.107) for delay less than 400 ms (see Fig. 3). When delay is over 400 ms, the curve from the simplified model deviates from the curve for G.107. Considering a more accurate fit to the curve for G.107 when delay is over 400 ms, a 6th order polynomial function is derived as shown in (5) for delay less than 600 ms (majority of end-to-end delay for VoIP links is less than 600 ms). The curve from polynomial fitting is also shown in Fig. 3 (the curve labelled 6th order polynomial). if if (3) (4) (5)

4 812 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST 2006 Fig. 4. Scheme I: System structure for voice quality prediction based on I regression model. Fig. 5. Scheme II: System structure for voice quality prediction based on MOS regression model. 3) Obtain From and : Having obtained and, the E-model factor can be calculated as This value considers the impairment from packet loss (codec dependent) and delay. If we convert to using (1), the obtained is for conversational voice quality which can be represented as. Overall, the Measured in Fig. 1 can be obtained from (PESQ) and end-to-end delay. III. NONLINEAR REGRESSION MODELS FOR VOICE QUALITY PREDICTION A. System Structure of Regression-Based Models Two schemes are proposed for developing regression-based models for voice quality prediction in VoIP applications. Scheme I, shown in Fig. 4(a), consists of three parts (as indicated by dotted lines): (I) a VoIP simulation system to simulate a VoIP flow, which includes encoder, packet loss simulator and decoder; (II) a voice quality prediction module based on PESQ/E-model to obtain a measure of the Measured, and (III) a nonlinear regression model to generate the Predicted from packet loss rate and codec type. The Predicted (Measured) is then obtained by combining the Predicted (Measured) with from end-to-end delay as shown in Fig. 4(b). (6) Scheme 2, shown in Fig. 5, also consists of three parts (enclosed in dotted lines). Instead of predicting equipment impairment as in Scheme I, it predicts conversational voice quality from packet loss rate, delay and codec directly using a nonlinear regression model. The Measured is calculated using a combined structure of PESQ and E-model. The Predicted is obtained by using the developed regression model. For each of Schemes I and II, we derive the regression models for four modern codecs (i.e., G.729 (8 Kb/s), G (6.3 Kb/s), AMR (the highest mode, 12.2 Kb/s and the lowest, 4.75 Kb/s) and ilbc (15.2 Kb/s)). The reference speech is taken from the ITU-T data set [25]. Packet loss is generated from 0% to 30%, in an incremental step of 3% and Bernoulli loss model is used for simplicity. PESQ-LQ (Listening Quality) [26], and PESQ-LQO from ITU P [27], the two latest variants of PESQ are also included for comparison. B. Procedures for Developing Regression-Based Models As an illustration, we first derive the value for a new codec (AMR at the highest mode of 12.2 Kb/s) for VoIP applications using PESQ. model does not exist for AMR codec at present in the public domain. We further derive value directly from packet loss rate and delay based on Schemes I and II. The procedure is as follows: Step 1: Obtain (PESQ) versus Packet Loss Rate for the AMR Codec: For each speech sample in the ITU-T data set

5 SUN AND IFEACHOR: VOICE QUALITY PREDICTION MODELS AND THEIR APPLICATION IN VOIP NETWORKS 813 Fig. 6. MOS versus packet loss rate for AMR codec. Fig. 7. I versus packet loss rate for AMR codec. for British English, a (PESQ) score is obtained by averaging over 30 different packet loss locations (via using different random seed setting) in order to remove the influence of packet loss location. Further, the score for a packet loss rate is obtained by averaging over all speech samples (a total of 16 samples, consisting of eight males and eight females), so that the influence of gender is removed (we did not consider the gender issue for regression-based models for simplicity). The relationships between the average and packet loss rate for AMR codec are shown in Fig. 6 (curve for PESQ). The curves for PESQ-LQO and PESQ-LQ are converted from the curve for PESQ according to the mapping functions in [27] and [26], respectively. Step 2: Convert versus Packet Loss Rate to versus Packet Loss Rate: The relationship between and packet loss rate in Fig. 6 can now be converted to the Equipment impairment [measured in Fig. 4(a)] versus packet loss rate via (2) and (3). The derived curves for versus packet loss rate are shown in Fig. 7 (the curves for PESQ/PESQ-LQO/ PESQ-LQ). A logarithm fitting function, similar to that in [11]), can be derived as (7) for PESQ, PESQ-LQO and PESQ-LQ by nonlinear least-squares data fitting. The fitting curves are also shown in Fig. 7 (shown as PESQ/PESQ-LQO/PESQ-LQ fitting). The goodness of the fit (e.g., value) are all above 0.996: for PESQ for PESQ-LQO for PESQ-LQ (7) Considering the wide applicability of PESQ, the PESQ value is used in the following derivation of the relationship of versus packet loss rate and delay. If PESQ-LQO or PESQ-LQ or other variants of PESQ need to be used, similar procedures can be followed. Step 3: Calculate the for AMR Codec: Considering in (5) and in (7), the E-model s factor can be obtained from (6). The can be calculated from using (1) for a given random packet loss rate and end-to-end delay. The Fig. 8. MOSc versus packet loss and delay for AMR 12.2 Kb/s. versus packet loss rate and delay for AMR codec is shown in Fig. 8. It can be seen that the relationship of versus loss rate and delay are nonlinear. Overall, by using the model for in (5) and the model for in (7) (for PESQ), voice quality can be predicted using the E-model as shown in Fig. 4(b) for Scheme I. Step 4: Surface Fitting for Nonlinear Mapping From Packet Loss and Delay to : For Scheme II, a nonlinear regression surface fitting can be performed to obtain the nonlinear function from packet loss, delay to as in Fig. 8 for a specified codec. We tested with different polynomial and rational equations for the surface fitting and obtained the following polynomial equation with a reasonable fitting goodness: The error surface for fitting is depicted in Fig. 9. The absolute error is within 0.2 of scale. The Fit Standard Error is and the is (8)

6 814 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST 2006 Fig. 9. Error surface for MOSc fitting for AMR (12.2 Kb/s). Fig. 11. I versus packet loss rate. TABLE I PARAMETERS OF REGRESSION MODELS FOR DIFFERENT CODECS (PESQ) Fig. 10 MOS versus packet loss rate. C. Nonlinear Regression Models for Different Codecs Following the above procedures, we have extended the nonlinear regression models to other codecs, i.e., AMR(L, 4.75 Kb/s), G.729 (8 Kb/s), G (6.3 Kb/s) and ilbc (15.2 Kb/s) based on PESQ. The results for AMR(H, 12.2 Kb/s) is also included for comparison. The relationships between the (PESQ) and packet loss rate for each of the four codecs are shown in Fig. 10. From the figure, it can be seen that ilbc gives the best voice quality when packet loss rate is high (over 4%). AMR (H, 12.2 Kb/s) has the highest score when packet loss rate is zero. AMR (L, 4.75 Kb/s) has the lowest quality regardless of loss rate. The relationship between the versus packet loss rate in Fig. 10 can now be converted to the Equipment Impairment versus packet loss rate via (2) and (3). The derived curves for versus packet loss rate are shown in Fig. 11. From Fig. 11, a nonlinear regression model can be derived for each codec by the least squares method and curve fitting. The derived model has the following form [11]: (9) where is the packet loss rate in percentage. The parameters (, and ) for different codecs are shown in Table I. Based on the model, the predicted can be obtained by combining and as shown in Fig. 4(b) (for Scheme I). For Scheme II, the versus packet loss rate and delay for different codecs can be derived using the above procedures and are shown in Fig. 12(a) (d). From the figures, it is clear that different nonlinear relationships between and network impairments exist for different codecs. The surface fitting for different codecs can be obtained using a general polynomial equation as in (10), where represents packet loss rate ( in percentage) and end-to-end delay ( in ms). The parameters for fitting surfaces for different codecs and the Goodness of fit are listed in Table II. These equations can be directly used for monitoring/predicting voice quality from network parameters (e.g., packet loss and delay) or for QoS optimization and control purposes which will be discussed in detail in Section IV. (10) IV. APPLICATIONS OF MODELS The voice quality prediction models can be applied in different areas such as voice quality monitoring, optimization and control for VoIP applications. As illustrated in Fig. 13, typical applications include 1) monitoring/prediction of voice quality by obtaining score directly from the nonintrusive measurement models, 2) control of receive-side playout buffer to achieve optimum end-to-end voice quality, and 3) adaptive control of send-side bit rate for optimum end-to-end voice quality.

