On SDP- and CP-relaxations and on connections between SDP-, CP and SIP

Size: px
Start display at page:

Download "On SDP- and CP-relaxations and on connections between SDP-, CP and SIP"

Transcription

1 On SDP- and CP-relaations and on connections between SDP-, CP and SIP Georg Still and Faizan Ahmed University of Twente p 1/12

2 1. IP and SDP-, CP-relaations Integer program: IP) : min T Q s.t. a T j = b j, j J {0, 1} n tricks: Introduce: X = T 1 T X ) = 1 ) ) T 1 Use: i {0, 1} 2 i i = 0 X ii i = 0 redundant constraints: a T j ) 2 = b 2 j a T j T a j = b 2 j a T j Xa j = b 2 j p 2/12

3 IP is equivalent with: IP) : min,x Q, X s.t. aj T = b j, j J a j aj T, X = bj 2, j J X ii i = 0 i 0 ) 1 T = X 1 ) 1 ) T Note: 1 1 ) 1 ) 1 ) T S + n+1 = { l ) T Cn+1 = { SDP-relaation. rela in IP: CP-relaation. rela in IP: l v l v T l v l R n+1 } psd v l v T l v l R n+1 + } cp 1 T X 1 T X ) S + n+1 ) C n+1 p 3/12

4 Inclusion for feasible sets F IP F CP F SDP leads to the inequalities for the min-values v ): vsdp) vcp) vip) [Burer9] I.g. SDP gives approimations CP is EXACT for this) IP E. of NP-hard problems where CP is eact SDP is not): ma stable set problem [de Klerk/P02] graph 3-partitioning problem [Povh/Rendl07] quadratic assignment problem [Povh/Rendl09] mied) binary quadratic program [Burer09] few special quadratic programs with non-conve) quadratic constraints p 4/12

5 2 SDP-, CP-relaations of quadratic problems Quadratic problem: QP 0 : min c T 0 s.t. q j) 0, j J in CP-case also: 0 Notation for R n identify q j Q j q j ) = γ j + 2c T j + T C j Equivalent form QP : min,x ct 0 s.t. Q j, 1 T X 1 T γj c T j c j C j ) =: Q j ) X ) CP-case: 0 0, j J ) = 1 1 ) T p 5/12

6 original lifted) quadratic program QP : min,x ct 0 s.t. Q j, 1 T X 1 T ) X ) CP-case: 0 0, j J ) = 1 1 ) T leads to SDP and CP-relaations: SDP : same but ) 1 T S + n+1 X CP : same but ) 1 T C n+1 X psd completely pos. p 6/12

7 Notation: S = {Q j j J} {q j ) j J} in QP) F QP = F QP S) feasible set of QP given by S) Similarly: F SDP S) and F CP S) S) etc.: Projection of F QP S) into the -space. ) Q + := {Q = γ c T C 0 psd)} F QP c C Relaation properties: 0 in CP case) F QP S) conv F QP S) F CP S) F SDP S) p 7/12

8 SDP-relaation Motivation: Consider the feasible set F QP ) {Q}) given by one constraint with Q = γ c T and c C C 0 then F SDP {Q}) = R n Th1. Ko/Tu2000) conv [F QP S)] F QP cone S) Q + ) = F SDP S) Remark F QP cone S)) = F QP S) but F QP cone S) Q + ) F QP S Q + ) p 8/12

9 In Ko/Tu2000 an abstract non-constructive iterative SDP relaation procedure is discussed which in the limit leads to the eact original feasible set. This algorithm depends on a cutting quadratic constraint idea: Adding a redundant linear constraint does not lead to a smaller feasible set F SDP ). Adding a redundant quadratic constraint may lead to a smaller feasible set F SDP ). Ref. M. Kojima, L. Tuncel, Cones of matrices and successive conve relaations of nonconve sets, SIAM J.Optim. 10, No.3, , 2000) p 9/12

