False alarm in outdoor environments

Size: px
Start display at page:

Download "False alarm in outdoor environments"

Transcription

1 Accepted 1.0 Savantic letter 1(6) False alarm in outdoor environments

2 Accepted 1.0 Savantic letter 2(6) Table of contents Revision history 3 References 3 1 Introduction 4 2 Pre-processing 4 3 Detection, tracking, classification 5 4 Conclusions 6

3 Accepted 1.0 Savantic letter 3(6) Revision history Status Version Date Person Comment Accepted Claes Orsholm Reviewed Christofer Aourell Comments added Not reviewed Sergei Prasalovich First draft References [1] Shadow detection and removal, Savantic letter (2012) 2.2. [2] Tracking, why and how?, Savantic letter (2012) 2.1. [3] K. Garg and S.K. Nayar - Detection and Removal of Rain from Videos, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, [4] A.K. Tripathi and S. Mukhopadhyay - Removal of rain from videos: a review, Signal, Image and Video Processing, [5] P.T. Barnum et al. - Analysis of Rain and Snow in Frequency Space, International Journal of Computer Vision (2010) 86, pp [6] K. Liu et al. - A Joint Optical Flow and Principal Component Analysis Approach for Motion Detection, IEEE International Conference on Acoustics Speech and Signal Processing (2010), pp [7] Y. Benabbas et al. - Motion Pattern Extraction and Event Detection for Automatic Visual Surveillance, EURASIP Journal on Image and Video Processing (2011) 7. [8] X. Zhao and G. Medioni - Robust Unsupervised Motion Pattern Inference from Video and Applications, Proceedings of IEEE International Conference on Computer Vision (2011), pp [9] V. Saligrama et al. - Video Anomaly Identification - A statistical approach, IEEE Signal Processing Magazine (2010) 27 (5), pp

4 Accepted 1.0 Savantic letter 4(6) Abstract This letter studies triggers of false alarms in outdoor video surveillance systems and overviews potential solutions based on the latest techniques in image analysis. The following two approaches are discussed: a) filtering by pre-processing of video streams and b) filtering by detection, tracking and classification. False alarms due to weather and small animals and birds is the main focus of this letter. 1 Introduction False alarm is one of the most important issues in any automated surveillance system. Video surveillance systems are the most common type. It consists of a Closed-Circuit Television (CCTV) platform where the signal from one or several video cameras is transmitted through a server to a limited set of monitors. In order to perform automated surveillance controls such systems also require a motion detection platform for the video stream analysis and pre- or post-processing. The efficiency of such surveillance systems are defined by the detection probability, which itself is dependent on the detection sensitivity and False Alarm Rate (FAR). Decreasing FAR while keeping sensitivity as high as possible is the ultimate goal of a common surveillance task. Indoor environments have typically controlled lighting conditions and static space arrangements. Therefore it is often possible to achieve reliable performance by limiting the cameras Region-Of-Interest (ROI) and/or by tuning detection sensitivity. Outdoor environments, on the contrary, are more dynamic and often result in varying scenes and changing lighting conditions. Also taking weather into account as an extra complication factor, performing even simple surveillance tasks become much more complex. In such environments a more intelligent filtering is required in order to achieve reliable detection. The following are the most common sources of false alarm in outdoor environments: Weather (rain, snow, wind, clouds) Animals (dogs, cats, rats etc) and birds Lighting conditions (reflections, shadows) The goal of this letter is to analyse the above sources of false alarms in outdoor video surveillance systems and to overview possible solutions. This letter focuses mostly on studies of false alarm due to weather conditions such as rain and snow and due to small animals and birds. Studies of false alarm from varying lighting conditions (shadows) is presented elsewhere [1]. 2 Pre-processing Rain and snow are the most typical examples of bad weather that vitally effect the FAR in outdoor surveillance. Such weather conditions can vary widely in their physical properties and thus in the resulting visual effects they can produce in images. Rain and

