CS 575 Parallel Processing

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CS 575 Parallel Processing"

Transcription

1 CS 575 Parallel Processing Lecture one: Introduction Wim Bohm Colorado State University Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 license.

2 Course Topics Introduction, Background Orders of magnitude, Recurrences Models of Parallel Computing, communication Performance, Speedup, Efficiency Parallel Algorithms Dense Linear Algebra Sorting Graphs Search Fast Fourier Transform CS575 lecture 1 2

3 Course Organization Course reorganization Unite 575, 575dl Modernize: more // algorithms, GPUs We have separate course streams in networking and distributed systems Check the web page regularly Course organization is described on the web let's go look... Project changes regularly to stay fresh second half of the course GPUs/CUDA CS575 lecture 1 3

4 Cost effective Parallel Computing Off the shelf, commodity processors are very fast Memory is very cheap Building a processor that is a small factor faster costs an order of magnitude more Clusters: Cheapest way to get more performance: multiprocessor NoW: Networks of workstations Datacenters employ O(100K) simple processors with cheap interconnects Workstation can be an SMP Shared memory, Bus or Crossbar (eg. Cray) CS575 lecture 1 4

5 Wile E. Coyote s Parallel Computer Get a lot of the fastest processors Get a lot of memory per processor Get the fastest network Hook it all together And then what??? CS575 lecture 1 5

6 Now you gotta program it! Parallel programming introduces: CS575 lecture 1 6

7 Now you gotta program it! Parallel programming introduces: Task partitioning, task scheduling CS575 lecture 1 7

8 Now you gotta program it! Parallel programming introduces: Task partitioning, task scheduling Data partitioning, distribution CS575 lecture 1 8

9 Now you gotta program it! Parallel programming introduces: Task partitioning, task scheduling Data partitioning, distribution Synchronization CS575 lecture 1 9

10 Now you gotta program it! Parallel programming introduces: Task partitioning, task scheduling Data partitioning, distribution Synchronization Load balancing CS575 lecture 1 10

11 Now you gotta program it! Parallel programming introduces: Task partitioning, task scheduling Data partitioning, distribution Synchronization Load balancing Latency issues hiding tolerance CS575 lecture 1 11

12 Problem with Wile E. Coyote Architecture For high speed, processors have lots of state Cache, stack, global memory CS575 lecture 1 12

13 Problem with Wile E. Coyote Architecture For high speed, processors have lots of state Cache, stack, global memory To tolerate latency, we need fast context switch. WHY? CS575 lecture 1 13

14 Problem with Wile E. Coyote Architecture For high speed, processors have lots of state Cache, stack, global memory To tolerate latency, we need fast context switch. WHY? No free lunch: can t have both Certainly not if the processor was not designed for both CS575 lecture 1 14

15 Problem with Wile E. Coyote Architecture For high speed, processors have lots of state Cache, stack, global memory To tolerate latency, we need fast context switch. WHY? No free lunch: can t have both Certainly not if the processor was not designed for both Memory wall: memory gets slower and slower WHY? HOW? CS575 lecture 1 15

16 Problem with Wile E. Coyote Architecture For high speed, processors have lots of state Cache, stack, global memory To tolerate latency, we need fast context switch. WHY? No free lunch: can t have both Certainly not if the processor was not designed for both Memory wall: memory gets slower and slower in terms of number of cycles it takes to access Memory hierarchy gets more complex CS575 lecture 1 16

17 Sequential Algorithms Efficient Sequential Algorithms Minimize time, space Maximize state (avoiding re-computation) Efficiency is portable Efficient program on Pentium ~ Efficient program on Opteron CS575 lecture 1 17

18 Parallel Algorithms Efficient Parallel Algorithms Use efficient sequential algorithms Maximize parallelism re-computation is sometimes better than communication Minimize overhead synchronization, remote accesses Parallel efficiency is Architecture Dependent CS575 lecture 1 18

19 Speedup Ideal: n processors à n fold speed up Ideal not always possible. WHY? Tasks are data dependent Not all processors are always busy Remote data needs communication Memory wall PLUS Communication wall Linear speedup: α n speedup (α <= 1) CS575 lecture 1 19