7 SUN AND IFEACHOR: VOICE QUALITY PREDICTION MODELS AND THEIR APPLICATION IN VOIP NETWORKS 815 Fig. 12. MOSc versus packet loss and delay for different codecs: (a) for AMR (4.75 Kb/s); (b) for G.729; (c) for G.723.1; (d) for ilbc. TABLE II SURFACE FITTING PARAMETERS FOR DIFFERENT CODECS In this paper, we focus on applications of the models on voice quality monitoring and jitter buffer optimization. Application of the model in adaptive sender bit rate control can be found in [19] and will not be detailed in this paper. A. Perceived Voice Quality Prediction for VoIP The first application of the new models is to monitor/predict voice quality for VoIP in the current Internet. We apply the models to a series of VoIP trace data collected in 2002 between the U.K. and Germany, between the U.K. and the USA, and between the U.K. and China. Five traces from different links were selected for the study. The basic information of delay/jitter/loss for the selected traces with a duration of 30 min is listed in Table III. Delay is the average network delay and jitter is calculated according to the definition in the IETF RFC 1889 [28]. The network packet loss rate and mean burst loss length for the selected traces are also listed in Table III. The Cumulative Distribution Function (CDF) for end-to-end delay for the five traces are shown in Fig. 14. Delay is normalized for comparison (shift to the minimum end-to-end delay). From Table III and Fig. 14, it can be seen that the traces between UoP (University of Plymouth, U.K.) and BUPT (Beijing University of Posts and Telecommunications, China) suffered large delay and delay variation with jitter value of over 16 ms. The trace from UoP to NCT (Nanchang Telecomm, China) had

8 816 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST 2006 Fig. 13. Three applications of the new models. TABLE III BASIC INFORMATION FOR TRACE DATA #1 TO #5 For Scheme II: (12) Fig. 14. Delay cumulative distribution function (CDF) for the five traces. large delay but small jitter. The traces from UoP to CU (Columbia University, USA) and from UoP to DUT (Darmstadt University of Technology, Germany) experienced low delay and delay variation with jitter value of less than 1 ms. Network packet loss rate varied from 0.3% to 14.3%. Further details of the trace data collection and trace data features/performances can be found in [24]. As the collected Internet VoIP trace data is for G codec (30 ms packet interval) with packet size of one, the relationship between, packet loss rate (in percentage) and end-to-end delay can be obtained using Schemes I and II (see Section III). For Scheme I: (11) We apply (11) and (12) directly to the collected trace data. In order to verify the model, we also calculate the score using the combined PESQ/E-model structure. The detailed procedure is given below. For every 9 s trace data (9 s is chosen because it is within the recommended length for PESQ algorithm [4]), the actual packet loss rate (including late arrival loss) and actual end-to-end delay (including buffer delay) are calculated based on the adaptive playout buffer algorithm [29]. The average actual delay for the 9 s trace data is also calculated and sent to delay model to get delay impairment. According to the actual packet loss patterns, the degraded speech is generated by G codec and compared with the reference speech to obtain (PESQ) score (details see [29]). The conversational voice quality is then derived from the (PESQ) and delay as described in Section II. This gives the Measured which is used to verify the performance of the regression models from Schemes I and II. For Scheme I, the Predicted is first calculated from (11) according to actual packet loss rate. Then the Predicted can be obtained by combining the Predicted and according to Fig. 4(b). For Scheme II, the Predicted can be obtained from (12) directly based on the actual packet loss rate and the actual delay. Overall the predicted conversational voice quality (predicted ) can be obtained from packet loss rate, codec type, packet size, and delay using regression models based on Schemes I and II.

9 SUN AND IFEACHOR: VOICE QUALITY PREDICTION MODELS AND THEIR APPLICATION IN VOIP NETWORKS 817 Fig. 15. Predicted MOSc versus measured MOSc for the selected trace data using regression models based on Schemes I and II. There is a total of 396 samples generated from the selected trace data. The predicted is calculated using nonlinear regression models based on Schemes I and II, and the measured is obtained by applying PESQ/E-model directly as shown in Section II. The scatter diagrams of the predicted versus the measured scores for the selected trace data for Schemes I and II are illustrated in Fig. 15(a) and (b), respectively. Results show that a correlation coefficient of for Scheme I and a correlation coefficient of for Scheme II are obtained. This demonstrates that the regression model works well for voice quality prediction for real Internet VoIP trace data. From the figures, it can also be seen that the predicted voice quality (predicted ) span a wide range, from lowest 1 (bad quality) to about 3.5 (good quality). It shows that some Internet links are ready for VoIP applications, but other links are not, as they provide very poor quality for a VoIP application. B. Speech Quality Prediction for Buffer Optimization The second application of the new models is for playout buffer optimization at the receiver side. The idea is to apply voice quality prediction model in designing perceived qualitydriven playout buffer algorithms to achieve optimum end-to-end voice quality. Jitter buffer at the receiver side is used to compensate for the delay variation (jitter). It is a tradeoff between increased packet loss (packets that arrive too late will be dropped by buffer) and buffer delay (delay incurred in playout buffer). In the past, the choice/design of buffer algorithms was largely based on buffer delay and loss performance (e.g., a design objective could be to achieve a minimum average end-to-end delay for a specified packet loss rate [30] [33] or minimum late arrival loss [30]). This approach is inappropriate as it does not provide a direct link to perceived voice quality. From QoS perspective, the choice of the best buffer algorithm for a given situation should be determined by the likely perceived voice quality. The importance of this is now starting to be recognized [12], [29], [34]. For example, in [34], perceived voice quality is used to control the playout buffer in order to maximise the values in terms of delay and loss. The concept of perceptual optimization has also been extended to other QoS control problems, such as joint playout buffer/fec control [35] to maximize values in terms of delay, loss and rate. In this section, we apply the newly developed regression models directly for perceived quality-driven playout buffer optimization. A minimum impairment criterion and a perceptual optimization playout buffer algorithm will also be presented. For perceptual buffer optimization, the aim is to achieve an optimum voice quality (e.g., in the term of score). Considering the relationship of voice quality and impairments (e.g., packet loss and delay), the problem of optimum voice quality can be converted to that of minimum impairment. We define an overall impairment function which is a function of delay and packet loss, with. If we ignore other impairments such as echo, factor can be simplified as (13) As increases monotonously with [see (2)], a maximum value corresponds to a maximum score. Further when maximum is obtained, it corresponds to a minimum impairment function,. Using (9) and (4) (a simplified delay model is used to show the concept), can be expressed as (14) where and are codec related constants. is the playout delay, including network delay, and buffer delay,. consists of network packet loss, and buffer loss,. It is a tradeoff between delay and packet loss for any buffer algorithm. When playout delay goes up, then buffer loss goes down. When, then. An optimum playout delay is obtained when minimum impairment is reached.