5 Accepted 1.0 Savantic letter 5(6) snow are classified as dynamic types of weather conditions in contrast to static types like fog, mist and haze. The constituent particles of dynamic weather conditions are typically larger compared to the static ones. One might even be able to distinguish single particles in images. While falling with high velocities such particles (rain drops) can produce so called steaks resulting in its turn in sharp intensity changes in images due to reflection, refraction and scattering of light. One of the proposed solutions to the problem of false alarm due to weather conditions like rain or snow is based on pre-processing video streams and filtering weather effects out before detecting for policy violation. In some approaches, photometrical properties of environment and dynamics of rain are used, for example, to build models of how rain drops effect captured images. A raindrop is viewed there as an optical lens that refracts and reflects light thus producing a motion blur effect or a rain steak. Based on these and some additional assumptions an algorithm for removal of rain steaks has been developed by [3]. While achieving some satisfactory results for filtering effect of rain steaks from light rain, this approach however fails in a number of other more realistic conditions like steady or heavy rain when the constraints of photometric model are not fulfilled anymore. Among other methods proposed are: Kalman filter-based method, shape characteristics-based method, low-latency removal method, histogram model-based, probabilistic model-based. A good review including performance comparison of all the above methods is described in [4]. An interesting idea has also been considered in [5], namely to go from the temporal domain to the frequency domain in order to detect and filter blurring effects of rain in each frame taking into account global properties of the entire scene. This method works even for snow and in dynamic scenes with moving background and camera. A drawback of this approach lies however in unpleasant artefacts caused in image space as a result of pre-processing. 3 Detection, tracking, classification Small animals and birds are another very common trigger of false alarms in outdoor environments. These types of targets are almost impossible to filter away from scenes by pre-processing of video streams as discussed above in the case of rain. The solution to this problem therefore lies in filtering during detection and/or tracking. It can be divided into two steps: 1) detection, where video stream is analysed frame-by-frame and intelligent motion detection is performed, including first stage filtering of false alarms using a series of tests based, for example, on the target location, area or shape information; 2) tracking, where detected targets are followed and there motion is tested against another set of rules allowing second stage filtering to be performed based on such characteristics of movement like trajectory and speed, for example. Object detection and tracking involving blobs - pixel representations of physical objects obtained by background subtraction, is a widely used method in surveillance applications. The blobs are usually tracked using Kalman or particle filters. This method however performs poorly in varying lighting conditions and when the tracked objects are

6 Accepted 1.0 Savantic letter 6(6) occluded. Alternative approaches use feature points or points of interest like corners, edges or other features for tracking. A technique known as Optical Flow (OF) can be applied then to track detected features. This method proved to be very effective in applications where physical objects are hard to single out like, for example, in extremely crowded scenes where the size of moving objects on images is just a few pixels. An interesting approach is presented in [6] where OF is combined with Principal Component Analysis (PCA) for motion detection resulting in improved performance with reduced FAR for videos with either static or dynamic background. OF methods are in general more computationally effective, however when it comes to more sophisticated tasks they also fail at performing in real time. Tracking performance can be improved by using motion patterns instead of trajectories as shown in [7, 8]. In [8], for example, blobs and OF approaches are combined together by extracting a set of tracklets from each detected motion blob which is then used to learn motion patterns. Tracking of individual objects is facilitated by using known motion pattern information thus improving tracking and overall detection performance. More information on how good detection and tracking effects false alarm can be found in [2]. Upon successful feature detection and tracking, an object s trajectory can be classified using trained data sets. Anomalous behaviour detection in surveillance applications is still a very challenging task and choice of techniques is very much dependent on specific scenarios. A state-of-the-art review of video anomaly detection techniques is described very well in [9]. A new approach is introduced there based on statistical activity analysis. Its main idea is to locate relevant activities prior to higher-level analysis such as feature extraction, tracking and classification. This allows avoiding the clutter of entire scenes by focusing on located abnormalities i.e. narrowing ROI of analysed scenes. 4 Conclusions False alarm in video surveillance of outdoor environments has been discussed. False alarm from rain and snow can be minimized by filtering images during pre-processing stage. Other types of false alarms, for example, events triggered by small animals or birds has to be taken care of by improving filtering during actual detection and tracking of potential targets. A number of solutions have been discussed based on motion tracking and classification as well as on alternative statistical methods where relevant activities are identified prior to feature extraction and tracking. False alarm in outdoor video surveillance however remains to be a very complex problem to solve. There is no best or all-in-one solution to it. The choice of techniques depends very strongly on the details of the scenery and requirements of the particular surveillance system.

Defog Image Processing

Defog Image Processing Introduction Expectations for a camera s performance, no matter the application, are that it must work and provide clear usable images, regardless of any environmental or mechanical challenges the camera

More information

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA

A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA A PHOTOGRAMMETRIC APPRAOCH FOR AUTOMATIC TRAFFIC ASSESSMENT USING CONVENTIONAL CCTV CAMERA N. Zarrinpanjeh a, F. Dadrassjavan b, H. Fattahi c * a Islamic Azad University of Qazvin - nzarrin@qiau.ac.ir

More information

Article. 24-hour detection with thermal cameras

Article. 24-hour detection with thermal cameras Article 24-hour detection with thermal cameras Table of contents Introduction 3 1. All-day surveillance 4 2. All weather conditions 4 3. Detection, Recognition and Identification 5 4. Thermal data 5 5.