20 Super linear speedup Super linear speedup: α > 1 Discuss... is it possible? CS575 lecture 1 20

21 Super linear speedup Super linear speedup: α > 1 Nonsense! Because we can execute the faster parallel program sequentially CS575 lecture 1 21

22 Super linear speedup Super linear speedup: α > 1 No nonsense!! Because parallel computers do not just have more processors, they have more local memory / caches CS575 lecture 1 22

23 Parallel Programming Paradigms Implicit parallel programming: Super Compilers Compiler extracts parallelism from sequential code Distributes data, creates and schedules tasks Complication: side effects: -the sequential order of reads and writes to a memory location determines the program outcome -a parallelizing compiler must obey the sequential order of side effecting statements and still create //ism - pointers, aliases, indirect array reference make analyzing which statements access which locations hard or impossible - 40 years of compiler research for general purpose parallel computing has not brought much result. CS575 lecture 1 23

24 Paradigms cont Implicit parallel programming cont Simple, clean case: Functional Programming (FP) Functions: no side effects, order of execution less constrained F ( P(x,y), Q(y,z) ) P and Q can be executed in parallel Simple single assigment memory model: no pointers, no write after read or write after write hazards (dataflow semantics) FP was long doomed too high level too inefficient, because the simple memory model causes lots of copies FP is coming back: MapReduce approach in data centers (Google) is a data parallel functional paradigm CS575 lecture 1 24

25 Explicit parallel programming Explicit parallel programming Multithreading: OpenMP Message Passing: MPI Data parallel programming (important niche): CUDA Explicit Parallelism complicates programming creation, allocation, scheduling of processes data partitioning Synchronization ( semaphores, locks, messages ) CS575 lecture 1 25

26 Example 1: Weather Prediction Area, segments 3000*3000*11 cubic miles.1*.1*.1 cubic mile: ~ segments Two day prediction half hour time steps: ~ 100 time steps Computation per segment Temp, Pressure, Humidity, Wind speed, Wind direction for each time step in each segment Assume ~ 100 FLOPs per time step per segment CS575 lecture 1 26

27 Performance: Weather Prediction Computational requirement: FLOPs assume one FLOP per clock cycle 1 core: 4 GHz Total serial time: 25*10 4 sec ~ 70 hours Not too good for 48 hour weather prediction CS575 lecture 1 27

28 Parallel Weather Prediction 1 K workstations, grid connected 10 8 segment computations per processor 10 8 instructions per second 100 instructions per segment computation 100 time steps: 10 4 seconds = ~3 hours Much more acceptable Assumption: Communication not a problem here Why is this assumption reasonable? More workstations: finer grid, better accuracy CS575 lecture 1 28

29 Example 2: N body problem Astronomy: bodies in space Attract each other: Gravitational force Newtons law O(n 2 ) calculations per snapshot Galaxy: ~ bodies -> ~ calculations/snapshot Calculation 1 micro sec Snapshot: secs = ~10 11 days = ~ 3*10 8 years Is parallelism going to help us? NO What does help? Better algorithm: Barnes Hut Divides the space in quad tree (or oct tree ) Treats far away quads as one body: O(n log n) How much time per snapshot now? CS575 lecture 1 29

30 Other Challenging Applications Satellite data acquisition: billions of bits / sec Pollution levels, Remote sensing of materials Image recognition Discrete optimization problems Planning, Scheduling, VLSI design Bio-informatics, computational chemistry Airplane/Satellite/Vehicle design Internet (Google search) CS575 lecture 1 30

31 Application Specific Architectures ASICs: Application Specific Integrated Circuits Levels of specificity Full custom ASICs Standard cell ASICs Field programmable gate arrays Computational models Dataflow graphs Systolic arrays Promising orders of magnitude better performance, lower power CS575 lecture 1 31

32 ASICS cont How much faster than General purpose? Example: 1D 1024 FFT General purpose machine (G4): 25 micro secs ASIC device (MIT Lincoln Labs): 32 nano secs ASIC device uses 20 milliwatts (100 * less power) Other applications Finite Impulse Response (FIR) Filters Matrix multiply QR decomposition What do these all have in common? CS575 lecture 1 32

