MATERIALS AND SCIENCE IN SPORTS. Edited by: EH. (Sam) Froes and S.J. Haake. Dynamics

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "MATERIALS AND SCIENCE IN SPORTS. Edited by: EH. (Sam) Froes and S.J. Haake. Dynamics"

Transcription

1 MATERIALS AND SCIENCE IN SPORTS Edited by: EH. (Sam) Froes and S.J. Haake Dynamics Analysis of the Characteristics of Fishing Rods Based on the Large-Deformation Theory Atsumi Ohtsuki, Prof, Ph.D. Pgs TIMS 184 Thorn Hill Road Warrendale, PA (724)

2 Analysis of the Characteristics of Fishing Rods Based on the Large-Deformation Theory Atsumi OHTSUKI, Prof., Ph.D. Department of Mechanical Engineering, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi , Japan Abstract There are very few scientific studies about fishing rods in the field of the so-called sportsleisure. This study deals with large deformation of fishing rods that would be useful in the development of the characteristic design of fishing rods. In this report, based on the nonlinear large deformation theory, new fundamental equations are introduced for thin, straight tapered fishing rods with a circular cross-section under concentrated loads at the free end. As a result, it is found that the large deformations of fishing rods can be described by non-dimensional load parameters, ratios of rod diameters and supporting angles. Furthermore, the experimental verification of this analysis is carried out using a flexible rod model. The theoretically predicted results are in fairly good agreement with the experimental data. Consequently, the new deformation theory is proved to be of practical use. Key words : Fishing, Rod deformation, Large deformation, Tapered beam, Mechanics, Elastica. Materials and Science in Sports Edited by F.H. (Sam) Froes IMS (The Minerals, Metals & Materials Society),

3 Introduction In recent years, leisure activities, such as tennis, golf, skiing, fishing, etc. are very popular. The performance of various instruments used in such leisure activities is also greatly improved. Scientific analysis on the function of such instruments is necessary in order to develop practical instruments in the field of sports-leisure. Various experiential studies that clarify the characteristics of fishing rods have been published. However, there are very few scientific studies. The behavior of fishing rods can be characterized by large deformation. The rod where the lower end is supported by hand is bent circularly due to the resistance force of the fish on the upper end. The fishing rod is very slender and flexible. The fishing rod is thus assumed to undergo large deformation. Ultimately, the analysis of fishing rod behavior is attributed to the large deformation problem of a cantilever beam with a taper. Some similar examples on large deformation are given in a pole-vaulting pole [1-3], archery [4,5] and Japanese bow [6,7]. The purpose of this study is to theoretically clarify the large deformation characteristics of the fishing rod. The structure of a fishing rod is classified into two types. A typical type is a combination rod with joints, made up of several parts with changes in cross-section, and the other is a tapered rod, which does not have any joints. In this research, the fishing rod with a taper, which is a prototype of a fishing rod, is analyzed theoretically. Though there is an analytic solution on the straight beam with a constant cross-section [8,9], the beam with a step or taper like a fishing rod has not yet been analyzed. Here, a fundamental equation that determines the deformed shape of tapered beam model is derived from an equilibrium state under a concentrated load at the free end. Moreover, in order to confirm the applicability of the presented theory, a large deformation experiment is carried out and the experimental data are compared with the theoretical results. Large-deformation theory In order to predict large deformation occurring in fishing rods, a simplified feature is given in Fig.l. The mathematical model is a tapered cantilever beam with a circular cross-section, subjected to tensile load at the tip. The lower end is supported at an arbitrary angle fi. A >7 loaded shape 0 y \i Figure 1: Large deformation of a fishing rod under load applied at the tip. 163