More information

From Product Management Telephone Nuremberg

From Product Management Telephone Nuremberg Release Letter Product: Version: IVA Intelligent Video Analysis 4.50 1. General Intelligent Video Analysis (IVA) version 4.50 is the successor of IVA 4.00. IVA is a continuously growing product with an

More information

Video Analytics A New Standard

Video Analytics A New Standard Benefits The system offers the following overall benefits: Tracker High quality tracking engine UDP s embedded intelligent Video Analytics software is fast becoming the standard for all surveillance and

More information

Traffic Monitoring Systems. Technology and sensors

Traffic Monitoring Systems. Technology and sensors Traffic Monitoring Systems Technology and sensors Technology Inductive loops Cameras Lidar/Ladar and laser Radar GPS etc Inductive loops Inductive loops signals Inductive loop sensor The inductance signal

More information

Real-Time Tracking of Pedestrians and Vehicles

Real-Time Tracking of Pedestrians and Vehicles Real-Time Tracking of Pedestrians and Vehicles N.T. Siebel and S.J. Maybank. Computational Vision Group Department of Computer Science The University of Reading Reading RG6 6AY, England Abstract We present

More information

Video Analytics and Security

Video Analytics and Security Video Analytics and Security Video Analytics and Security Using video data to improve both safety and ROI TABLE OF CONTENTS I. Executive Summary... 1 II. Captured on Video. Now What?... 2 III. Start Where

More information

Pre-Emptive, Economic Security for Perimeters & Outdoor Areas

Pre-Emptive, Economic Security for Perimeters & Outdoor Areas WHITE PAPER Pre-Emptive, Economic Security for Perimeters & Outdoor Areas Without reliable detection, an outdoor security system cannot be trusted. Excessive false alarms waste manpower and fail to command

More information

Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition

Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition Paulo Marques 1 Instituto Superior de Engenharia de Lisboa / Instituto de Telecomunicações R. Conselheiro Emídio

More information

From Product Management Telephone Nuremberg

From Product Management Telephone Nuremberg Release Letter Product: IVA Intelligent Video Analysis Version: 5.5 1. General Intelligent Video Analysis (IVA) version 5.5 is the successor of IVA 4.5. IVA is a continuously growing product with an additional

More information

Speed Performance Improvement of Vehicle Blob Tracking System

Speed Performance Improvement of Vehicle Blob Tracking System Speed Performance Improvement of Vehicle Blob Tracking System Sung Chun Lee and Ram Nevatia University of Southern California, Los Angeles, CA 90089, USA sungchun@usc.edu, nevatia@usc.edu Abstract. A speed

More information

An Intelligent Video Surveillance Framework for Remote Monitoring M.Sivarathinabala, S.Abirami

An Intelligent Video Surveillance Framework for Remote Monitoring M.Sivarathinabala, S.Abirami An Intelligent Video Surveillance Framework for Remote Monitoring M.Sivarathinabala, S.Abirami Abstract Video Surveillance has been used in many applications including elderly care and home nursing etc.

More information

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique

A Reliability Point and Kalman Filter-based Vehicle Tracking Technique A Reliability Point and Kalman Filter-based Vehicle Tracing Technique Soo Siang Teoh and Thomas Bräunl Abstract This paper introduces a technique for tracing the movement of vehicles in consecutive video

More information

Video Analytics and Security

Video Analytics and Security Video Analytics and Security Using video data to improve both safety and ROI March 2008 / White Paper Make the most of your energy Summary I. Executive Summary... 3 II. Captured on Video. Now What?...

More information

CCTV - Video Analytics for Traffic Management

CCTV - Video Analytics for Traffic Management CCTV - Video Analytics for Traffic Management Index Purpose Description Relevance for Large Scale Events Technologies Impacts Integration potential Implementation Best Cases and Examples 1 of 12 Purpose

More information

RIVA Megapixel cameras with integrated 3D Video Analytics - The next generation

RIVA Megapixel cameras with integrated 3D Video Analytics - The next generation RIVA Megapixel cameras with integrated 3D Video Analytics - The next generation Creating intelligent solutions with Video Analytics (VCA- Video Content Analysis) Intelligent IP video surveillance is one

More information

VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS

VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS VEHICLE LOCALISATION AND CLASSIFICATION IN URBAN CCTV STREAMS Norbert Buch 1, Mark Cracknell 2, James Orwell 1 and Sergio A. Velastin 1 1. Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE,

More information

Novel Probabilistic Methods for Visual Surveillance Applications

Novel Probabilistic Methods for Visual Surveillance Applications University of Pannonia Information Science and Technology PhD School Thesis Booklet Novel Probabilistic Methods for Visual Surveillance Applications Ákos Utasi Department of Electrical Engineering and

More information

3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map

3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map Electronic Letters on Computer Vision and Image Analysis 7(2):110-119, 2008 3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map Zhencheng

More information

Vision-Based Blind Spot Detection Using Optical Flow

Vision-Based Blind Spot Detection Using Optical Flow Vision-Based Blind Spot Detection Using Optical Flow M.A. Sotelo 1, J. Barriga 1, D. Fernández 1, I. Parra 1, J.E. Naranjo 2, M. Marrón 1, S. Alvarez 1, and M. Gavilán 1 1 Department of Electronics, University

More information

Vision-Based Pedestrian Detection for Driving Assistance

Vision-Based Pedestrian Detection for Driving Assistance Vision-Based Pedestrian Detection for Driving Assistance Literature Survey Multidimensional DSP Project, Spring 2005 Marco Perez Abstract This survey focuses on some of the most important and recent algorithms