33 Background If you do not have necessary background in analysis of algorithms See the book Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein Or go online Topics to study Introduction Growth of functions Summations Recurrences CS575 lecture 1 33

34 O, Ω, Θ Background: Orders of Magnitude f(x) = O(g(x)) iff c, n 0 : f(x) < c.g(x) n> n 0 used for upper bound of algorithm complexity: this particular algorithm takes at most c.g(n) time f(x) = Ω(g(x)) iff c, n 0 : f(x) > c.g(x) n> n 0 used for lower bound of problem complexity: any algorithm for solving this problem takes at least c.g(n) time f(x) = Θ(g(x)) iff f(x)=o(g(x)) and f(x)=ω(g(x)) Tight bound CS575 lecture 1 34

35 Background: Closed problems Closed problem P: algorithm X with O(X) = Ω(P) eg. Sort has tight bound: Θ(nlog(n)) Problem P has algorithmic gap: P is not closed, eg., all NP Complete problems (problems with polynomial lower bound but currently exponential upper bound, such as TSP) CS575 lecture 1 35

36 Recurrence Relations Algorithmic complexity often described using recurrence relations: f(n) = R( f(1).. f(n-1) ) Two important types of recurrence relations Linear Divide and Conquer cs420(dl) covers these CS575 lecture 1 36

37 Repeated substitution Simple recurrence relations (one recurrent term in the rhs) can sometimes be solved using repeated substitution Two types: Linear and DivCo Linear F(n) = af(n-d)+g(n), base: F(1)=v 1 Divco F(n)= af(n/d)+g(n), base: F(1)=v 1 Two questions: what is the pattern how often is it applied until we hit the base case

38 Linear Example M(n)=2M(n-1)+1, M(1)=1 recognize this recurrence? M(n) = 2M(n-1)+1 = 2(2M(n-2)+1)+1 = 4M(n-2)+2+1 = 4(2M(n-3)+1)+2+1= 8M(n-3)+4+2+1= inductive step 2 k M(n-k)+2 k-1 +2 k = hit base for k = n-1: = 2 n-1 M(1)+2 n-1 +2 n = 2 n -1 for more on Linear recurrence relations, see 420dl

39 DivCo example Merge sort: T(n) = 2T(n/2) + n, T(1)=1 n = 2 k T(n)=2(2(T(n/4)+n/2)+n = 4T(n/4) + 2n = 8T(n/8) + 3n... inductive step = 2 k T(n/2 k )+kn hit base for k = logn = 2 k T(n/2 k )+kn = n+kn = O(nlogn)

40 Another one: binary search f(n) = f(n/2)+c f(1)=1 let n = 2 k f(n)=f(n/2)+c = f(n/4)+2c = f(n/8)+3c = f(n/2 k )+kc = hit base for k=log n: f(1)+ c logn = O(log n)

41 Master Method Cookbook approach to solution, based on repeated substitution (Cormen et.al. or Rosen) A n = C A n/d +knp A n = O(n p ) if C < d p eg A n = 3 A n/2 +n2 A n = O(n p log(n)) if C = d p eg A n = 2A n/2 +n A n = O(n log d c ) if C > d p eg A n = 3 A n/2 +n Do binary search and merge sort with this method

42 Examples Merge Sort T(n) = 2T(n/2) + n, T(1)=1 C=? d=? p=? d p =? T(n) = O(??? ) Binary Search f(n) = f(n/2)+c f(1)=1 C=? d=? p=? d p =? f(n) = O(??? ) CS575 lecture 1 42

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage Parallel Computing Benson Muite benson.muite@ut.ee http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework

More information

High Performance Computing. Course Notes 2007-2008. HPC Fundamentals

High Performance Computing. Course Notes 2007-2008. HPC Fundamentals High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic

More information

Efficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case.

Efficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case. Algorithms Efficiency of algorithms Computational resources: time and space Best, worst and average case performance How to compare algorithms: machine-independent measure of efficiency Growth rate Complexity

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

Reconfigurable Architecture Requirements for Co-Designed Virtual Machines

Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Kenneth B. Kent University of New Brunswick Faculty of Computer Science Fredericton, New Brunswick, Canada ken@unb.ca Micaela Serra

More information

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015 CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential

More information

Big Data Systems CS 5965/6965 FALL 2015

Big Data Systems CS 5965/6965 FALL 2015 Big Data Systems CS 5965/6965 FALL 2015 Today General course overview Expectations from this course Q&A Introduction to Big Data Assignment #1 General Course Information Course Web Page http://www.cs.utah.edu/~hari/teaching/fall2015.html

More information

18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two

18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two age 1 18-742 Lecture 4 arallel rogramming II Spring 2005 rof. Babak Falsafi http://www.ece.cmu.edu/~ece742 write X Memory send X Memory read X Memory Slides developed in part by rofs. Adve, Falsafi, Hill,

More information

Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new

Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of

More information

Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new GAP (2) Graph Accessibility Problem (GAP) (1)

Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new GAP (2) Graph Accessibility Problem (GAP) (1) Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

Parallel Computing for Data Science

Parallel Computing for Data Science Parallel Computing for Data Science With Examples in R, C++ and CUDA Norman Matloff University of California, Davis USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint

More information

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile

GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy

More information

2: Computer Performance

2: Computer Performance 2: Computer Performance http://people.sc.fsu.edu/ jburkardt/presentations/ fdi 2008 lecture2.pdf... John Information Technology Department Virginia Tech... FDI Summer Track V: Parallel Programming 10-12

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis

More information

Principles and characteristics of distributed systems and environments

Principles and characteristics of distributed systems and environments Principles and characteristics of distributed systems and environments Definition of a distributed system Distributed system is a collection of independent computers that appears to its users as a single

More information

Overview of High Performance Computing

Overview of High Performance Computing Overview of High Performance Computing Timothy H. Kaiser, PH.D. tkaiser@mines.edu http://geco.mines.edu/workshop 1 This tutorial will cover all three time slots. In the first session we will discuss the

More information

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.

More information

IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE OPERATORS

IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE OPERATORS Volume 2, No. 3, March 2011 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at www.jgrcs.info IMPROVING PERFORMANCE OF RANDOMIZED SIGNATURE SORT USING HASHING AND BITWISE

More information

Reliable Systolic Computing through Redundancy

Reliable Systolic Computing through Redundancy Reliable Systolic Computing through Redundancy Kunio Okuda 1, Siang Wun Song 1, and Marcos Tatsuo Yamamoto 1 Universidade de São Paulo, Brazil, {kunio,song,mty}@ime.usp.br, http://www.ime.usp.br/ song/

More information

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory Graph Analytics in Big Data John Feo Pacific Northwest National Laboratory 1 A changing World The breadth of problems requiring graph analytics is growing rapidly Large Network Systems Social Networks

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Analysis of Computer Algorithms. Algorithm. Algorithm, Data Structure, Program

Analysis of Computer Algorithms. Algorithm. Algorithm, Data Structure, Program Analysis of Computer Algorithms Hiroaki Kobayashi Input Algorithm Output 12/13/02 Algorithm Theory 1 Algorithm, Data Structure, Program Algorithm Well-defined, a finite step-by-step computational procedure

More information

Chapter 2 Parallel Architecture, Software And Performance

Chapter 2 Parallel Architecture, Software And Performance Chapter 2 Parallel Architecture, Software And Performance UCSB CS140, T. Yang, 2014 Modified from texbook slides Roadmap Parallel hardware Parallel software Input and output Performance Parallel program

More information

High Performance Computing for Operation Research

High Performance Computing for Operation Research High Performance Computing for Operation Research IEF - Paris Sud University claude.tadonki@u-psud.fr INRIA-Alchemy seminar, Thursday March 17 Research topics Fundamental Aspects of Algorithms and Complexity

More information

Big Data Technology Map-Reduce Motivation: Indexing in Search Engines

Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process

More information

CS/COE 1501 http://cs.pitt.edu/~bill/1501/

CS/COE 1501 http://cs.pitt.edu/~bill/1501/ CS/COE 1501 http://cs.pitt.edu/~bill/1501/ Lecture 01 Course Introduction Meta-notes These notes are intended for use by students in CS1501 at the University of Pittsburgh. They are provided free of charge