4 \ A thin, straight tapered beam with a circular cross-section. y A schematic configuration of a loaded cantilever beam. Figure 2: Mathematical model mathematical model is shown in Fig.2. As shown in Fig.2(a), the length of the beam is / and diameters of large edge (: lowed end, fixed end) and small edge (: upper end, free end, tip) are D l and D 2, respectively. The origin of the coordinate system is at point O, and x represents the horizontal displacement, y the vertical displacement, and 9 the deflection angle (see Fig.2(b)). In denoting the arc length by s, the radius of curvature by R and the bending moment by M, the relationship among R, M, s, x, y and 6 are expressed as: _ R" El" ds dx = ds -cos0, dy = ds -si (1) where E is Young's modulus and /, the second area moment of the cross section about the neutral axis. The diameter D and the second area moment / at an arbitrary position Q(x,y) are given by: D n 64 J (2) where /j is the second area moment at the large edge. Therefore, the fundamental equation of large deflection is derived from Eqs.(l) and (2). E\l- 1- DJI f ds (3) 164

5 In order to facilitate the common understanding of large deformation behavior, the following non-dimensional variables are introduced:, / Z) 2 EL ia^ (4) From Eqs.(l),(3) and (4), the nonlinear differential equation (5) is ultimately obtained. /, ZM } 4 d 2 9./, /Mr, /, /M I 3 d0 2 - l 1- \TI\ r 4 1 Jl 1- \TI\ =- -a-cos0 (5) v; v DJ L \ dn \ DJ\ \ DI) L \ dn DI In general, it is difficult to obtain an analytical solution of the nonlinear equation (5). Therefore, in this research the Runge-kutta-Gill (RKG) method is adopted in order to obtain the necessary solution numerically. The outline of RKG method is as follows: do = z (6) Boundary conditions : n = 0, 9 = p at the fixed end n = 0, ^ = 0 at the tip (9) dn (8) Then, x, y coordinates at an arbitrary position Q(x,y) can be calculated respectively from the following equations (10) and (11). - =fcosodri (10) (11) Especially, the vertical displacement yl at the tip is an important physical quantity. In order to compare with the result from the exact nonlinear large-deformation theory, the calculation formula based on the classical linear beam theory is shown in the following equation. Vi 1 = sinjs - - a cos fi (12) i O As a special condition, the buckling load P cr of the beam sustained at the vertical position (i.e. /3=-9Q ) is obtained from the following equation. 165

6 In other words, the non-dimensional buckling load a cr is expressed as (14) Variable t/> of Eqs. (13) and (14) is determined as the value which satisfies the following transcendental equation. tantp ~ /Z>2 (15) On the other hand, the curvature I//? at an arbitrary position Q(x,y) is given by : R I (16) Moreover, the maximum bending stress a at the outer fiber of the beam is expressed as: (17) This maximum bending stress is importantly related to the breakage of fishing rods. Theoretical calculations and experimental results In order to confirm the applicability of the proposed analytical theory, experiment is performed on a commercially available fishing rod. The fishing rod is composed of five parts connected continuously. For the experiment, the tip section (length / =800 mm, weight W=15.2 g, large edge diameter D l =5.26 mm, small edge diameter D 2 =0.98 mm, the ratio of diameter D 2 /D 1 =0.186 with Young's modulus E =31.85 Gpa) is used. A schematic view of the experimental setup is shown in Fig.3. The rod is fixed at the large edge and placed on the 1mm Grid paper Load pan Figure 3: Experimental setup 166

7 A A = Exact large-deformation theory Experiments a =1.13 6, =13.6 a = , =58.1 a = , =74.2 a = , = xll Figure 4: Effect of the non-dimensional loads, a, on large deformation of a rod. Exact largedeformation theory o Experiments -0.6 j max Tip 0.6 a = 5.63 A/ A =0.186 Figure 5: Effect of the supporting angles, /3, on large deformation of a rod. 167