More information

Our focus is innovating security where you need it most

Our focus is innovating security where you need it most Our focus is innovating security where you need it most Cameras which trigger alarms and alert you when needed 2 Cameras which trigger alarms and alert you when needed Cameras which trigger alarms and

More information

Traffic Flow Monitoring in Crowded Cities

Traffic Flow Monitoring in Crowded Cities Traffic Flow Monitoring in Crowded Cities John A. Quinn and Rose Nakibuule Faculty of Computing & I.T. Makerere University P.O. Box 7062, Kampala, Uganda {jquinn,rnakibuule}@cit.mak.ac.ug Abstract Traffic

More information

A Computer Vision System for Monitoring Production of Fast Food

A Computer Vision System for Monitoring Production of Fast Food ACCV2002: The 5th Asian Conference on Computer Vision, 23 25 January 2002, Melbourne, Australia A Computer Vision System for Monitoring Production of Fast Food Richard Russo Mubarak Shah Niels Lobo Computer

More information

Automatic Traffic Estimation Using Image Processing

Automatic Traffic Estimation Using Image Processing Automatic Traffic Estimation Using Image Processing Pejman Niksaz Science &Research Branch, Azad University of Yazd, Iran Pezhman_1366@yahoo.com Abstract As we know the population of city and number of

More information

Behavior Analysis in Crowded Environments. XiaogangWang Department of Electronic Engineering The Chinese University of Hong Kong June 25, 2011

Behavior Analysis in Crowded Environments. XiaogangWang Department of Electronic Engineering The Chinese University of Hong Kong June 25, 2011 Behavior Analysis in Crowded Environments XiaogangWang Department of Electronic Engineering The Chinese University of Hong Kong June 25, 2011 Behavior Analysis in Sparse Scenes Zelnik-Manor & Irani CVPR

More information

Support Vector Machine-Based Human Behavior Classification in Crowd through Projection and Star Skeletonization

Support Vector Machine-Based Human Behavior Classification in Crowd through Projection and Star Skeletonization Journal of Computer Science 6 (9): 1008-1013, 2010 ISSN 1549-3636 2010 Science Publications Support Vector Machine-Based Human Behavior Classification in Crowd through Projection and Star Skeletonization

More information

Real-Time People Localization and Tracking through Fixed Stereo Vision

Real-Time People Localization and Tracking through Fixed Stereo Vision Proc. of International Conference on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems (IEA/AIE), 2005 Real-Time People Localization and Tracking through Fixed Stereo Vision

More information

10 Tips for Success with Video Analytics

10 Tips for Success with Video Analytics 10 Tips for Success with Video Analytics by Doug Marman, CTO and VP Products, VideoIQ, Inc. Video analytics are bringing new levels of intelligence to the security world. Breakthrough technologies that

More information

Video Surveillance System for Security Applications

Video Surveillance System for Security Applications Video Surveillance System for Security Applications Vidya A.S. Department of CSE National Institute of Technology Calicut, Kerala, India V. K. Govindan Department of CSE National Institute of Technology

More information

Tracking and Recognition in Sports Videos

Tracking and Recognition in Sports Videos Tracking and Recognition in Sports Videos Mustafa Teke a, Masoud Sattari b a Graduate School of Informatics, Middle East Technical University, Ankara, Turkey mustafa.teke@gmail.com b Department of Computer

More information

FIRE AND SMOKE DETECTION WITHOUT SENSORS: IMAGE PROCESSING BASED APPROACH

FIRE AND SMOKE DETECTION WITHOUT SENSORS: IMAGE PROCESSING BASED APPROACH FIRE AND SMOKE DETECTION WITHOUT SENSORS: IMAGE PROCESSING BASED APPROACH Turgay Çelik, Hüseyin Özkaramanlı, and Hasan Demirel Electrical and Electronic Engineering, Eastern Mediterranean University Gazimağusa,

More information

Vision based Vehicle Tracking using a high angle camera

Vision based Vehicle Tracking using a high angle camera Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu gramos@clemson.edu dshu@clemson.edu Abstract A vehicle tracking and grouping algorithm is presented in this work

More information

2 Pelco Video Analytics

2 Pelco Video Analytics Solution Video Analytics: Title: Key Extending Words Book Security Rest With in Light Technology Few new technologies have excited the imagination of video security professionals quite like intelligent

More information

Journal of Industrial Engineering Research. Adaptive sequence of Key Pose Detection for Human Action Recognition

Journal of Industrial Engineering Research. Adaptive sequence of Key Pose Detection for Human Action Recognition IWNEST PUBLISHER Journal of Industrial Engineering Research (ISSN: 2077-4559) Journal home page: http://www.iwnest.com/aace/ Adaptive sequence of Key Pose Detection for Human Action Recognition 1 T. Sindhu

More information

Urban Vehicle Tracking using a Combined 3D Model Detector and Classifier

Urban Vehicle Tracking using a Combined 3D Model Detector and Classifier Urban Vehicle Tracing using a Combined 3D Model Detector and Classifier Norbert Buch, Fei Yin, James Orwell, Dimitrios Maris and Sergio A. Velastin Digital Imaging Research Centre, Kingston University,