10 818 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST 2006 A minimum impairment criterion for buffer optimization is set and defined as shown at the bottom of the page. Obviously seeking for a minimum is more efficient than traditionally seeking for a maximum, as it is not necessary to convert to and then to (a 3rd-order polynomial) for each buffer adaptation/calculation. The relationship between and can be described by delay Cumulative Distribution Function (CDF) which is defined as. For a playout delay, the buffer loss can be calculated as. In [36], we demonstrated that Weibull distribution is the best fit for delay distribution for current VoIP traffic (compared to Exponential and Pareto distributions). In this paper, we use Weibull distribution directly to represent delay distribution and derive the relationship between buffer loss, packet loss (in percentage), and playout delay as follows. (15) Replacing into (14), overall impairment factor,, can be expressed as (16) For a given trace segment, the Weibull Distribution location parameter equals the minimum network delay, the scale parameter and shape parameter can be estimated using maximum-likelihood-estimator (MLE) method [37]. The optimum playout delay can be obtained by searching for a playout delay which meets the minimum impairment criterion. Equation (16), which relates impairment with playout delay and network packet loss for a given trace, can be used directly for perceived jitter buffer algorithm optimization. For simplicity, we only use the equation for G codec to show the concept of perceptual optimization buffer design. Network traces show high possibility of spike (which is defined as a number of packets that have significantly higher delays than the rest). Thus, the spike state can be regarded as an exceptional state in the trace data (seen as a short-term delay characteristic) and the remaining nonspike state can be analyzed based on long-term delay distribution. Several algorithms exist for spike detection. For example, Ramachandran et al. [30] proposed to use to detect the start of a spike ( is the network delay for packet). This accounts for a spike with a sudden increase of delay. However, from analysis of our Internet trace data, we notice that a significant number of spikes are accompanied by a gradual increase which cannot be detected by the above algorithm. Considering spikes with sudden or gradual increase, we use the spike detection based on Fig. 16. Performance comparison for different buffer algorithms. as in [31]. The proposed perceptual optimum buffer algorithm (P-optimum) is illustrated in the Appendix. Depending on the current mode, the playout delay for the next talkspurt is estimated differently in each mode. In spike-detection mode, the delay of the first packet of a talkspurt becomes the estimated playout delay for the talkspurt. Otherwise, the perceptually optimized playout delay based on the delay distribution of the last packets (in NORMAL mode) is used. The larger the value, the less responsive the scheme to adapt. The head and tail parameters are used to set the threshold for spike detection. In order to compare with other buffer algorithms, we also implemented exp-avg, fast-exp, min-delay, spk-delay, and adaptive algorithms (for details, see [29]). The results are shown in Fig. 16 for the five selected traces. The window size is set to The head is 4 and the tail is 2, as suggested in [31]. During the experiment, we changed the window size from 100 packets (3 s) to packets (300 s, as suggested by [31] and [34]), and noticed that the performance (the overall score) does not show a big difference within the range. We choose of 1000 (30 s), as it is an appropriate duration for the or calculation and has higher computation efficiency than the longer window length. From Fig. 16, it can be seen that P-optimum obtained the optimum scores among all the five traces. Our previous proposed adaptive algorithm achieved suboptimum results. The remaining buffer algorithms achieve good results only in some traces, but not for all. It has to be mentioned that P-optimum has the highest computational complexity, whereas the others including adaptive have a similar low complexity. V. CONCLUSION In this paper, we have presented a new methodology for developing models for nonintrusive prediction of voice quality. Based on the new methodology, we have developed nonlinear regression models to predict perceived voice quality nonintrusively for four modern codecs (i.e., G.729, G.723.1, AMR, and

11 SUN AND IFEACHOR: VOICE QUALITY PREDICTION MODELS AND THEIR APPLICATION IN VOIP NETWORKS 819 ilbc). The method exploits the intrusive algorithm, PESQ, and a combined PESQ/E-model structure to provide a perceptually accurate prediction of voice quality nonintrusively, which avoids time-consuming subjective tests. We further applied the regression models to two main applications: voice quality prediction for real Internet VoIP traces and perceived quality-driven playout buffer optimization. For voice quality prediction, results show that high prediction accuracy was obtained from the regression models (correlation coefficient of for Scheme I and for Scheme II, respectively) using real Internet VoIP trace data. For playout buffer optimization, the proposed perceptual optimized playout buffer algorithm also achieved optimum voice quality when compared to five other buffer algorithms for all the traces considered. In this paper, we considered two main network impairments (i.e., end-to-end random packet loss and end-to-end delay) for different codecs. This can be extended to include other end-to-end impairments (e.g., burst packet loss). The method presented is generic and can be applied to other media (e.g., audio and video), but extra parameters will need to be considered [17]. It can also be used in automated multimedia system for adaptive codec type/mode and sender-bit-rate control to achieve the best possible end-to-end perceptual voice/video quality. APPENDIX PERCEPTUAL OPTIMUM BUFFER ALGORITHM (P-OPTIMUM) For every packet if else if else end if if end if received, calculate the network delay then then then / the end of a spike / / the beginning of a spike / / save to detect the end of a spike later / / normal model / - update delay records for the past packets At the beginning of a talkspurt if else end if then / estimated playout delay / - obtain in Weibull distribution - search playout delay for which meets REFERENCES [1] Specification and Measurement of Speech Transmission Quality; Part 1: Introduction to Objective Comparison Measurement Methods for One-Way Speech Quality Across Networks, ETSI Guide, EG V1.1.1, Eur. Telecommun. Stand. Inst., Apr [2] L. Yamamoto and J. G. Beerends, Impact of network performance parameters on the end-to-end perceived speech quality, in Proc. Expert ATM Traffic Symp., Mykonos, Greece, Sep [3] Methods for Subjective Determination of Transmission Quality, ITU Rec. P.800, Int. Telecommun. Union, Aug [4] Perceptual Evaluation of Speech Quality (PESQ), An Objective Method for End-to-end Speech Quality Assessment of Narrow-band Telephone Networks and Speech Codecs, ITU-T Rec. P.862, Int. Telecommun. Union, Feb [5] A. W. Rix, M. P. Hollier, A. P. Hekstra, and J. G. Beerends, Perceptual Evaluation of Speech Quality (PESQ): the new ITU standard for end-to-end speech quality assessment, part I time-delay compensation, J. Audio Eng. Soc., vol. 50, no. 10, pp , Oct [6] J. G. Beerends, A. P. Hekstra, A. W. Rix, and M. P. Hollier, Perceptual Evaluation of Speech Quality (PESQ): the new itu standard for end-to-end speech quality assessment part II psychoacoustic model, J. Audio Eng. Soc., vol. 50, no. 10, pp , Oct [7] The E-Model, A Computational Model for Use in Transmission Planning, ITU-T Rec. G.107, Int. Telecommun. Union, Jul [8] N. O. Johannesson, The ETSI computation model: a tool for transmission planning of telephone networks, IEEE Commun. Mag., pp , Jan [9] Single-Ended Method for Objective Speech Quality Assessment in Narrow-Band Telephony Applications, ITU-T Rec. P.563, Int. Telecommun. Union, May [10] A. D. Clark, Modeling the effects of burst packet loss and recency on subjective voice quality, in Proc. IPTEL 2001, New York, Apr. 2001, pp [11] R. G. Cole and J. Rosenbluth, Voice over IP performance monitoring, ACM Comput. Commun. Rev., vol. 31, no. 2, pp. 9 24, April [12] A. P. Markopoulou, F. A. Tobagi, and M. Karam, Assessment of VoIP quality over internet backbones, in Proc. IEEE Infocom, New York, Jun. 2002, vol. 1, pp [13] Methodology for Derivation of Equipment Impairment Factors From Subjective Listening-Only Tests, ITU-T Rec. P.833, Int. Telecommun. Union, Feb [14] S. Möller and J. Berger, Describing telephone speech codec quality degradations by means of impairment factors, J. Audio Eng. Soc., vol. 50, no. 9, pp , Sep [15] S. Mohamed, F. Cervantes-Pérez, and H. Afifi, Real-time audio quality assessment in packet networks, Network Inform. Syst. J., pp , [16], Integrating networks measurements and speech quality subjective scores for control purposes, in Proc. IEEE INFOCOM 01, Anchorage, AK, Apr. 2001, vol. 2, pp [17] S. Mohamed and G. Rubino, A study of real-time packet video quality using random neural networks, IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 12, pp , Dec [18] L. Sun and E. Ifeachor, Perceived speech quality prediction for voice over IP-based networks, in Proc. IEEE Int. Conf. Communications ICC 02, New York, Apr. 2002, pp [19] Z. Qiao, L. Sun, N. Heilemann, and E. Ifeachor, A new method for VoIP quality of service control based on combined adaptive sender rate and priority marking, in Proc. IEEE Int. Conf. Communications ICC 2004, Paris, France, Jun. 2004, pp [20] Method for Objective Measurement of Perceived Audio Quality, ITU-R Rec. BS.1387, Int. Telecommun. Union, Nov [21] Z. Wang and A. C. Bovik, A universal image quality index, IEEE Signal Process. Lett., vol. 9, no. 3, pp , Mar [22] American National Standard for Telecommunications Digital Transport of Oneway Video Signals-parameters for Objective Performance Assessment, ANSI T , Amer. Nat. Stand. Inst., [23] C. Hoene, H. Karl, and A. Wolisz, A perceptual quality model for adaptive VoIP applications, in Proc. Int. Symp. Performance Evaluation of Computer and Telecommmunication Systems (SPECTS 04), San Jose, CA. [24] L. Sun, Speech Quality Prediction for Voice Over Internet Protocol Networks, Ph.D dissertation, Univ. Plymouth, Plymouth, U.K., Jan [25] Objective Measuring Apparatus, Appendix 1: Test Signals, ITU-T Rec. P.50, Int. Telecommun. Union, Feb [26] A. W. Rix, Comparison between subjective listening quality and P.862 PESQ score, in Proc. Online Workshop Measurement of Speech and Audio Quality in Networks, Czech Republic, May 2003, pp