More information

Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary

Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary OpenCL Optimization Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary 2 Overall Optimization Strategies Maximize parallel

More information

Big Graph Processing: Some Background

Big Graph Processing: Some Background Big Graph Processing: Some Background Bo Wu Colorado School of Mines Part of slides from: Paul Burkhardt (National Security Agency) and Carlos Guestrin (Washington University) Mines CSCI-580, Bo Wu Graphs

More information

Performance Characteristics of Large SMP Machines

Performance Characteristics of Large SMP Machines Performance Characteristics of Large SMP Machines Dirk Schmidl, Dieter an Mey, Matthias S. Müller schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum (RZ) Agenda Investigated Hardware Kernel Benchmark

More information

White Paper The Numascale Solution: Extreme BIG DATA Computing

White Paper The Numascale Solution: Extreme BIG DATA Computing White Paper The Numascale Solution: Extreme BIG DATA Computing By: Einar Rustad ABOUT THE AUTHOR Einar Rustad is CTO of Numascale and has a background as CPU, Computer Systems and HPC Systems De-signer

More information

Parallel Scalable Algorithms- Performance Parameters

Parallel Scalable Algorithms- Performance Parameters www.bsc.es Parallel Scalable Algorithms- Performance Parameters Vassil Alexandrov, ICREA - Barcelona Supercomputing Center, Spain Overview Sources of Overhead in Parallel Programs Performance Metrics for

More information

Performance metrics for parallelism

Performance metrics for parallelism Performance metrics for parallelism 8th of November, 2013 Sources Rob H. Bisseling; Parallel Scientific Computing, Oxford Press. Grama, Gupta, Karypis, Kumar; Parallel Computing, Addison Wesley. Definition

More information

LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.

LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. LS-DYNA Scalability on Cray Supercomputers Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. WP-LS-DYNA-12213 www.cray.com Table of Contents Abstract... 3 Introduction... 3 Scalability

More information

Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce

Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge of Computer Science

More information

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. adiaz@cinvestav.mx. MemoryHierarchy- 1

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. adiaz@cinvestav.mx. MemoryHierarchy- 1 Hierarchy Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN adiaz@cinvestav.mx Hierarchy- 1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor

More information

CSC148 Lecture 8. Algorithm Analysis Binary Search Sorting

CSC148 Lecture 8. Algorithm Analysis Binary Search Sorting CSC148 Lecture 8 Algorithm Analysis Binary Search Sorting Algorithm Analysis Recall definition of Big Oh: We say a function f(n) is O(g(n)) if there exists positive constants c,b such that f(n)

More information

64-Bit versus 32-Bit CPUs in Scientific Computing

64-Bit versus 32-Bit CPUs in Scientific Computing 64-Bit versus 32-Bit CPUs in Scientific Computing Axel Kohlmeyer Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum March 2004 1/25 Outline 64-Bit and 32-Bit CPU Examples

More information

08 - Address Generator Unit (AGU)

08 - Address Generator Unit (AGU) September 30, 2013 Todays lecture Memory subsystem Address Generator Unit (AGU) Memory subsystem Applications may need from kilobytes to gigabytes of memory Having large amounts of memory on-chip is expensive

More information

Recommended hardware system configurations for ANSYS users

Recommended hardware system configurations for ANSYS users Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range

More information

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction

More information

A Brief Review of Processor Architecture. Why are Modern Processors so Complicated? Basic Structure

A Brief Review of Processor Architecture. Why are Modern Processors so Complicated? Basic Structure A Brief Review of Processor Architecture Why are Modern Processors so Complicated? Basic Structure CPU PC IR Regs ALU Memory Fetch PC -> Mem addr [addr] > IR PC ++ Decode Select regs Execute Perform op

More information

Parallel Computing. Frank McKenna. UC Berkeley. OpenSees Parallel Workshop Berkeley, CA

Parallel Computing. Frank McKenna. UC Berkeley. OpenSees Parallel Workshop Berkeley, CA Parallel Computing Frank McKenna UC Berkeley OpenSees Parallel Workshop Berkeley, CA Overview Introduction to Parallel Computers Parallel Programming Models Race Conditions and Deadlock Problems Performance

More information

High Performance Computing

High Performance Computing High Performance Computing Trey Breckenridge Computing Systems Manager Engineering Research Center Mississippi State University What is High Performance Computing? HPC is ill defined and context dependent.