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

TIETS34 Seminar: Data Mining on Biometric identification

TIETS34 Seminar: Data Mining on Biometric identification TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland Youming.Zhang@uta.fi Course Description Content

More information

Advanced Surveillance Systems: Combining Video and Thermal Imagery for Pedestrian Detection

Advanced Surveillance Systems: Combining Video and Thermal Imagery for Pedestrian Detection Advanced Surveillance Systems: Combining Video and Thermal Imagery for Pedestrian Detection H. Torresan, B. Turgeon, C. Ibarra-Castanedo, P. Hébert, X. Maldague Electrical and Computing Engineering Dept.,

More information

Human behavior analysis from videos using optical flow

Human behavior analysis from videos using optical flow L a b o r a t o i r e I n f o r m a t i q u e F o n d a m e n t a l e d e L i l l e Human behavior analysis from videos using optical flow Yassine Benabbas Directeur de thèse : Chabane Djeraba Multitel

More information

Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object

More information

An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network

An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '9) ISSN: 179-519 435 ISBN: 978-96-474-51-2 An Energy-Based Vehicle Tracking System using Principal

More information

Making Machines Understand Facial Motion & Expressions Like Humans Do

Making Machines Understand Facial Motion & Expressions Like Humans Do Making Machines Understand Facial Motion & Expressions Like Humans Do Ana C. Andrés del Valle & Jean-Luc Dugelay Multimedia Communications Dpt. Institut Eurécom 2229 route des Crêtes. BP 193. Sophia Antipolis.

More information

Tracking And Object Classification For Automated Surveillance

Tracking And Object Classification For Automated Surveillance Tracking And Object Classification For Automated Surveillance Omar Javed and Mubarak Shah Computer Vision ab, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida 32816, USA {ojaved,shah}@cs.ucf.edu

More information

Automatic Maritime Surveillance with Visual Target Detection

Automatic Maritime Surveillance with Visual Target Detection Automatic Maritime Surveillance with Visual Target Detection Domenico Bloisi, PhD bloisi@dis.uniroma1.it Maritime Scenario Maritime environment represents a challenging scenario for automatic video surveillance

More information

Video Camera Image Quality in Physical Electronic Security Systems

Video Camera Image Quality in Physical Electronic Security Systems Video Camera Image Quality in Physical Electronic Security Systems Video Camera Image Quality in Physical Electronic Security Systems In the second decade of the 21st century, annual revenue for the global

More information

Design of Multi-camera Based Acts Monitoring System for Effective Remote Monitoring Control

Design of Multi-camera Based Acts Monitoring System for Effective Remote Monitoring Control 보안공학연구논문지 (Journal of Security Engineering), 제 8권 제 3호 2011년 6월 Design of Multi-camera Based Acts Monitoring System for Effective Remote Monitoring Control Ji-Hoon Lim 1), Seoksoo Kim 2) Abstract With

More information

Fall detection in the elderly by head tracking

Fall detection in the elderly by head tracking Loughborough University Institutional Repository Fall detection in the elderly by head tracking This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation:

More information

Vision based approach to human fall detection

Vision based approach to human fall detection Vision based approach to human fall detection Pooja Shukla, Arti Tiwari CSVTU University Chhattisgarh, poojashukla2410@gmail.com 9754102116 Abstract Day by the count of elderly people living alone at home

More information

BACnet for Video Surveillance

BACnet for Video Surveillance The following article was published in ASHRAE Journal, October 2004. Copyright 2004 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. It is presented for educational purposes

More information

Introduction to Pattern Recognition

Introduction to Pattern Recognition Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Efficient Background Subtraction and Shadow Removal Technique for Multiple Human object Tracking

Efficient Background Subtraction and Shadow Removal Technique for Multiple Human object Tracking ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com Efficient

More information

Algorithm (DCABES 2009)

Algorithm (DCABES 2009) People Tracking via a Modified CAMSHIFT Algorithm (DCABES 2009) Fahad Fazal Elahi Guraya, Pierre-Yves Bayle and Faouzi Alaya Cheikh Department of Computer Science and Media Technology, Gjovik University

More information

PASSENGER/PEDESTRIAN ANALYSIS BY NEUROMORPHIC VISUAL INFORMATION PROCESSING

PASSENGER/PEDESTRIAN ANALYSIS BY NEUROMORPHIC VISUAL INFORMATION PROCESSING PASSENGER/PEDESTRIAN ANALYSIS BY NEUROMORPHIC VISUAL INFORMATION PROCESSING Woo Joon Han Il Song Han Korea Advanced Science and Technology Republic of Korea Paper Number 13-0407 ABSTRACT The physiological

More information

ESE498. Intruder Detection System

ESE498. Intruder Detection System 0 Washington University in St. Louis School of Engineering and Applied Science Electrical and Systems Engineering Department ESE498 Intruder Detection System By Allen Chiang, Jonathan Chu, Siwei Su Supervisor

More information

Axis network cameras A wide portfolio of products for professional video surveillance.