12 820 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 8, NO. 4, AUGUST 2006 [27] Mapping Function for Transforming P.862 Raw Result Scores to MOS- LQO, ITU-T Rec. P.862.1, Int. Telecommun. Union, Nov [28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for Real-Time Applications, RFC 1889, IETF Jan [Online]. Available: ftp://ftp.ietf.org/rfc/rfc1889.txt [29] L. Sun and E. Ifeachor, Prediction of perceived conversational speech quality and effects of playout buffer algorithms, in Proc. IEEE Int. Conf. Communications ICC 03, Anchorage, AK, May 2003, pp [30] R. Ramachandran, J. Kurose, D. Towsley, and H. Schulzrinne, Adaptive playout mechanisms for packetized audio applications in wide-area networks, in Proc. IEEE Infocom, 1994, vol. 2, pp [31] S. B. Moon, J. Kurose, and D. Towsley, Packet audio playout delay adjustment: performance bounds and algorithms, Multimedia Syst., vol. 6, pp , [32] J. Rosenberg, L. Qiu, and H. Schulzrinne, Integrating packet FEC into adaptive voice playout buffer algorithms on the internet, in Proc. IEEE Infocom 2000, Tel Aviv, Israel, Mar. 2000, vol. 3, pp [33] V. Ramos, C. Barakat, and E. Altman, A moving average predictor for playout delay control in VoIP, in Proc. Quality of Service IWQoS 2003, 11th Int. Workshop, Berkeley, CA, Jun. 2003, pp [34] K. Fujimoto, S. Ata, and M. Murata, Adaptive playout buffer algorithm for enhancing perceived quality of streaming applications, in Proc. IEEE Globecom2002, Nov. 2002, vol. 3, pp [35] C. Boutremans and J. Y. Le Boudec, Adaptive joint playout buffer and FEC adjustment for internet telephony, in Proc. IEEE IN- FOCOM 2003, San Francisco, CA, Apr. 2003, pp [36] L. Sun and E. Ifeachor, New models for perceived voice quality prediction and their applications in playout buffer optimization for VoIP networks, in Proc. IEEE Int. Conf. Communications ICC 2004, Paris, France, Jun. 2004, pp [37] A. Feldmann, Characteristics of TCP Connection Arrivals. Florham Park, NJ: AT&T Labs Research, 1998 [Online]. Available: Lingfen Sun (M 02) received the Ph.D. degree in computing and communications with a specialization in speech quality prediction for VoIP networks from the University of Plymouth, U.K. She is now a Research Fellow in School of Computing, Communications and Electronics, University of Plymouth, U.K. Her research interests include VoIP, voice and video quality measurement, IP network measurement and characterization, quality monitoring and prediction, multimedia communications and networking, grid computing; and grid applications in ehealthcare. Emmanuel C. Ifeachor (M 02) received the B.Sc. (Hons) degree in communication engineering from the University of Plymouth, U.K. (formerly Plymouth Polytechnic), in 1980, the M.Sc. degree and DIC in communication engineering from Imperial College, London, U.K., in 1981, and the Ph.D. degree in medical electronics from the University of Plymouth in He is a Professor of intelligent electronics systems and Head of Signal Processing & Multimedia Communications at the University of Plymouth. He was Head of School of Electronic, Communication and Electrical Engineering from 1995 to His Chair was sponsored by the communications company, WWG/Acterna, for four years ( ).He has published extensively in the areas of signal processing and computational intelligence, including co-authoring Digital Signal Processing A Practical Approach (1st ed., Addison Wesley, 1993; 2nd ed., Prentice Hall, 2002), and editing/co-editing five books including Artificial Neural Networks for Biomedicine (Springer, 2000). His primary research interests are signal processing and computational intelligence techniques and their applications to important real world problems in biomedicine, multimedia communications and audio. He has led many government and industry funded projects in these areas over the years, including coordinator of a four-year, EU funded (Euro 6.4 million), network of excellence project (BIOPATTERN) in biomedical informatics in support of ehealthcare and genomic-based medicine. Over the past five years, he has established an industry-sponsored research program on perceptual-based, speech, audio, and video quality prediction in communication systems. His current research activities include quality of service prediction and control for multimedia communications over packet, grid-enabled and mobile ad-hoc networks, end-to-end quality of service measurements for real-time multimedia applications (e.g., voice and video over IP and e-health services), audio signal processing, audio quality prediction, biomedical informatics, biosignals analysis, objective evaluation of intelligent medical systems, and eservices. Dr. Ifeachor has received several external awards for his work, including two awards from the Institution of Electrical Engineers (IEE) the IEE Dr. V. K. Zworykin Premium in 1997 and He currently serves on the UK Committee for Professors and Heads of Electrical Engineering (PHEE) and on the Executive Team of the IEE Professional Networks (PN) on Healthcare Technologies. In 2004, he served as the chair of the PN Executive Team.

New Models for Perceived Voice Quality Prediction and their Applications in Playout Buffer Optimization for VoIP Networks

New Models for Perceived Voice Quality Prediction and their Applications in Playout Buffer Optimization for VoIP Networks New Models for Perceived Voice Quality Prediction and their Applications in Playout Buffer Optimization for VoIP Networks Lingfen Sun and Emmanuel Ifeachor Centre for Signal Processing & Multimedia Communication

More information

New Models for Perceived Voice Quality Prediction and their Applications in Playout Buffer Optimization for VoIP Networks

New Models for Perceived Voice Quality Prediction and their Applications in Playout Buffer Optimization for VoIP Networks New Models for Perceived Voice Quality Prediction and their Applications in Playout Buffer Optimization for VoIP Networks Dr. Lingfen Sun Prof Emmanuel Ifeachor University of Plymouth United Kingdom {L.Sun;

More information

Perceived Speech Quality Prediction for Voice over IP-based Networks

Perceived Speech Quality Prediction for Voice over IP-based Networks Perceived Speech Quality Prediction for Voice over IP-based Networks Lingfen Sun and Emmanuel C. Ifeachor Department of Communication and Electronic Engineering, University of Plymouth, Plymouth PL 8AA,

More information

Monitoring VoIP Call Quality Using Improved Simplified E-model

Monitoring VoIP Call Quality Using Improved Simplified E-model Monitoring VoIP Call Quality Using Improved Simplified E-model Haytham Assem, David Malone Hamilton Institute, National University of Ireland, Maynooth Hitham.Salama.2012, David.Malone@nuim.ie Jonathan

More information

COMPARISONS OF FEC AND CODEC ROBUSTNESS ON VOIP QUALITY AND BANDWIDTH EFFICIENCY

COMPARISONS OF FEC AND CODEC ROBUSTNESS ON VOIP QUALITY AND BANDWIDTH EFFICIENCY COMPARISONS OF FEC AND CODEC ROBUSTNESS ON VOIP QUALITY AND BANDWIDTH EFFICIENCY WENYU JIANG AND HENNING SCHULZRINNE Columbia University, Department of Computer Science 121 Amsterdam Ave, Mail Code 001,

More information

Implementation of Video Voice over IP in Local Area Network Campus Environment

Implementation of Video Voice over IP in Local Area Network Campus Environment Implementation of Video Voice over IP in Local Area Network Campus Environment Mohd Nazri Ismail Abstract--In this research, we propose an architectural solution to integrate the video voice over IP (V2oIP)

More information

QoS in VoIP. Rahul Singhai Parijat Garg

QoS in VoIP. Rahul Singhai Parijat Garg QoS in VoIP Rahul Singhai Parijat Garg Outline Introduction The VoIP Setting QoS Issues Service Models Techniques for QoS Voice Quality Monitoring Sample solution from industry Conclusion Introduction

More information

ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP

ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP ENSC 427: Communication Networks ANALYSIS OF LONG DISTANCE 3-WAY CONFERENCE CALLING WITH VOIP Spring 2010 Final Project Group #6: Gurpal Singh Sandhu Sasan Naderi Claret Ramos (gss7@sfu.ca) (sna14@sfu.ca)