8 Exact large-deformation theory o Experiments A/A = o.i 6, = 88.4 A/A = , =83.5 A/A = 0.3 9,= 75.7, A/A = 0.5 e, Figure 6: Effect of the ratios of diameter, D 2 /D 19 on l ar e deformation of a rod. vertical position. The rod deforms in a vertical plane. Loading is applied by hanging dead weights from a system of cables attached to the small edge (:tip) of the rod. In the experiment, horizontal and vertical displacements Jt, y caused by the application of vertical load P at an arbitrary position Q(x,y) are read directly off a sheet of standard grid paper (1 mm scale) affixed to the vertical plane. Figure 4 shows some deformed shapes of a rod with the ratio D2/D1 =0.186 supported at the angle /3= 60. The effect of the non-dimensional load a, ranging from a light load to a heavy load, under large deformation is well known. The deformation increases gradually as the non-dimensional load a increases. And, the peak (shown by X) represents the maximum vertical displacement (: ymax), which tends to move towards the fixed edge, as the nondimensional load a increases. It can be seen from Fig.4 that the actual values from the experiment are very close to the theoretical computed values. Figure 5 shows some deformed shapes of a rod with D 2 ID l =0.186 when the constant nondimensional load a = 5.63 is applied to the rod. According to this figure, it is possible to observe the effect of the supporting angle 13 on the states of large deformation. With an increase of the angle /J, the rod greatly deforms, and the peak (: ymax) tends to shift towards the tip. Here too, the theoretical computations agree well with the experimental measurements. Figure 6 shows some deformed shapes of a rod supported at the angle 13 = 60 when the constant non-dimensional load a = 5.0. The effect of the ratio D 2 /D l on the states of large deformation can be investigated. The deformation is reduced gradually as the ratio D 2 /D l increases, which means that a rod with a larger ratio is difficult to bend in comparison with that of a smaller one. This tendency is remarkably observed in a rod in the tip side beyond the peak position. Here, the peak (: y max ), tends to move towards the fixed edge, as the ratio D 2 /D l 168

9 Exact large-deformation theory Linear theory -1.0 p = = -30 c L Figure 7: Relationship between the non- dimensional vertical displacement, y max //, at the tip and the non-dimensional load, a, when the rod is supported at /3. increases. Figure 7 exemplifies the variation of the non-dimensional vertical displacement y max // at the tip for several supporting angles 13 under the particular condition in which the ratio D 2 /D l =0.1. When the rod is fixed at the angle f$ = 90, the rod is only compressed by a load smaller than the critical load, but the rod does not bend at all. When a load exceeds the abovementioned critical load, the rod buckles and begins to bend. This critical load (: P cr ) is called as Euler's buckling load. In this figure, the discontinuity of the line (when p = 90 ) shows the critical load (which corresponds to the non-dimensional buckling load a cr =0.804). The computations based on the linear beam theory and large-deformation theory are both shown in Fig.7 to show the limit of application of the linear beam theory. For example, the linear beam theory is applicable until a non-dimensional load a takes a value of about 0.3, if the error between the exact theory and the simple linear theory is limited within 2 %. Conclusions For effective use of a fishing rod, it is essential to understand the large deformation 169

10 behavior of a fishing rod under a variety of loads. In this paper, the nonlinear large deformation response of a simplified rod model is analyzed theoretically. The fundamental equations can be obtained under concentrated loads at the tip and calculated strictly by means of numerical solution method. The numerical solutions are obtained for the representative flexural quantities such as the horizontal displacement, vertical displacement. Furthermore, a large deformation experiment is carried out to confirm the applicability of the present large deformation theory. The following conclusions are drawn based on the results of the theoretical and experimental analyses. (1) The large deformation behavior of a rod is affected by deflection parameters such as the non-dimensional load a, ratio of diameter D 2 /D l and supporting angle /3. Especially, the deformed shape of a rod depends on D 2 /D 1 considerably. (2) The maximum vertical displacement (: ymax) tends to move towards the fixed edge, as a, D 2 /D^ /3 increases, respectively. (3) The vertical displacement of the tip y t is also a function of a and D 2 ID V. (4) The results predicted theoretically are found to be in very good agreement with the experimental data. Acknowledgements The author wish to acknowledge the contributions of Mr. T. Takeuchi of the Meijo University, Japan, for the data processing. References 1. Hubbard, M., "Dynamics of the Pole Vault", J. Biomechanics. Vol.13, No.ll, 1980, Ohtsuki, A. and Ohshima S., "Analysis of Mechanism of Pole Vaulting", Trans. JSME. Vol.64, No.623,1998, Ohtsuki, A. and Ohshima S., "Fundamental Study on Large Deformations of Poles and Pole-Vaulting Characteristics", Journal of Japan Society of Sports Industry. Vol.8, No.2, 1998, Hay, J. G., The biomechanics of Sports Techniques ( Prentice Hall, Inc., 1973), Hickman, C. N., " The dynamics of a bow and arrow", Journal of Applied Physics. Vol.8, 1937, Hosoya, S., Miyaji, C. and Kobayashi, K., "Computer simulation of restitution of Japanese Bows, Journal of Japan Society of Sports Industry, Vol.5, No.2, 1995, Ohtsuki, A. and Ohshima S., "Analysis of Large Deformation of Japanese Bows", The engineering of Sports (Blackwell Science Ltd., 2000), Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity (Dover Publications, Inc., 1944), Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability (McGraw-Hill, Inc., 1959),