Axis network cameras A wide portfolio of products for professional video surveillance. Axis network cameras A wide portfolio of products for professional video surveillance. The market s widest range of network cameras The video surveillance market is thriving, driven by increased public

More information

Towards License Plate Recognition: Comparying Moving Objects Segmentation Approaches

Towards License Plate Recognition: Comparying Moving Objects Segmentation Approaches 1 Towards License Plate Recognition: Comparying Moving Objects Segmentation Approaches V. J. Oliveira-Neto, G. Cámara-Chávez, D. Menotti UFOP - Federal University of Ouro Preto Computing Department Ouro

More information

TRANSPORTATION SECURITY ASSOCIATES, LLC

TRANSPORTATION SECURITY ASSOCIATES, LLC Introduction The purpose of this white paper is to examine the benefits and limitations of shore based marine radar for waterside security applications. This technology has been deployed for over 60 years

More information

A secure face tracking system

A secure face tracking system International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 10 (2014), pp. 959-964 International Research Publications House http://www. irphouse.com A secure face tracking

More information

Tracking Algorithms. Lecture17: Stochastic Tracking. Joint Probability and Graphical Model. Probabilistic Tracking

Tracking Algorithms. Lecture17: Stochastic Tracking. Joint Probability and Graphical Model. Probabilistic Tracking Tracking Algorithms (2015S) Lecture17: Stochastic Tracking Bohyung Han CSE, POSTECH bhhan@postech.ac.kr Deterministic methods Given input video and current state, tracking result is always same. Local

More information

Distributed Vision Processing in Smart Camera Networks

Distributed Vision Processing in Smart Camera Networks Distributed Vision Processing in Smart Camera Networks CVPR-07 Hamid Aghajan, Stanford University, USA François Berry, Univ. Blaise Pascal, France Horst Bischof, TU Graz, Austria Richard Kleihorst, NXP

More information

Open issues and research trends in Content-based Image Retrieval

Open issues and research trends in Content-based Image Retrieval Open issues and research trends in Content-based Image Retrieval Raimondo Schettini DISCo Universita di Milano Bicocca schettini@disco.unimib.it www.disco.unimib.it/schettini/ IEEE Signal Processing Society

More information

Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance

Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance 2012 IEEE International Conference on Multimedia and Expo Learning Detectors from Large Datasets for Object Retrieval in Video Surveillance Rogerio Feris, Sharath Pankanti IBM T. J. Watson Research Center

More information

Low-resolution Character Recognition by Video-based Super-resolution

Low-resolution Character Recognition by Video-based Super-resolution 2009 10th International Conference on Document Analysis and Recognition Low-resolution Character Recognition by Video-based Super-resolution Ataru Ohkura 1, Daisuke Deguchi 1, Tomokazu Takahashi 2, Ichiro

More information

Removing Weather Effects from Monochrome Images

Removing Weather Effects from Monochrome Images Removing Weather Effects from Monochrome Images Srinivasa G. Narasimhan and Shree K. Nayar Department of Computer Science, Columbia University, New York, 10027 Email: {srinivas, nayar}@cs.columbia.edu

More information

Hidden Camera Surveillance

Hidden Camera Surveillance Hidden Camera Surveillance Tel 1300 763235 3G HD Solar Camera Live view in real time from any web enabled device from wherever you are. Unable to run cable? No power available? It really doesn t matter!

More information

A.I. Tech Company profile A.I. Tech designs and develops intelligent audio and video analysis systems; We help operators to identify and give a meanin

A.I. Tech Company profile A.I. Tech designs and develops intelligent audio and video analysis systems; We help operators to identify and give a meanin EUCISE 2020 Industry Day Brussels 23.Sept.2015 Pierluigi Ritrovato A.I. Tech Artificial Intelligence Tech Technologies nologies and Solutions A spinspin-off company of the University of Salerno The Vision

More information

Video compression: Performance of available codec software

Video compression: Performance of available codec software Video compression: Performance of available codec software Introduction. Digital Video A digital video is a collection of images presented sequentially to produce the effect of continuous motion. It takes

More information

Evaluating the Performance of Systems for Tracking Football Players and Ball

Evaluating the Performance of Systems for Tracking Football Players and Ball Evaluating the Performance of Systems for Tracking Football Players and Ball Y. Li A. Dore J. Orwell School of Computing D.I.B.E. School of Computing Kingston University University of Genova Kingston University

More information

PRT_INCIDENT DETECTION_TRAFFIC

PRT_INCIDENT DETECTION_TRAFFIC PRT_INCIDENT DETECTION_TRAFFIC TABLE OF CONTENTS 1. Company Profile... 3 1.1 THE ENTERPRISE... 3 1.2 The perfect solution with the right partner... 4 1.3 OUR PHILOSOPHY... 4 1.4 OUR OBJECTIVE... 4 2. Know