More information

SPEECH QUALITY PREDICTION FOR VOICE OVER INTERNET PROTOCOL NETWORKS. L. Sun

SPEECH QUALITY PREDICTION FOR VOICE OVER INTERNET PROTOCOL NETWORKS. L. Sun SPEECH QUALITY PREDICTION FOR VOICE OVER INTERNET PROTOCOL NETWORKS L. Sun Ph.D. January 2004 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise

More information

Assessment of VoIP Quality over Internet Backbones

Assessment of VoIP Quality over Internet Backbones Assessment of VoIP Quality over Internet Backbones Athina Markopoulou & Fouad Tobagi Electrical Engineering Dept. Stanford University Mansour Karam RouteScience Technologies, Inc. INFOCOM 2002, 06/25/02

More information

Packet Loss Distributions and Packet Loss Models ABSTRACT

Packet Loss Distributions and Packet Loss Models ABSTRACT UIT - Secteur de la normalisation des télécommunications ITU - Telecommunication Standardization Sector UIT - Sector de Normalización de las Telecomunicaciones Study Period 2001-2004 Study Group 12 Lannion,

More information

Gauging VoIP call quality from 802.11 WLAN resource usage

Gauging VoIP call quality from 802.11 WLAN resource usage Gauging VoIP call quality from 82.11 WLAN resource usage Miroslaw Narbutt and Mark Davis Communications Network Research Institute School of Electronic and Communications Engineering Dublin Institute of

More information

MOS-Based Rate Adaption for VoIP Sources

MOS-Based Rate Adaption for VoIP Sources This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 27 proceedings. -Based Rate Adaption for VoIP Sources N. T. Moura

More information

White Paper. Comparison between subjective listening quality and P.862 PESQ score. Prepared by: A.W. Rix Psytechnics Limited

White Paper. Comparison between subjective listening quality and P.862 PESQ score. Prepared by: A.W. Rix Psytechnics Limited Comparison between subjective listening quality and P.862 PESQ score White Paper Prepared by: A.W. Rix Psytechnics Limited 23 Museum Street Ipswich, Suffolk United Kingdom IP1 1HN t: +44 (0) 1473 261 800

More information

A New Adaptive Redundancy Control Algorithm For VoIP Applications

A New Adaptive Redundancy Control Algorithm For VoIP Applications A New Adaptive Redundancy Control Algorithm For VoIP Applications Haytham Assem, David Malone Hamilton Institute, National University of Ireland Maynooth, Ireland Email: {Hitham.Salama.2012, David.Malone}@nuim.ie

More information

White Paper. PESQ: An Introduction. Prepared by: Psytechnics Limited. 23 Museum Street Ipswich, Suffolk United Kingdom IP1 1HN

White Paper. PESQ: An Introduction. Prepared by: Psytechnics Limited. 23 Museum Street Ipswich, Suffolk United Kingdom IP1 1HN PESQ: An Introduction White Paper Prepared by: Psytechnics Limited 23 Museum Street Ipswich, Suffolk United Kingdom IP1 1HN t: +44 (0) 1473 261 800 f: +44 (0) 1473 261 880 e: info@psytechnics.com September

More information

Open IMS Core with VoIP Quality Adaptation

Open IMS Core with VoIP Quality Adaptation Open IMS Core with VoIP Quality Adaptation Is-Haka Mkwawa, Emmanuel Jammeh, Lingfen Sun, Asiya Khan and Emmanuel Ifeachor Centre for Signal Processing and Multimedia Communication School of Computing,Communication

More information

Measurement of V2oIP over Wide Area Network between Countries Using Soft Phone and USB Phone

Measurement of V2oIP over Wide Area Network between Countries Using Soft Phone and USB Phone The International Arab Journal of Information Technology, Vol. 7, No. 4, October 2010 343 Measurement of V2oIP over Wide Area Network between Countries Using Soft Phone and USB Phone Mohd Ismail Department

More information

MULTI-STREAM VOICE OVER IP USING PACKET PATH DIVERSITY

MULTI-STREAM VOICE OVER IP USING PACKET PATH DIVERSITY MULTI-STREAM VOICE OVER IP USING PACKET PATH DIVERSITY Yi J. Liang, Eckehard G. Steinbach, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University, Stanford,

More information

Adaptive Coding and Packet Rates for TCP-Friendly VoIP Flows

Adaptive Coding and Packet Rates for TCP-Friendly VoIP Flows Adaptive Coding and Packet Rates for TCP-Friendly VoIP Flows C. Mahlo, C. Hoene, A. Rostami, A. Wolisz Technical University of Berlin, TKN, Sekr. FT 5-2 Einsteinufer 25, 10587 Berlin, Germany. Emails:

More information

Speech Quality Measurement Tools for Dynamic Network Management

Speech Quality Measurement Tools for Dynamic Network Management Speech Quality Measurement Tools for Dynamic Network Management Simon Broom, Mike Hollier Psytechnics, 23 Museum Street, Ipswich, Suffolk, UK IP1 1HN Phone +44 (0)1473 261800, Fax +44 (0)1473 261880 simon.broom@psytechnics.com

More information

then, we require that, in order to support the offered load, (1)

then, we require that, in order to support the offered load, (1) Capacity of an IEEE 802.11b Wireless LAN supporting VoIP To appear in Proc. IEEE Int. Conference on Communications (ICC) 2004 David P. Hole and Fouad A. Tobagi Dept. of Electrical Engineering, Stanford

More information

PERCEPTUAL EVALUATION OF PLAYOUT BUFFER ALGORITHM FOR ENHANCING PERCEIVED QUALITY OF VOICE TRANSMISSION OVER IP NETWORK

PERCEPTUAL EVALUATION OF PLAYOUT BUFFER ALGORITHM FOR ENHANCING PERCEIVED QUALITY OF VOICE TRANSMISSION OVER IP NETWORK PERCEPTUAL EVALUATION OF PLAYOUT BUFFER ALGORITHM FOR ENHANCING PERCEIVED QUALITY OF VOICE TRANSMISSION OVER IP NETWORK Yusuf Perwej 1 and Firoj Parwej 2 1 M.Tech, MCA, Department of Computer Science &

More information

EVALUATION OF VOICE QUALITY IN 3G MOBILE NETWORKS

EVALUATION OF VOICE QUALITY IN 3G MOBILE NETWORKS EVALUATION OF VOICE QUALITY IN 3G MOBILE NETWORKS A thesis submitted to the University of Plymouth in partial fulfilment of the requirements for the degree of Master of Science Project supervisor: Dr.

More information

Quality Estimation for Streamed VoIP Services

Quality Estimation for Streamed VoIP Services Quality Estimation for Streamed VoIP Services Mousa Al-Akhras and Hussein Zedan STRL, De Montfort University, Leicester, UK makhras@dmu.ac.uk, hzedan@dmu.ac.uk http://www.cse.dmu.ac.uk/strl/index.html

More information

Estimation of Voice over IP Quality in the Netherlands

Estimation of Voice over IP Quality in the Netherlands Estimation of Voice over IP Quality in the Netherlands X. Zhou,F.Muller,R.E.Kooij,,andP.VanMieghem Delft University of Technology, P.O. Box 0, 00 GA Delft, The Netherlands {X.Zhou, F.Muller, R.E.Kooij,

More information

Troubleshooting Common Issues in VoIP

Troubleshooting Common Issues in VoIP Troubleshooting Common Issues in VoIP 2014, SolarWinds Worldwide, LLC. All rights reserved. Voice over Internet Protocol (VoIP) Introduction Voice over IP, or VoIP, refers to the delivery of voice and

More information

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP

Voice over IP. Overview. What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP Voice over IP Andreas Mettis University of Cyprus November 23, 2004 Overview What is VoIP and how it works. Reduction of voice quality. Quality of Service for VoIP 1 VoIP VoIP (voice over IP - that is,

More information

Measurement of IP Transport Parameters for IP Telephony

Measurement of IP Transport Parameters for IP Telephony Measurement of IP Transport Parameters for IP Telephony B.V.Ghita, S.M.Furnell, B.M.Lines, E.C.Ifeachor Centre for Communications, Networks and Information Systems, Department of Communication and Electronic

More information

A Generic Algorithm for Midcall Audio Codec Switching

A Generic Algorithm for Midcall Audio Codec Switching A Generic Algorithm for Midcall Audio Codec Switching Haytham Assem, Mohamed Adel, Brendan Jennings, David Malone, Jonathan Dunne and Pat O Sullivan TSSG, Waterford Institute of Technology,Ireland Hamilton

More information

Task Dependency of User Perceived Utility in Autonomic VoIP Systems

Task Dependency of User Perceived Utility in Autonomic VoIP Systems Task Dependency of User Perceived Utility in Autonomic VoIP Systems Edward Stehle, Maxim Shevertalov, Paul degrandis, Spiros Mancoridis, Moshe Kam Department of Computer Science Drexel University Philadelphia,

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

Voice Quality Planning for NGN including Mobile Networks

Voice Quality Planning for NGN including Mobile Networks Voice Quality Planning for NGN including Mobile Networks Ivan Pravda 1, Jiri Vodrazka 1, 1 Czech Technical University of Prague, Faculty of Electrical Engineering, Technicka 2, 166 27 Prague 6, Czech Republic

More information

Application Notes. Introduction. Sources of delay. Contents. Impact of Delay in Voice over IP Services VoIP Performance Management.