More information

SWARM: A Parallel Programming Framework for Multicore Processors. David A. Bader, Varun N. Kanade and Kamesh Madduri

SWARM: A Parallel Programming Framework for Multicore Processors. David A. Bader, Varun N. Kanade and Kamesh Madduri SWARM: A Parallel Programming Framework for Multicore Processors David A. Bader, Varun N. Kanade and Kamesh Madduri Our Contributions SWARM: SoftWare and Algorithms for Running on Multicore, a portable

More information

numascale White Paper The Numascale Solution: Extreme BIG DATA Computing Hardware Accellerated Data Intensive Computing By: Einar Rustad ABSTRACT

numascale White Paper The Numascale Solution: Extreme BIG DATA Computing Hardware Accellerated Data Intensive Computing By: Einar Rustad ABSTRACT numascale Hardware Accellerated Data Intensive Computing White Paper The Numascale Solution: Extreme BIG DATA Computing By: Einar Rustad www.numascale.com Supemicro delivers 108 node system with Numascale

More information

Multicore Architectures

Multicore Architectures Multicore Architectures Week 1, Lecture 2 Multicore Landscape Intel Dual and quad-core Pentium family. 80-core demonstration last year. AMD Dual, triple (?!), and quad-core Opteron family. IBM Dual and

More information

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology Optimizing Parallel Reduction in CUDA Mark Harris NVIDIA Developer Technology Parallel Reduction Common and important data parallel primitive Easy to implement in CUDA Harder to get it right Serves as

More information

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source

More information

COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook)

COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) Vivek Sarkar Department of Computer Science Rice University vsarkar@rice.edu COMP

More information

Binary Search. Search for x in a sorted array A.

Binary Search. Search for x in a sorted array A. Divide and Conquer A general paradigm for algorithm design; inspired by emperors and colonizers. Three-step process: 1. Divide the problem into smaller problems. 2. Conquer by solving these problems. 3.

More information

The Running Time of Programs

The Running Time of Programs CHAPTER 3 The Running Time of Programs In Chapter 2, we saw two radically different algorithms for sorting: selection sort and merge sort. There are, in fact, scores of algorithms for sorting. This situation

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

Multicore Programming with LabVIEW Technical Resource Guide

Multicore Programming with LabVIEW Technical Resource Guide Multicore Programming with LabVIEW Technical Resource Guide 2 INTRODUCTORY TOPICS UNDERSTANDING PARALLEL HARDWARE: MULTIPROCESSORS, HYPERTHREADING, DUAL- CORE, MULTICORE AND FPGAS... 5 DIFFERENCES BETWEEN

More information

List of courses MEngg (Computer Systems)

List of courses MEngg (Computer Systems) List of courses MEngg (Computer Systems) Course No. Course Title Non-Credit Courses CS-401 CS-402 CS-403 CS-404 CS-405 CS-406 Introduction to Programming Systems Design System Design using Microprocessors

More information

PARALLEL PROGRAMMING

PARALLEL PROGRAMMING PARALLEL PROGRAMMING TECHNIQUES AND APPLICATIONS USING NETWORKED WORKSTATIONS AND PARALLEL COMPUTERS 2nd Edition BARRY WILKINSON University of North Carolina at Charlotte Western Carolina University MICHAEL

More information

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment Panagiotis D. Michailidis and Konstantinos G. Margaritis Parallel and Distributed

More information

Distributed Operating Systems Introduction

Distributed Operating Systems Introduction Distributed Operating Systems Introduction Ewa Niewiadomska-Szynkiewicz and Adam Kozakiewicz ens@ia.pw.edu.pl, akozakie@ia.pw.edu.pl Institute of Control and Computation Engineering Warsaw University of