More information

Tracking of Small Unmanned Aerial Vehicles

Tracking of Small Unmanned Aerial Vehicles Tracking of Small Unmanned Aerial Vehicles Steven Krukowski Adrien Perkins Aeronautics and Astronautics Stanford University Stanford, CA 94305 Email: spk170@stanford.edu Aeronautics and Astronautics Stanford

More information

OBJECT TRACKING USING LOG-POLAR TRANSFORMATION

OBJECT TRACKING USING LOG-POLAR TRANSFORMATION OBJECT TRACKING USING LOG-POLAR TRANSFORMATION A Thesis Submitted to the Gradual Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements

More information

Smoke and Fire Detection

Smoke and Fire Detection International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-7, July 2014 Smoke and Fire Detection Sachin Pandey, Arati Singh Abstract This paper present a system

More information

Open Access A Facial Expression Recognition Algorithm Based on Local Binary Pattern and Empirical Mode Decomposition

Open Access A Facial Expression Recognition Algorithm Based on Local Binary Pattern and Empirical Mode Decomposition Send Orders for Reprints to reprints@benthamscience.ae The Open Electrical & Electronic Engineering Journal, 2014, 8, 599-604 599 Open Access A Facial Expression Recognition Algorithm Based on Local Binary

More information

A General Framework for Tracking Objects in a Multi-Camera Environment

A General Framework for Tracking Objects in a Multi-Camera Environment A General Framework for Tracking Objects in a Multi-Camera Environment Karlene Nguyen, Gavin Yeung, Soheil Ghiasi, Majid Sarrafzadeh {karlene, gavin, soheil, majid}@cs.ucla.edu Abstract We present a framework

More information

A feature-based tracking algorithm for vehicles in intersections

A feature-based tracking algorithm for vehicles in intersections A feature-based tracking algorithm for vehicles in intersections Nicolas Saunier and Tarek Sayed Departement of Civil Engineering, University of British Columbia 6250 Applied Science Lane, Vancouver BC

More information

Entwicklung und Testen von Robotischen Anwendungen mit MATLAB und Simulink Maximilian Apfelbeck, MathWorks

Entwicklung und Testen von Robotischen Anwendungen mit MATLAB und Simulink Maximilian Apfelbeck, MathWorks Entwicklung und Testen von Robotischen Anwendungen mit MATLAB und Simulink Maximilian Apfelbeck, MathWorks 2015 The MathWorks, Inc. 1 Robot Teleoperation IMU IMU V, W Control Device ROS-Node Turtlebot

More information

A Tempo-Topographical Model Inference of a Camera Network for Video Surveillance

A Tempo-Topographical Model Inference of a Camera Network for Video Surveillance International Journal of Computer and Electrical Engineering, Vol. 5, No. 4, August 203 A Tempo-Topographical Model Inference of a Camera Network for Video Surveillance Khalid Al-Shalfan and M. Elarbi-Boudihir

More information

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE 1 S.Manikandan, 2 S.Abirami, 2 R.Indumathi, 2 R.Nandhini, 2 T.Nanthini 1 Assistant Professor, VSA group of institution, Salem. 2 BE(ECE), VSA

More information

Static Environment Recognition Using Omni-camera from a Moving Vehicle

Static Environment Recognition Using Omni-camera from a Moving Vehicle Static Environment Recognition Using Omni-camera from a Moving Vehicle Teruko Yata, Chuck Thorpe Frank Dellaert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 USA College of Computing

More information

AUTODOME camera family. July 2014. Our focus is tracking of objects of interest from every angle

AUTODOME camera family. July 2014. Our focus is tracking of objects of interest from every angle AUTODOME camera family July 2014 Our focus is tracking of objects of interest from every angle Our focus is tracking relevant details of moving objects, 24/7 AUTODOME cameras bring imaging to the next

More information

Big Data: Image & Video Analytics

Big Data: Image & Video Analytics Big Data: Image & Video Analytics How it could support Archiving & Indexing & Searching Dieter Haas, IBM Deutschland GmbH The Big Data Wave 60% of internet traffic is multimedia content (images and videos)

More information

Indoor Surveillance System Using Android Platform

Indoor Surveillance System Using Android Platform Indoor Surveillance System Using Android Platform 1 Mandar Bhamare, 2 Sushil Dubey, 3 Praharsh Fulzele, 4 Rupali Deshmukh, 5 Dr. Shashi Dugad 1,2,3,4,5 Department of Computer Engineering, Fr. Conceicao

More information

SmartMonitor An Intelligent Security System for the Protection of Individuals and Small Properties with the Possibility of Home Automation

SmartMonitor An Intelligent Security System for the Protection of Individuals and Small Properties with the Possibility of Home Automation Sensors 2014, 14, 9922-9948; doi:10.3390/s140609922 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article SmartMonitor An Intelligent Security System for the Protection of Individuals

More information

Version 2.0. Camera Placement and Location

Version 2.0. Camera Placement and Location Version 2.0 Camera Placement and Location Camera Location Tips Camera location depends on the following: Distance from camera to viewing/ recording device Environmental conditions Lighting conditions Distance