Application Notes. Introduction. Sources of delay. Contents. Impact of Delay in Voice over IP Services VoIP Performance Management. Application Notes Title Series Impact of Delay in Voice over IP Services VoIP Performance Management Date January 2006 Overview This application note describes the sources of delay in Voice over IP services,

More information

STUDIES TOWARD IMPROVED VoIP SERVICES FOR FUTURE COMBAT SYSTEMS. Robert G. Cole and Subramaniam Kandaswamy JHU Applied Physics Laboratory Laurel, MD

STUDIES TOWARD IMPROVED VoIP SERVICES FOR FUTURE COMBAT SYSTEMS. Robert G. Cole and Subramaniam Kandaswamy JHU Applied Physics Laboratory Laurel, MD STUDIES TOWARD IMPROVED VoIP SERVICES FOR FUTURE COMBAT SYSTEMS Robert G. Cole and Subramaniam Kandaswamy JHU Applied Physics Laboratory Laurel, MD Alan Clark Telchemy, Inc. Suwanee, GA ABSTRACT In this

More information

Performance Measurement and Analysis of H.323 Traffic

Performance Measurement and Analysis of H.323 Traffic Performance Measurement and Analysis of H.323 Traffic Prasad Calyam 1, Mukundan Sridharan 2, Weiping Mandrawa 1, and Paul Schopis 1 1 OARnet, 1224 Kinnear Road,Columbus, Ohio 43212. {pcalyam,wmandraw,pschopis}@oar.net

More information

An Analysis of Error Handling Techniques in Voice over IP

An Analysis of Error Handling Techniques in Voice over IP An Analysis of Error Handling Techniques in Voice over IP Martin John Lipka ABSTRACT The use of Voice over IP (VoIP) has been growing in popularity, but unlike its wired circuit-switched telephone network

More information

Evaluating the utility of media dependent FEC in VoIP flows

Evaluating the utility of media dependent FEC in VoIP flows Evaluating the utility of media dependent FEC in VoIP flows Gerardo Rubino 1 and Martín Varela 1 Irisa - INRIA/Rennes Campus universitaire de Beaulieu 35042 Rennes CEDEX, France {rubino mvarela}@irisa.fr

More information

Real-Time, Non-intrusive Evaluation of VoIP

Real-Time, Non-intrusive Evaluation of VoIP Real-Time, Non-intrusive Evaluation of VoIP Adil Raja 1,R.MuhammadAtifAzad 2, Colin Flanagan 1, and Conor Ryan 2 1 Wireless Access Research Center Department of Electronic and Computer Engineering 2 Biocomputing

More information

Department of MIIT, University of Kuala Lumpur (UniKL), Malaysia mnazrii@miit.unikl.edu.my

Department of MIIT, University of Kuala Lumpur (UniKL), Malaysia mnazrii@miit.unikl.edu.my Analyzing of MOS and Codec Selection for Voice over IP Technology Mohd Nazri Ismail Department of MIIT, University of Kuala Lumpur (UniKL), Malaysia mnazrii@miit.unikl.edu.my ABSTRACT. In this research,

More information

Fundamentals of VoIP Call Quality Monitoring & Troubleshooting. 2014, SolarWinds Worldwide, LLC. All rights reserved. Follow SolarWinds:

Fundamentals of VoIP Call Quality Monitoring & Troubleshooting. 2014, SolarWinds Worldwide, LLC. All rights reserved. Follow SolarWinds: Fundamentals of VoIP Call Quality Monitoring & Troubleshooting 2014, SolarWinds Worldwide, LLC. All rights reserved. Introduction Voice over IP, or VoIP, refers to the delivery of voice and multimedia

More information

Introduction. Impact of Link Failures on VoIP Performance. Outline. Introduction. Related Work. Outline

Introduction. Impact of Link Failures on VoIP Performance. Outline. Introduction. Related Work. Outline Impact of Link Failures on VoIP Performance International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV) C. Boutremans, G. Iannaccone and C. Diot Sprint ATL May

More information

A Quality of Experience based Approach for Wireless Mesh Networks*

A Quality of Experience based Approach for Wireless Mesh Networks* A Quality of Experience based Approach for Wireless Mesh Networks* Anderson Morais, and Ana Cavalli Télécom SudParis, France {anderson.morais, ana.cavalli}@it-sudparis.eu Abstract. Wireless Mesh Network

More information

Scheduling for VoIP Service in cdma2000 1x EV-DO

Scheduling for VoIP Service in cdma2000 1x EV-DO Scheduling for VoIP Service in cdma2000 1x EV-DO Young-June Choi and Saewoong Bahk School of Electrical Engineering & Computer Science Seoul National University, Seoul, Korea E-mail: {yjchoi, sbahk}@netlab.snu.ac.kr

More information

White Paper. ETSI Speech Quality Test Event Calling Testing Speech Quality of a VoIP Gateway

White Paper. ETSI Speech Quality Test Event Calling Testing Speech Quality of a VoIP Gateway White Paper ETSI Speech Quality Test Event Calling Testing Speech Quality of a VoIP Gateway A white paper from the ETSI 3rd SQTE (Speech Quality Test Event) Version 1 July 2005 ETSI Speech Quality Test

More information

Voice over IP Quality of Service Using Active Queue Management

Voice over IP Quality of Service Using Active Queue Management VI International Telecommunications Symposium (ITS2006), September 3-6, 2006, Fortaleza-CE, Brazil 1 Voice over IP Quality of Service Using Active Queue Management Vitalio Alfonso Reguera, Félix F. Álvarez

More information

Impact of link failures on VoIP performance

Impact of link failures on VoIP performance 1 Impact of link failures on VoIP performance Catherine Boutremans, Gianluca Iannaccone and Christophe Diot Abstract We use active and passive traffic measurements to identify the issues involved in the

More information

A New Adaptive FEC Loss Control Algorithm for Voice Over IP Applications

A New Adaptive FEC Loss Control Algorithm for Voice Over IP Applications A New Adaptive FEC Loss Control Algorithm for Voice Over IP Applications Chinmay Padhye and Kenneth J. Christensen Computer Science and Engineering University of South Florida Tampa, FL 336 {padhye, christen}@csee.usf.edu

More information

Performance Analysis of Interleaving Scheme in Wideband VoIP System under Different Strategic Conditions

Performance Analysis of Interleaving Scheme in Wideband VoIP System under Different Strategic Conditions Performance Analysis of Scheme in Wideband VoIP System under Different Strategic Conditions Harjit Pal Singh 1, Sarabjeet Singh 1 and Jasvir Singh 2 1 Dept. of Physics, Dr. B.R. Ambedkar National Institute

More information

ETSI TS 101 329-2 V1.1.1 (2000-07)

ETSI TS 101 329-2 V1.1.1 (2000-07) TS 101 329-2 V1.1.1 (2000-07) Technical Specification Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); End to End Quality of Service in TIPHON Systems; Part 2: Definition

More information

VoIP QoS on low speed links

VoIP QoS on low speed links Ivana Pezelj Croatian Academic and Research Network - CARNet J. Marohni a bb 0 Zagreb, Croatia Ivana.Pezelj@CARNet.hr QoS on low speed links Julije Ožegovi Faculty of Electrical Engineering, Mechanical

More information

MOS Technology Brief Mean Opinion Score Algorithms for Speech Quality Evaluation

MOS Technology Brief Mean Opinion Score Algorithms for Speech Quality Evaluation MOS Technology Brief Mean Opinion Score Algorithms for Speech Quality Evaluation Mean Opinion Score (MOS) is commonly used to rate phone service speech quality, expressed on a scale from 1 to 5, where