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

DESIGN OF BEAM-COLUMNS - I

DESIGN OF BEAM-COLUMNS - I 13 DESIGN OF BEA-COLUNS - I INTRODUCTION Columns in practice rarely experience concentric axial compression alone. Since columns are usually parts of a frame, they experience both bending moment and axial

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

The Bending Strength of Pasta

The Bending Strength of Pasta The Bending Strength of Pasta 1.105 Lab #1 Louis L. Bucciarelli 9 September, 2003 Lab Partners: [Name1] [Name2] Data File: Tgroup3.txt On the cover page, include your name, the names of your lab partners,

More information

Stresses in Beam (Basic Topics)

Stresses in Beam (Basic Topics) Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials*

Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials* Int. J. Engng Ed. Vol. 19, No. 6, pp. 885±892, 2003 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2003 TEMPUS Publications. Numerical and Experimental Analysis of a Cantilever Beam: a Laboratory

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS

EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS JOURNAL OF CURRENT RESEARCH IN SCIENCE (ISSN 2322-5009) CODEN (USA): JCRSDJ 2014, Vol. 2, No. 2, pp:277-284 Available at www.jcrs010.com ORIGINAL ARTICLE EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method

Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,

More information

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

More information

Compound archery bow asymmetry in the vertical plane

Compound archery bow asymmetry in the vertical plane Sports Eng (2012) 15:167 175 DOI 10.1007/s12283-012-0092-9 ORIGINAL ARTICLE Compound archery bow asymmetry in the vertical plane Ihor Zanevskyy Published online: 27 April 2012 Ó The Author(s) 2012. This

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

EFFICIENT NUMERICAL SIMULATION OF INDUSTRIAL SHEET METAL BENDING PROCESSES

EFFICIENT NUMERICAL SIMULATION OF INDUSTRIAL SHEET METAL BENDING PROCESSES ECCOMAS Congress 06 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 0 June 06

More information

Buckling of Spherical Shells

Buckling of Spherical Shells 31 Buckling of Spherical Shells 31.1 INTRODUCTION By spherical shell, we mean complete spherical configurations, hemispherical heads (such as pressure vessel heads), and shallow spherical caps. In analyses,

More information

Structural Displacements. Structural Displacements. Beam Displacement. Truss Displacements 2

Structural Displacements. Structural Displacements. Beam Displacement. Truss Displacements 2 Structural Displacements Structural Displacements P Beam Displacement 1 Truss Displacements The deflections of civil engineering structures under the action of usual design loads are known to be small

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

More information

Analysis of the shape of a sheet of paper when two opposite edges are joined

Analysis of the shape of a sheet of paper when two opposite edges are joined Analysis of the shape of a sheet of paper when two opposite edges are joined Antoni Amengual Colom a Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain Received 14

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

More information

Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

More information

On the Mechanics of the Arrow: Archer s Paradox 1

On the Mechanics of the Arrow: Archer s Paradox 1 On the Mechanics of the Arrow: Archer s Paradox 1 B.W. Kooi and J.A. Sparenberg Abstract In ancient bows the grip of the bow was in the way of the arrow. The arrow needed to get round the bow while being

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)

Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

LOAD DEFLECTION DIAGRAM OF OVER-REINFORCED CONCRETE BEAMS

LOAD DEFLECTION DIAGRAM OF OVER-REINFORCED CONCRETE BEAMS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICATIO Publishers, D-79104 Freiburg, Germany LOAD DEFLECTION DIAGRAM OF OVER-REINFORCED CONCRETE BEAMS A. Bascoul Laboratoire Materiaux