More information

Detection and Recognition of Mixed Traffic for Driver Assistance System

Detection and Recognition of Mixed Traffic for Driver Assistance System Detection and Recognition of Mixed Traffic for Driver Assistance System Pradnya Meshram 1, Prof. S.S. Wankhede 2 1 Scholar, Department of Electronics Engineering, G.H.Raisoni College of Engineering, Digdoh

More information

1.3 Mega-Pixel Video Quality

1.3 Mega-Pixel Video Quality AirCam POE-250HD H.264 1.3 MegaPixel POE Vandal Proof Dome T he POE-250HD is a high-end 1.3 MegaPixel network camera designed for professional outdoor surveillance and security applications. MegaPixel

More information

A Learning Based Method for Super-Resolution of Low Resolution Images

A Learning Based Method for Super-Resolution of Low Resolution Images A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 emre.ugur@ceng.metu.edu.tr Abstract The main objective of this project is the study of a learning based method

More information

IVA 6.0. Intelligent Video Analysis. en Software manual

IVA 6.0. Intelligent Video Analysis. en Software manual IVA 6.0 Intelligent Video Analysis en Software manual IVA 6.0 Table of Contents en 3 Table of contents 1 Using the Help 5 1.1 Finding information 5 1.2 Printing the Help 5 2 Introduction 6 2.1 About this

More information

Article. Perfect Pixel Count. Meeting your operational requirements

Article. Perfect Pixel Count. Meeting your operational requirements Article Perfect Pixel Count Meeting your operational requirements Table of contents 1. Introduction 3 2. Moving into IP 3 3. Pixel density 4 4. A simple model 5 5. Use the model 6 6. The Axis pixel counter

More information

Autonomous Monitoring of Cliff Nesting Seabirds using Computer Vision

Autonomous Monitoring of Cliff Nesting Seabirds using Computer Vision Autonomous Monitoring of Cliff Nesting Seabirds using Computer Vision Patrick Dickinson 1, Robin Freeman 2, Sam Patrick 3 and Shaun Lawson 1 1 Dept. of Computing and Informatics University of Lincoln Lincoln

More information

Data Centers. Defense in depth. Network video protection for data centers.

Data Centers. Defense in depth. Network video protection for data centers. Data Centers Defense in depth. Network video protection for data centers. We ve got your Just like all effective security systems, yours depends on depth. On layer upon layer of protection, with your critical

More information

Whitepaper. Image stabilization improving camera usability

Whitepaper. Image stabilization improving camera usability Whitepaper Image stabilization improving camera usability Table of contents 1. Introduction 3 2. Vibration Impact on Video Output 3 3. Image Stabilization Techniques 3 3.1 Optical Image Stabilization 3

More information

A Highly Robust Vehicle Detection, Tracking and Speed Measurement Model for Intelligent Transport Systems

A Highly Robust Vehicle Detection, Tracking and Speed Measurement Model for Intelligent Transport Systems A Highly Robust Vehicle Detection, Tracking and Speed Measurement Model for Intelligent Transport Systems S. Sri Harsha Assistant Professor, Department of IT, VR Siddhartha Engineering College, Vijayawada,

More information

A Model-based Vehicle Segmentation Method for Tracking

A Model-based Vehicle Segmentation Method for Tracking A Model-based Vehicle Segmentation Method for Tracing Xuefeng Song Ram Nevatia Institute for Robotics and Intelligence System University of Southern California, Los Angeles, CA 90089-0273, USA {xsong nevatia}@usc.edu

More information

Cloud Based Localization for Mobile Robot in Outdoors

Cloud Based Localization for Mobile Robot in Outdoors 11/12/13 15:11 Cloud Based Localization for Mobile Robot in Outdoors Xiaorui Zhu (presenter), Chunxin Qiu, Yulong Tao, Qi Jin Harbin Institute of Technology Shenzhen Graduate School, China 11/12/13 15:11

More information

Real Time Target Tracking with Pan Tilt Zoom Camera

Real Time Target Tracking with Pan Tilt Zoom Camera 2009 Digital Image Computing: Techniques and Applications Real Time Target Tracking with Pan Tilt Zoom Camera Pankaj Kumar, Anthony Dick School of Computer Science The University of Adelaide Adelaide,

More information

Leading video analytics platform market

Leading video analytics platform market Leading video analytics platform market Business Intelligence Analytics Platform Advantages _ Bintelan Advanced Video Platform for High and Analytics. All your analytics in one single interface. Intelligent

More information

VS-100. PoE. H.264 PoE Video Server. H.264 Compression H.264 DI/DO. Compression Rate Comparison MJPEG MPEG4 H.264.

VS-100. PoE. H.264 PoE Video Server. H.264 Compression H.264 DI/DO. Compression Rate Comparison MJPEG MPEG4 H.264. H.264 Video Server T he AirLive is a one channel video server for easily upgrade your old CCTV camera to a network-enabled IP camera and hence convert your local surveillance system into a global one.

More information