10 Etension to CP relaation C n = cone {vv T v R n + } completely positive matrices C n = {A S n T A 0 R n + } copositive matrices ) Q + := {Q = γ c T C C c C n } copositive quadratic functions Th3. conv [F QP S)] F QP cone S) Q + ) F CP S) p 10/12

11 Proof: = = = Use that F QP cone S) Q + ) equals { ) } 1 T, Q 0 Q [cone S) Q T + { ) } ] 1 T [cone S) Q T + { } ] { Note that 1 T ) [S + Q T + ) ] ) } 1 T [S T T 0 C n )] Q + ) := {P P, Q 0 Q = ) = { 0 0 T } use: F CP S) = { 0 C n 1 T X ) γ c T c C } C n+1 S, some X ), C C n } p 11/12

12 In Th1 we have = because in SDP: ) 1 X T ) S n + T S + n+1 X In Th2 we have because in CP: X T ) C n ) 1 T C n+1 X Eample for : ) T 1 T = X ) with X = 2 0 and = 1, 1). Then 0 2 ) 1 1 X T = 0 so / C n ) T C n+1 p 12/12

13 3. Connections between SDP,CP and SIP primal/dual conic program: P) ma ct s.t. B R n n i A i i=1 K D) min Y Y, B s.t. Y, A i = c i, i I, Y K. with a cone K and its dual K. We obtain: SDP: for K = K = S + m CP: for K = C m and K = C m With: S + m := {A S m : z T Az 0 for all z R m }, psd C m := {A S m : z T Az 0 for all z R m, z 0 } copositive matrices p 13/12

14 Linear semi-infinite programs SIP): SIP P ) SIP D ) ma ct s.t. bz) az) T 0 z Z, R n min y z bz)y z z Z s.t. y z az) = c, y z 0. z Z with Z R m is an infinite) compact inde set In SIP D min is taken over all finite sums p 14/12

15 Use/define: S + m = {A : zt Az 0, z = 1}, C m = {A : zt Az 0, z = 1 z 0 } z T B i ia i ) z ) az) = z T A 1 z,..., z T A n z ), bz) = z T Bz quadratic in z SIP-form of SDP, CP: SIP with ) and Z = {z R m : z = 1} for SDP Z = {z R m Gain of SIP-form: : z = 1, z 0 } for CP KKT-type conditions for ma z j Z y zj az j ) = c, Lagrangian mult. y zj 0, active inde-set: Z = {z Z : bz) = az) T } p 15/12

16 For eample: KKT-conditions give for SDP,CP the solution Y of the dual: Y = y zj z j zj T with n terms in z j Z optimality conditions and duality results: SIP SDP,CP p 16/12

17 Application of SIP: discretization/echange methods: CP in SIP-form: P) ma R n ct s.t. z T B n ) i A i z 0 z Z i=1 } {{ } :=F ) Z = {z R m + j z j = 1} unit simple Def. Discretization proposed in Bundfuss/Duer09) partition of Z into sub-simplices i Z = i i, int i int j =, i j Z d = {v ν v ν is a verte of an i } mesh size d := ma { v ν v µ v µ, v µ vertices in same i } p 17/12

18 Discretized program an LP) P d ) ma R n ct s.t. z T F )z 0 z Z d Notation: solution, vp) value, F feasible set of P d solution, vp d ) value, F d feasible set of P d Known from SIP: If Z d also covers all boundary parts of all dimensions then for the discretization error we have: Od 2 ) for feasible set and value Od) or Od 2 ) for the difference d of maimizers depending on the order of maimizer if CQ holds) p 18/12

19 Using for F S m, z, u R m z T Fu = 1 [ 2 z T Fz + u T Fu + z u) T F z u) ] for z = ν λ νv ν Z, ν λ ν = 1, λ ν 0: z T Fz = ν µ λ ν λ µ v ν Fv µ γ } {{ } if γ we obtain with F ) = B i ia i ) Lemma. Suppose CQ holds for 0 F: Then z T F 0 )z s 0 > 0 z Z z T F d )z 1 2 d 2 F d z Z ˆ d = d + ρd 2 0 d ) F if ρ F 0) 2s 0 0 vp d ) vp) [c T d 0 )ρ] d 2 p 19/12