More information

Program Optimization for Multi-core Architectures

Program Optimization for Multi-core Architectures Program Optimization for Multi-core Architectures Sanjeev K Aggarwal (ska@iitk.ac.in) M Chaudhuri (mainak@iitk.ac.in) R Moona (moona@iitk.ac.in) Department of Computer Science and Engineering, IIT Kanpur

More information

Parallelism and Cloud Computing

Parallelism and Cloud Computing Parallelism and Cloud Computing Kai Shen Parallel Computing Parallel computing: Process sub tasks simultaneously so that work can be completed faster. For instances: divide the work of matrix multiplication

More information

Systolic Computing. Fundamentals

Systolic Computing. Fundamentals Systolic Computing Fundamentals Motivations for Systolic Processing PARALLEL ALGORITHMS WHICH MODEL OF COMPUTATION IS THE BETTER TO USE? HOW MUCH TIME WE EXPECT TO SAVE USING A PARALLEL ALGORITHM? HOW

More information

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.

More information

Partitioning and Divide and Conquer Strategies

Partitioning and Divide and Conquer Strategies and Divide and Conquer Strategies Lecture 4 and Strategies Strategies Data partitioning aka domain decomposition Functional decomposition Lecture 4 and Strategies Quiz 4.1 For nuclear reactor simulation,

More information

GPU File System Encryption Kartik Kulkarni and Eugene Linkov

GPU File System Encryption Kartik Kulkarni and Eugene Linkov GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel Computation Parallel I/O (I) I/O basics Spring 2008 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network

More information

An Overview of a Compiler

An Overview of a Compiler An Overview of a Compiler Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture About the course

More information

An Introduction to Parallel Computing/ Programming

An Introduction to Parallel Computing/ Programming An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Improving Scalability of OpenMP Applications on Multi-core Systems Using Large Page Support

Improving Scalability of OpenMP Applications on Multi-core Systems Using Large Page Support Improving Scalability of OpenMP Applications on Multi-core Systems Using Large Page Support Ranjit Noronha and Dhabaleswar K. Panda Network Based Computing Laboratory (NBCL) The Ohio State University Outline

More information

Lecture 2 Parallel Programming Platforms

Lecture 2 Parallel Programming Platforms Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple

More information

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters

COSC 6374 Parallel Computation. Parallel I/O (I) I/O basics. Concept of a clusters COSC 6374 Parallel I/O (I) I/O basics Fall 2012 Concept of a clusters Processor 1 local disks Compute node message passing network administrative network Memory Processor 2 Network card 1 Network card

More information

Load Balancing on a Non-dedicated Heterogeneous Network of Workstations

Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department

More information

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With

More information

GPU Parallel Computing Architecture and CUDA Programming Model

GPU Parallel Computing Architecture and CUDA Programming Model GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Today, we will study typical patterns of parallel programming This is just one of the ways. Materials are based on a book by Timothy. Decompose Into tasks Original Problem

More information

Lecture 3: Evaluating Computer Architectures. Software & Hardware: The Virtuous Cycle?

Lecture 3: Evaluating Computer Architectures. Software & Hardware: The Virtuous Cycle? Lecture 3: Evaluating Computer Architectures Announcements - Reminder: Homework 1 due Thursday 2/2 Last Time technology back ground Computer elements Circuits and timing Virtuous cycle of the past and

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine

More information

DARPA, NSF-NGS/ITR,ACR,CPA,

DARPA, NSF-NGS/ITR,ACR,CPA, Spiral Automating Library Development Markus Püschel and the Spiral team (only part shown) With: Srinivas Chellappa Frédéric de Mesmay Franz Franchetti Daniel McFarlin Yevgen Voronenko Electrical and Computer

More information

Scheduling Task Parallelism" on Multi-Socket Multicore Systems"

Scheduling Task Parallelism on Multi-Socket Multicore Systems Scheduling Task Parallelism" on Multi-Socket Multicore Systems" Stephen Olivier, UNC Chapel Hill Allan Porterfield, RENCI Kyle Wheeler, Sandia National Labs Jan Prins, UNC Chapel Hill Outline" Introduction

More information

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization

More information

Massive Streaming Data Analytics: A Case Study with Clustering Coefficients. David Ediger, Karl Jiang, Jason Riedy and David A.