More information

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3. Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is

More information

3. AXIALLY LOADED MEMBERS

3. AXIALLY LOADED MEMBERS 3 AXIALLY LOADED MEMBERS 31 Reading Assignment: Section 19 and Sections 81 and 82 of text Most axially loaded structural members carry some moment in addition to axial load -- for this discussion, restrict

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

CHAPTER 4 4 NUMERICAL ANALYSIS

CHAPTER 4 4 NUMERICAL ANALYSIS 41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables

Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Retrofitting of RCC Structure WIH Strengthening of Shear Wall with External Post Tensioning Cables Yogesh Ghodke, G. R. Gandhe Department of Civil Engineering, Deogiri Institute of Engineering and Management

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading J. A. Eicher, H. Guan, and D. S. Jeng # School of Engineering, Griffith University, Gold Coast Campus, PMB 50 Gold Coast Mail

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Dead Load Analysis of Cable-Stayed Bridge

Dead Load Analysis of Cable-Stayed Bridge 2011 International Conference on Intelligent Building and Management Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore Dead Load Analysis of Cable-Stayed Bridge Tao Zhang 1,2 +, ZhiMin Wu 1 1 Department

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

Reinforced Concrete Design SHEAR IN BEAMS

Reinforced Concrete Design SHEAR IN BEAMS CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.

More information

Mechanics of Materials Summary

Mechanics of Materials Summary Mechanics of Materials Summary 1. Stresses and Strains 1.1 Normal Stress Let s consider a fixed rod. This rod has length L. Its cross-sectional shape is constant and has area. Figure 1.1: rod with a normal

More information

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.

More information

Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

More information

Punching shear behavior of steel-concrete composite decks with different shear connectors

Punching shear behavior of steel-concrete composite decks with different shear connectors Punching shear behavior of steel-concrete composite decks with different shear connectors *Xiao-Qing Xu 1) and Yu-Qing Liu 2) 1), 2) Department of Bridge Engineering, Tongji University, Shanghai 200092,

More information

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING

INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INVESTIGATION OF VISCOELASTICITY AND CURE SHRINKAGE IN AN EPOXY RESIN DURING PROCESSING T. Shimizu *, H. Koinuma, K. Nagai Mitsubishi Heavy Industries,

More information

Finite Element Simulation of Simple Bending Problem and Code Development in C++

Finite Element Simulation of Simple Bending Problem and Code Development in C++ EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL

More information

BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219

BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219 BUCKLING OF BARS, PLATES, AND SHELLS ROBERT M. JONES Science and Mechanics Professor Emeritus of Engineering Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219 Bull Ridge

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

Module 3. Limit State of Collapse - Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur

Module 3. Limit State of Collapse - Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur Module 3 Limit State of Collapse - Flexure (Theories and Examples) Lesson 4 Computation of Parameters of Governing Equations Instructional Objectives: At the end of this lesson, the student should be able

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

More information

Stability Of Structures: Basic Concepts

Stability Of Structures: Basic Concepts 23 Stability Of Structures: Basic Concepts ASEN 3112 Lecture 23 Slide 1 Objective This Lecture (1) presents basic concepts & terminology on structural stability (2) describes conceptual procedures for

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

Worked Examples of mathematics used in Civil Engineering

Worked Examples of mathematics used in Civil Engineering Worked Examples of mathematics used in Civil Engineering Worked Example 1: Stage 1 Engineering Surveying (CIV_1010) Tutorial - Transition curves and vertical curves. Worked Example 1 draws from CCEA Advanced

More information

The Mechanics of Arrow Flight upon Release

The Mechanics of Arrow Flight upon Release The Mechanics of Arrow Flight upon Release Lieu, D.K. University of California, Berkeley Kim, Jinho and Kim, Ki Chan Korea National Sport University, Seoul Abstract The dynamic behavior of arrows upon

More information

Response to Harmonic Excitation Part 2: Damped Systems

Response to Harmonic Excitation Part 2: Damped Systems Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost

More information

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

COMBINED STRESSES IN GUSSET PLATES W. A. Thornton, Ph.D., P.E.* GENERAL

COMBINED STRESSES IN GUSSET PLATES W. A. Thornton, Ph.D., P.E.* GENERAL COMBINED STRESSES IN GUSSET PLATES W. A. Thornton, Ph.D., P.E.* GENERAL It has been the traditional approach in the design of connections in the United States, to consider only simple stresses, i.e., shear,

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer

Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer 1,2 Li Zhong, 2Chen Si-yang, 3Yan Pei-wu, 1Zhu Yan-peng School of Civil Engineering, Lanzhou University

More information

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

CRITERIA FOR PRELOADED BOLTS

CRITERIA FOR PRELOADED BOLTS National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 REVISION A JULY 6, 1998 REPLACES BASELINE SPACE SHUTTLE CRITERIA FOR PRELOADED BOLTS CONTENTS 1.0 INTRODUCTION..............................................

More information

SENSITIVITY ANALYSIS ABOUT INFLUENCE OF OUT-OF-PLANE DEFLECTIVE DEFORMATION UPON COMPRESSIVE STRENGTH OF STEEL PLATES

SENSITIVITY ANALYSIS ABOUT INFLUENCE OF OUT-OF-PLANE DEFLECTIVE DEFORMATION UPON COMPRESSIVE STRENGTH OF STEEL PLATES International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 2, Dec 25, pp. 22-38, Article ID: IJCIET_6_2_3 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=2

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Hardness Hardness can be defined as resistance to deformation or indentation or resistance to scratch. Hardness Indentation Scratch Rebound Indentation hardness is of particular interest

More information

SEISMIC CODE EVALUATION. MEXICO Evaluation conducted by Jorge Gutiérrez

SEISMIC CODE EVALUATION. MEXICO Evaluation conducted by Jorge Gutiérrez SEISMIC CODE EVALUATION MEXICO Evaluation conducted by Jorge Gutiérrez NAME OF DOCUMENT: Normas Técnicas Complementarias para Diseño por Sismo ( Complementary Technical Norms for Earthquake Resistant Design

More information

Stability Of Structures: Additional Topics

Stability Of Structures: Additional Topics 26 Stability Of Structures: Additional Topics ASEN 3112 Lecture 26 Slide 1 Unified Column Buckling Formula Euler formula for pinned-pinned column P cr = π 2 EI L 2 Actual column length Unified formula

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A DYNAMOMETER FOR MEASURING THRUST AND TORQUE IN DRILLING APPLICATION SREEJITH C 1,MANU RAJ K R 2 1 PG Scholar, M.Tech Machine Design, Nehru College

More information

Finite Element Methods (in Solid and Structural Mechanics)

Finite Element Methods (in Solid and Structural Mechanics) CEE570 / CSE 551 Class #1 Finite Element Methods (in Solid and Structural Mechanics) Spring 2014 Prof. Glaucio H. Paulino Donald Biggar Willett Professor of Engineering Department of Civil and Environmental

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

Use of arched cables for fixation of empty underground tanks against underground-waterinduced

Use of arched cables for fixation of empty underground tanks against underground-waterinduced Journal of Civil Engineering (IEB), 36 () (008) 79-86 Use of arched cables for fixation of empty underground tanks against underground-waterinduced floatation Ala a M. Darwish Department of Building &

More information

Figure 1- Different parts of experimental apparatus.

Figure 1- Different parts of experimental apparatus. Objectives Determination of center of buoyancy Determination of metacentric height Investigation of stability of floating objects Apparatus The unit shown in Fig. 1 consists of a pontoon (1) and a water

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 3 THE DEFLECTION OF BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 3 THE DEFLECTION OF BEAMS MECHANICS OF SOLIDS - BEAMS TUTORIAL THE DEECTION OF BEAMS This is the third tutorial on the bending of beams. You should judge your progress by completing the self assessment exercises. On completion

More information

Mechanics of Materials. Chapter 4 Shear and Moment In Beams

Mechanics of Materials. Chapter 4 Shear and Moment In Beams Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information