20 Conclusions: Applying SIP to SDP/CP is promising. further research active inde sets, order of maimizers in SDP/CP genericity results and more efficient Newton-echange methods p 20/12

Lecture 11: 0-1 Quadratic Program and Lower Bounds

Lecture 11: 0-1 Quadratic Program and Lower Bounds Lecture : - Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

On Minimal Valid Inequalities for Mixed Integer Conic Programs

On Minimal Valid Inequalities for Mixed Integer Conic Programs On Minimal Valid Inequalities for Mixed Integer Conic Programs Fatma Kılınç Karzan June 27, 2013 Abstract We study mixed integer conic sets involving a general regular (closed, convex, full dimensional,

More information

Tutorial: Operations Research in Constraint Programming

Tutorial: Operations Research in Constraint Programming Tutorial: Operations Research in Constraint Programming John Hooker Carnegie Mellon University May 2009 Revised June 2009 May 2009 Slide 1 Motivation Benders decomposition allows us to apply CP and OR

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems

A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems Sunyoung Kim, Masakazu Kojima and Kim-Chuan Toh October 2013 Abstract. We propose

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Some representability and duality results for convex mixed-integer programs.

Some representability and duality results for convex mixed-integer programs. Some representability and duality results for convex mixed-integer programs. Santanu S. Dey Joint work with Diego Morán and Juan Pablo Vielma December 17, 2012. Introduction About Motivation Mixed integer

More information

An Introduction on SemiDefinite Program

An Introduction on SemiDefinite Program An Introduction on SemiDefinite Program from the viewpoint of computation Hayato Waki Institute of Mathematics for Industry, Kyushu University 2015-10-08 Combinatorial Optimization at Work, Berlin, 2015

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

THE SCHEDULING OF MAINTENANCE SERVICE

THE SCHEDULING OF MAINTENANCE SERVICE THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single

More information

Completely Positive Cone and its Dual

Completely Positive Cone and its Dual On the Computational Complexity of Membership Problems for the Completely Positive Cone and its Dual Peter J.C. Dickinson Luuk Gijben July 3, 2012 Abstract Copositive programming has become a useful tool

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. OPTIM. Vol. 17, No. 4, pp. 943 968 c 2006 Society for Industrial and Applied Mathematics STATIONARITY RESULTS FOR GENERATING SET SEARCH FOR LINEARLY CONSTRAINED OPTIMIZATION TAMARA G. KOLDA, ROBERT

More information

An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.

An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt. An Overview Of Software For Convex Optimization Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu In fact, the great watershed in optimization isn t between linearity

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION 1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

More information

Copositive Cones. Qingxia Kong. Department of Decision Sciences, NUS. Email: qingxia@nus.edu.sg. Chung-Yee Lee

Copositive Cones. Qingxia Kong. Department of Decision Sciences, NUS. Email: qingxia@nus.edu.sg. Chung-Yee Lee Scheduling Arrivals to a Stochastic Service Delivery System using Copositive Cones Qingxia Kong Department of Decision Sciences, NUS. Email: qingxia@nus.edu.sg Chung-Yee Lee Department of Industrial Engineering

More information

GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1

GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1 (R) User Manual Environmental Energy Technologies Division Berkeley, CA 94720 http://simulationresearch.lbl.gov Michael Wetter MWetter@lbl.gov February 20, 2009 Notice: This work was supported by the U.S.

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

More information

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725

Duality in General Programs. Ryan Tibshirani Convex Optimization 10-725/36-725 Duality in General Programs Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T

More information

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.