Massive Streaming Data Analytics: A Case Study with Clustering Coefficients. David Ediger, Karl Jiang, Jason Riedy and David A. Massive Streaming Data Analytics: A Case Study with Clustering Coefficients David Ediger, Karl Jiang, Jason Riedy and David A. Bader Overview Motivation A Framework for Massive Streaming hello Data Analytics

More information

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges Why should you care? What are they? Which are different from non-petascale? What has changed since

More information

UTS: An Unbalanced Tree Search Benchmark

UTS: An Unbalanced Tree Search Benchmark UTS: An Unbalanced Tree Search Benchmark LCPC 2006 1 Coauthors Stephen Olivier, UNC Jun Huan, UNC/Kansas Jinze Liu, UNC Jan Prins, UNC James Dinan, OSU P. Sadayappan, OSU Chau-Wen Tseng, UMD Also, thanks

More information

CHAPTER 5 FINITE STATE MACHINE FOR LOOKUP ENGINE

CHAPTER 5 FINITE STATE MACHINE FOR LOOKUP ENGINE CHAPTER 5 71 FINITE STATE MACHINE FOR LOOKUP ENGINE 5.1 INTRODUCTION Finite State Machines (FSMs) are important components of digital systems. Therefore, techniques for area efficiency and fast implementation

More information

System Design and Methodology/ Embedded Systems Design (Modeling and Design of Embedded Systems)

System Design and Methodology/ Embedded Systems Design (Modeling and Design of Embedded Systems) System Design&Methodologies Fö 1&2-1 System Design&Methodologies Fö 1&2-2 Course Information System Design and Methodology/ Embedded Systems Design (Modeling and Design of Embedded Systems) TDTS30/TDDI08

More information

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications

IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications Open System Laboratory of University of Illinois at Urbana Champaign presents: Outline: IMCM: A Flexible Fine-Grained Adaptive Framework for Parallel Mobile Hybrid Cloud Applications A Fine-Grained Adaptive

More information

Control 2004, University of Bath, UK, September 2004

Control 2004, University of Bath, UK, September 2004 Control, University of Bath, UK, September ID- IMPACT OF DEPENDENCY AND LOAD BALANCING IN MULTITHREADING REAL-TIME CONTROL ALGORITHMS M A Hossain and M O Tokhi Department of Computing, The University of

More information

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase

More information

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to

More information

Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction

Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

Module: Software Instruction Scheduling Part I

Module: Software Instruction Scheduling Part I Module: Software Instruction Scheduling Part I Sudhakar Yalamanchili, Georgia Institute of Technology Reading for this Module Loop Unrolling and Instruction Scheduling Section 2.2 Dependence Analysis Section

More information

A3 Computer Architecture

A3 Computer Architecture A3 Computer Architecture Engineering Science 3rd year A3 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/3co Michaelmas 2000 1 / 1 6. Stacks, Subroutines, and Memory

More information

Chapter 18: Database System Architectures. Centralized Systems

Chapter 18: Database System Architectures. Centralized Systems Chapter 18: Database System Architectures! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types 18.1 Centralized Systems! Run on a single computer system and

More information

Load Imbalance Analysis

Load Imbalance Analysis With CrayPat Load Imbalance Analysis Imbalance time is a metric based on execution time and is dependent on the type of activity: User functions Imbalance time = Maximum time Average time Synchronization

More information

How to make the computer understand? Lecture 15: Putting it all together. Example (Output assembly code) Example (input program) Anatomy of a Computer

How to make the computer understand? Lecture 15: Putting it all together. Example (Output assembly code) Example (input program) Anatomy of a Computer How to make the computer understand? Fall 2005 Lecture 15: Putting it all together From parsing to code generation Write a program using a programming language Microprocessors talk in assembly language

More information

GRID SEARCHING Novel way of Searching 2D Array

GRID SEARCHING Novel way of Searching 2D Array GRID SEARCHING Novel way of Searching 2D Array Rehan Guha Institute of Engineering & Management Kolkata, India Abstract: Linear/Sequential searching is the basic search algorithm used in data structures.

More information

Operation Count; Numerical Linear Algebra

Operation Count; Numerical Linear Algebra 10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

More information