More information

Service resiliency and reliability Quality of Experience Modelling requirements A PlanetLab proposal. PDCAT'08 - Dunedin December 1-4, 2008

Service resiliency and reliability Quality of Experience Modelling requirements A PlanetLab proposal. PDCAT'08 - Dunedin December 1-4, 2008 PlaNetLab Options from Massey University Richard Harris Presentation Outline Service resiliency and reliability Quality of Experience Modelling requirements A PlanetLab proposal PDCAT'2008 Dunedin 2 (c)

More information

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow International Journal of Soft Computing and Engineering (IJSCE) Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow Abdullah Al Masud, Hossain Md. Shamim, Amina Akhter

More information

Accuracy Analysis on Call Quality Assessments in Voice over IP

Accuracy Analysis on Call Quality Assessments in Voice over IP Accuracy Analysis on Call Quality Assessments in Voice over IP Yi Han, John Fitzpatrick, Liam Murphy, Jonathan Dunne School of Computer Science and Informatics University College Dublin Email: yi.han@ucdconnect.ie,

More information

The PESQ Algorithm as the Solution for Speech Quality Evaluation on 2.5G and 3G Networks. Technical Paper

The PESQ Algorithm as the Solution for Speech Quality Evaluation on 2.5G and 3G Networks. Technical Paper The PESQ Algorithm as the Solution for Speech Quality Evaluation on 2.5G and 3G Networks Technical Paper 1 Objective Metrics for Speech-Quality Evaluation The deployment of 2G networks quickly identified

More information

Basic principles of Voice over IP

Basic principles of Voice over IP Basic principles of Voice over IP Dr. Peter Počta {pocta@fel.uniza.sk} Department of Telecommunications and Multimedia Faculty of Electrical Engineering University of Žilina, Slovakia Outline VoIP Transmission

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: j.cao@student.rmit.edu.au

More information

VoIP on WIFI. Christian Hoene September 13 th, 2004 UNITN DIT, Trento. Motivation: Semantic data-link Determining VoIP Quality

VoIP on WIFI. Christian Hoene September 13 th, 2004 UNITN DIT, Trento. Motivation: Semantic data-link Determining VoIP Quality VoIP on WIFI Christian Hoene September 13 th, 2004 UNITN DIT, Trento Technische Universität Berlin URL: www.tkn.tu-berlin.de 1 Content Motivation: Semantic data-link Determining VoIP Quality Perceptual

More information

Adaptive VoIP with Audio Watermarking for Improved Call Quality and Security

Adaptive VoIP with Audio Watermarking for Improved Call Quality and Security Journal of Information Assurance and Security 2 (2007) 226-234 Adaptive VoIP with Audio Watermarking for Improved Call Quality and Security Wojciech Mazurczyk 1, Zbigniew Kotulski 1,2 1 Warsaw University

More information

Active Monitoring of Voice over IP Services with Malden

Active Monitoring of Voice over IP Services with Malden Active Monitoring of Voice over IP Services with Malden Introduction Active Monitoring describes the process of evaluating telecommunications system performance with intrusive tests. It differs from passive

More information

Adaptive Rate Voice over IP Quality Management Algorithm

Adaptive Rate Voice over IP Quality Management Algorithm 98 Adaptive Rate Voice over IP Quality Management Algorithm Eugene S. Myakotnykh Centre for Quantifiable Quality of Service in Communication Systems (Q2S) 1, Norwegian University of Science and Technology,

More information

Perception of Utility in Autonomic VoIP Systems

Perception of Utility in Autonomic VoIP Systems Perception of Utility in Autonomic VoIP Systems Edward Stehle, Maxim Shevertalov, Paul degrandis, Spiros Mancoridis, Moshe Kam Department of Computer Science Drexel University Philadelphia, PA 19104, USA

More information

start of a talkspurt as given by (2). (1) (2)

start of a talkspurt as given by (2). (1) (2) An Evaluation of the Potential of Synchronized Time to Improve Voice Over IP Quality Hugh Melvin and Liam Murphy Abstract Delivering PSTN-like quality over current besteffort Internet infrastructure presents

More information

Simulative Investigation of QoS parameters for VoIP over WiMAX networks

Simulative Investigation of QoS parameters for VoIP over WiMAX networks www.ijcsi.org 288 Simulative Investigation of QoS parameters for VoIP over WiMAX networks Priyanka 1, Jyoteesh Malhotra 2, Kuldeep Sharma 3 1,3 Department of Electronics, Ramgarhia Institue of Engineering

More information

Priority Based Dynamic Rate Control for VoIP Traffic

Priority Based Dynamic Rate Control for VoIP Traffic Priority Based Dynamic Rate Control for VoIP Traffic Fariza Sabrina CSIRO ICT Centre, Sydney, Australia Email: Fariza.sabrina@csiro.au Jean-Marc Valin Octasic Inc., Montreal, Quebec, Canada Email:jmvalin@ieee.org

More information

Voice and Fax/Modem transmission in VoIP networks

Voice and Fax/Modem transmission in VoIP networks Voice and Fax/Modem transmission in VoIP networks Martin Brand A1Telekom Austria ETSI 2011. All rights reserved Name : Martin Brand Position: Senior IT Specialist at A1 Telekom Vice Chairman ETSI TC INT

More information

PERFORMANCE ANALYSIS OF VOIP TRAFFIC OVER INTEGRATING WIRELESS LAN AND WAN USING DIFFERENT CODECS

PERFORMANCE ANALYSIS OF VOIP TRAFFIC OVER INTEGRATING WIRELESS LAN AND WAN USING DIFFERENT CODECS PERFORMANCE ANALYSIS OF VOIP TRAFFIC OVER INTEGRATING WIRELESS LAN AND WAN USING DIFFERENT CODECS Ali M. Alsahlany 1 1 Department of Communication Engineering, Al-Najaf Technical College, Foundation of

More information

A Perceptual Quality Model Intended for Adaptive VoIP Applications

A Perceptual Quality Model Intended for Adaptive VoIP Applications INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS Int. J. Commun. Syst. 2005; 00:1 20 [Version: 2002/09/18 v1.01] A Perceptual Quality Model Intended for Adaptive VoIP Applications Christian Hoene 1, Holger

More information

Assessing the quality of VoIP transmission affected by playout buffer scheme and encoding scheme

Assessing the quality of VoIP transmission affected by playout buffer scheme and encoding scheme Assessing the quality of VoIP transmission affected by playout buffer scheme and encoding scheme Miroslaw Narbutt, Mark Davis Communications Network Research Institute Dublin Institute of Technology Wireless

More information

Application Notes. Introduction. Contents. Managing IP Centrex & Hosted PBX Services. Series. VoIP Performance Management. Overview.

Application Notes. Introduction. Contents. Managing IP Centrex & Hosted PBX Services. Series. VoIP Performance Management. Overview. Title Series Managing IP Centrex & Hosted PBX Services Date July 2004 VoIP Performance Management Contents Introduction... 1 Quality Management & IP Centrex Service... 2 The New VoIP Performance Management

More information

Performance Analysis of VoIP Codecs over BE WiMAX Network

Performance Analysis of VoIP Codecs over BE WiMAX Network Performance Analysis of VoIP Codecs over BE WiMAX Network Muhammad Imran Tariq, Muhammad Ajmal Azad, Razvan Beuran, Yoichi Shinoda Japan Advanced Institute of Science and Technology, Ishikawa, Japan National

More information

Using Optimization to Achieve Efficient Quality of Service in Voice over IP Networks

Using Optimization to Achieve Efficient Quality of Service in Voice over IP Networks Using Optimization to Achieve Efficient Quality of Service in Voice over IP Networks Michael Todd Gardner*, Victor S. Frost**, and David W. Petr** **Information and Telecommunications Technology Center

More information

NETWORK REQUIREMENTS FOR HIGH-SPEED REAL-TIME MULTIMEDIA DATA STREAMS

NETWORK REQUIREMENTS FOR HIGH-SPEED REAL-TIME MULTIMEDIA DATA STREAMS NETWORK REQUIREMENTS FOR HIGH-SPEED REAL-TIME MULTIMEDIA DATA STREAMS Andrei Sukhov 1), Prasad Calyam 2), Warren Daly 3), Alexander Iliin 4) 1) Laboratory of Network Technologies, Samara Academy of Transport