Summer course on Convex Optimization. Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U. Summer course on Convex Optimization Fifth Lecture Interior-Point Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.Minnesota Interior-Point Methods: the rebirth of an old idea Suppose that f is

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

Solving polynomial least squares problems via semidefinite programming relaxations

Solving polynomial least squares problems via semidefinite programming relaxations Solving polynomial least squares problems via semidefinite programming relaxations Sunyoung Kim and Masakazu Kojima August 2007, revised in November, 2007 Abstract. A polynomial optimization problem whose

More information

Embedded Systems 20 BF - ES

Embedded Systems 20 BF - ES Embedded Systems 20-1 - Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

A simple criterion on degree sequences of graphs

A simple criterion on degree sequences of graphs Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

More information

Trading regret rate for computational efficiency in online learning with limited feedback

Trading regret rate for computational efficiency in online learning with limited feedback Trading regret rate for computational efficiency in online learning with limited feedback Shai Shalev-Shwartz TTI-C Hebrew University On-line Learning with Limited Feedback Workshop, 2009 June 2009 Shai

More information

Embedded Systems 20 REVIEW. Multiprocessor Scheduling

Embedded Systems 20 REVIEW. Multiprocessor Scheduling Embedded Systems 0 - - Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:

More information

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance

Advanced Lecture on Mathematical Science and Information Science I. Optimization in Finance Advanced Lecture on Mathematical Science and Information Science I Optimization in Finance Reha H. Tütüncü Visiting Associate Professor Dept. of Mathematical and Computing Sciences Tokyo Institute of Technology

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

GLOBAL OPTIMIZATION METHOD FOR SOLVING MATHEMATICAL PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS. 1. Introduction

GLOBAL OPTIMIZATION METHOD FOR SOLVING MATHEMATICAL PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS. 1. Introduction GLOBAL OPTIMIZATION METHOD FOR SOLVING MATHEMATICAL PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS N.V. THOAI, Y. YAMAMOTO, AND A. YOSHISE Abstract. We propose a method for finding a global optimal solution

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING

DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING by Menal Guzelsoy Presented to the Graduate and Research Committee of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Industrial

More information

Minimizing the Number of Machines in a Unit-Time Scheduling Problem

Minimizing the Number of Machines in a Unit-Time Scheduling Problem Minimizing the Number of Machines in a Unit-Time Scheduling Problem Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus kravch@newman.bas-net.by Frank

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

More information

NP-Hardness Results Related to PPAD

NP-Hardness Results Related to PPAD NP-Hardness Results Related to PPAD Chuangyin Dang Dept. of Manufacturing Engineering & Engineering Management City University of Hong Kong Kowloon, Hong Kong SAR, China E-Mail: mecdang@cityu.edu.hk Yinyu

More information

Planning and Scheduling in the Digital Factory

Planning and Scheduling in the Digital Factory Institute for Computer Science and Control Hungarian Academy of Sciences Berlin, May 7, 2014 1 Why "digital"? 2 Some Planning and Scheduling problems 3 Planning for "one-of-a-kind" products 4 Scheduling

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Key words. multi-objective optimization, approximate Pareto set, bi-objective shortest path

Key words. multi-objective optimization, approximate Pareto set, bi-objective shortest path SMALL APPROXIMATE PARETO SETS FOR BI OBJECTIVE SHORTEST PATHS AND OTHER PROBLEMS ILIAS DIAKONIKOLAS AND MIHALIS YANNAKAKIS Abstract. We investigate the problem of computing a minimum set of solutions that

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

On the k-path cover problem for cacti

On the k-path cover problem for cacti On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

More information

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d). 1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

More information

Diversity Coloring for Distributed Data Storage in Networks 1

Diversity Coloring for Distributed Data Storage in Networks 1 Diversity Coloring for Distributed Data Storage in Networks 1 Anxiao (Andrew) Jiang and Jehoshua Bruck California Institute of Technology Pasadena, CA 9115, U.S.A. {jax, bruck}@paradise.caltech.edu Abstract