More information

Joint playout and FEC control for multi-stream voice over IP networks

Joint playout and FEC control for multi-stream voice over IP networks Journal of the Chinese Institute of Engineers, 2013 Vol. 36, No. 2, 224 235, http://dx.doi.org/10.1080/02533839.2012.726334 Joint playout and FEC control for multi-stream voice over IP networks Chun-Feng

More information

Statistical Measurement Approach for On-line Audio Quality Assessment

Statistical Measurement Approach for On-line Audio Quality Assessment Statistical Measurement Approach for On-line Audio Quality Assessment Lopamudra Roychoudhuri, Ehab Al-Shaer and Raffaella Settimi School of Computer Science, Telecommunications and Information Systems,

More information

Understanding the Transition From PESQ to POLQA. An Ascom Network Testing White Paper

Understanding the Transition From PESQ to POLQA. An Ascom Network Testing White Paper Understanding the Transition From PESQ to POLQA An Ascom Network Testing White Paper By Dr. Irina Cotanis Prepared by: Date: Document: Dr. Irina Cotanis 6 December 2011 NT11-22759, Rev. 1.0 Ascom (2011)

More information

Analyzing Mission Critical Voice over IP Networks. Michael Todd Gardner

Analyzing Mission Critical Voice over IP Networks. Michael Todd Gardner Analyzing Mission Critical Voice over IP Networks Michael Todd Gardner Organization What is Mission Critical Voice? Why Study Mission Critical Voice over IP? Approach to Analyze Mission Critical Voice

More information

Communications Test Equipment White Paper

Communications Test Equipment White Paper XPI Solutions for Multi-Service/Access Communications Test Equipment White Paper s Addressing VoIP Speech Quality with Non-intrusive Measurements by John Anderson Product Marketing Manager Agilent Technologies

More information

Proactive Video Assurance through QoE and QoS Correlation

Proactive Video Assurance through QoE and QoS Correlation A Complete Approach for Quality and Service Assurance W H I T E P A P E R Introduction Video service providers implement new technologies to maximize the quality and diversity of their entertainment program

More information

Objective Speech Quality Measures for Internet Telephony

Objective Speech Quality Measures for Internet Telephony Objective Speech Quality Measures for Internet Telephony Timothy A. Hall National Institute of Standards and Technology 100 Bureau Drive, STOP 8920 Gaithersburg, MD 20899-8920 ABSTRACT Measuring voice

More information

Evaluating Data Networks for Voice Readiness

Evaluating Data Networks for Voice Readiness Evaluating Data Networks for Voice Readiness by John Q. Walker and Jeff Hicks NetIQ Corporation Contents Introduction... 2 Determining Readiness... 2 Follow-on Steps... 7 Summary... 7 Our focus is on organizations

More information

Measuring Data and VoIP Traffic in WiMAX Networks

Measuring Data and VoIP Traffic in WiMAX Networks JOURNAL OF TELECOMMUNICATIONS, VOLUME 2, ISSUE 1, APRIL 2010 Measuring Data and VoIP Traffic in WiMAX Networks 1 Iwan Adhicandra Abstract Due to its large coverage area, low cost of deployment and high

More information

Performance Analysis of VoIP Codecs over Wi-Fi and WiMAX Networks

Performance Analysis of VoIP Codecs over Wi-Fi and WiMAX Networks Performance Analysis of VoIP Codecs over Wi-Fi and WiMAX Networks Khaled Alutaibi and Ljiljana Trajković Simon Fraser University Vancouver, British Columbia, Canada E-mail: {kalutaib, ljilja}@sfu.ca Abstract

More information

Voice Quality Evaluation of a Call Using Fuzzy Logic

Voice Quality Evaluation of a Call Using Fuzzy Logic International Journal of Networks and Communications 2012, 2(2): 7-12 DOI: 10.5923/j.ijnc.20120202.02 Voice Quality Evaluation of a Call Using Fuzzy Logic Oyetade Durojaiye *, Elizabeth. N. Onwuka Telecommunications

More information

ENSC 427: Communication Networks. Analysis of Voice over IP performance on Wi-Fi networks

ENSC 427: Communication Networks. Analysis of Voice over IP performance on Wi-Fi networks ENSC 427: Communication Networks Spring 2010 OPNET Final Project Analysis of Voice over IP performance on Wi-Fi networks Group 14 members: Farzad Abasi (faa6@sfu.ca) Ehsan Arman (eaa14@sfu.ca) http://www.sfu.ca/~faa6

More information

Application Note. Introduction. Definition of Call Quality. Contents. Voice Quality Measurement. Series. Overview

Application Note. Introduction. Definition of Call Quality. Contents. Voice Quality Measurement. Series. Overview Application Note Title Series Date Nov 2014 Overview Voice Quality Measurement Voice over IP Performance Management This Application Note describes commonlyused call quality measurement methods, explains

More information

Network Performance QoS Estimation

Network Performance QoS Estimation Performance QoS Estimation Jaroslav Frnda, Miroslav Voznak, Peppino Fazio and Jan Rozhon Abstract This paper deals with network performance simulation and quality of Triple-play services in IP networks.

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

Agilent Technologies Performing Pre-VoIP Network Assessments. Application Note 1402

Agilent Technologies Performing Pre-VoIP Network Assessments. Application Note 1402 Agilent Technologies Performing Pre-VoIP Network Assessments Application Note 1402 Issues with VoIP Network Performance Voice is more than just an IP network application. It is a fundamental business and

More information

Index Terms Audio streams, inactive frames, steganography, Voice over Internet Protocol (VoIP), packet loss. I. Introduction

Index Terms Audio streams, inactive frames, steganography, Voice over Internet Protocol (VoIP), packet loss. I. Introduction Volume 2, Issue 2, February 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: Advanced Integrated Steganographic

More information

Testing VoIP on MPLS Networks

Testing VoIP on MPLS Networks Application Note Testing VoIP on MPLS Networks Why does MPLS matter for VoIP? Multi-protocol label switching (MPLS) enables a common IP-based network to be used for all network services and for multiple

More information

Traffic Characterization and Perceptual Quality Assessment for VoIP at Pakistan Internet Exchange-PIE. M. Amir Mehmood

Traffic Characterization and Perceptual Quality Assessment for VoIP at Pakistan Internet Exchange-PIE. M. Amir Mehmood Traffic Characterization and Perceptual Quality Assessment for VoIP at Pakistan Internet Exchange-PIE M. Amir Mehmood Outline Background Pakistan Internet Exchange - PIE Motivation Preliminaries Our Work

More information

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29. Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

More information

Requirements of Voice in an IP Internetwork

Requirements of Voice in an IP Internetwork Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.

More information

QoS Mapping of VoIP Communication using Self-Organizing Neural Network

QoS Mapping of VoIP Communication using Self-Organizing Neural Network QoS Mapping of VoIP Communication using Self-Organizing Neural Network Masao MASUGI NTT Network Service System Laboratories, NTT Corporation -9- Midori-cho, Musashino-shi, Tokyo 80-88, Japan E-mail: masugi.masao@lab.ntt.co.jp

More information

VoIP Monitor Professional

VoIP Monitor Professional Malden Electronics Speech Performance Assessment Product Brochure Brochure Issue 1 Malden Electronics Ltd. 2005 1 Product Overview is a software tool for non-intrusive assessment of speech quality and

More information

Wide Area Measurements of Voice Over IP Quality

Wide Area Measurements of Voice Over IP Quality SICS Technical Report T2003:08 ISRN: SICS-T 2003/08-SE ISSN: 1100-3154 Wide Area Measurements of Voice Over IP Quality Ian Marsh and Fengyi Li Swedish Institute of Computer Science Box 1263, SE-164 29

More information

Voice over IP. Presentation Outline. Objectives

Voice over IP. Presentation Outline. Objectives Voice over IP Professor Richard Harris Presentation Outline Brief overview of VoIP and applications Challenges of VoIP IP Support for Voice Protocols used for VoIP (current views) RTP RTCP RSVP H.323 Semester

More information

Synchronization Essentials of VoIP WHITE PAPER

Synchronization Essentials of VoIP WHITE PAPER Synchronization Essentials of VoIP WHITE PAPER Synchronization Essentials of VoIP Introduction As we accelerate into the New World of VoIP we assume we can leave some of the trappings of wireline telecom

More information