More information

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

On Convergence Rate of Concave-Convex Procedure

On Convergence Rate of Concave-Convex Procedure On Convergence Rate of Concave-Conve Procedure Ian En-Hsu Yen r00922017@csie.ntu.edu.tw Po-Wei Wang b97058@csie.ntu.edu.tw Nanyun Peng Johns Hopkins University Baltimore, MD 21218 npeng1@jhu.edu Shou-De

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Facility Location: Discrete Models and Local Search Methods

Facility Location: Discrete Models and Local Search Methods Facility Location: Discrete Models and Local Search Methods Yury KOCHETOV Sobolev Institute of Mathematics, Novosibirsk, Russia Abstract. Discrete location theory is one of the most dynamic areas of operations

More information

9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1

9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 9th Max-Planck Advanced Course on the Foundations of Computer Science (ADFOCS) Primal-Dual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction

More information

Introduction to Scheduling Theory

Introduction to Scheduling Theory Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France arnaud.legrand@imag.fr November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

Support Vector Machines with Clustering for Training with Very Large Datasets

Support Vector Machines with Clustering for Training with Very Large Datasets Support Vector Machines with Clustering for Training with Very Large Datasets Theodoros Evgeniou Technology Management INSEAD Bd de Constance, Fontainebleau 77300, France theodoros.evgeniou@insead.fr Massimiliano

More information

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory

MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory MixedÀ¾ нOptimization Problem via Lagrange Multiplier Theory Jun WuÝ, Sheng ChenÞand Jian ChuÝ ÝNational Laboratory of Industrial Control Technology Institute of Advanced Process Control Zhejiang University,

More information

arxiv:cs/0106002v2 [cs.dm] 21 Aug 2001

arxiv:cs/0106002v2 [cs.dm] 21 Aug 2001 Solving Assembly Line Balancing Problems by Combining IP and CP Alexander Bockmayr and Nicolai Pisaruk arxiv:cs/0106002v2 [cs.dm] 21 Aug 2001 Université Henri Poincaré, LORIA B.P. 239, F-54506 Vandœuvre-lès-Nancy,

More information

Method of Stationary phase. Reference: Hormander vol I. Steve Zelditch Department of Mathematics Northwestern University

Method of Stationary phase. Reference: Hormander vol I. Steve Zelditch Department of Mathematics Northwestern University Method of Stationary phase Reference: Hormander vol I Steve Zelditch Department of Mathematics Northwestern University 1 Method of Stationary Phase We now describe the method of stationary phase, which

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

Optimization Theory for Large Systems

Optimization Theory for Large Systems Optimization Theory for Large Systems LEON S. LASDON CASE WESTERN RESERVE UNIVERSITY THE MACMILLAN COMPANY COLLIER-MACMILLAN LIMITED, LONDON Contents 1. Linear and Nonlinear Programming 1 1.1 Unconstrained

More information

Advances in Convex Optimization: Interior-point Methods, Cone Programming, and Applications

Advances in Convex Optimization: Interior-point Methods, Cone Programming, and Applications Advances in Convex Optimization: Interior-point Methods, Cone Programming, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA)

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

Permutation Betting Markets: Singleton Betting with Extra Information

Permutation Betting Markets: Singleton Betting with Extra Information Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu

More information

Support Vector Machine (SVM)

Support Vector Machine (SVM) Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Convex Programming Tools for Disjunctive Programs

Convex Programming Tools for Disjunctive Programs Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible

More information

ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.

ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J. A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for two-stage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of

More information

Randomization Approaches for Network Revenue Management with Customer Choice Behavior

Randomization Approaches for Network Revenue Management with Customer Choice Behavior Randomization Approaches for Network Revenue Management with Customer Choice Behavior Sumit Kunnumkal Indian School of Business, Gachibowli, Hyderabad, 500032, India sumit kunnumkal@isb.edu March 9, 2011

More information

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion. Ernie Croot. February 3, 2010 Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

More information