CHAPTER 4 EXAMPLES: EXPLORATORY FACTOR ANALYSIS

Save this PDF as:

Size: px
Start display at page:

Download "CHAPTER 4 EXAMPLES: EXPLORATORY FACTOR ANALYSIS"

Transcription

1 Examples: Exploratory Factor Analysis CHAPTER 4 EXAMPLES: EXPLORATORY FACTOR ANALYSIS Exploratory factor analysis (EFA) is used to determine the number of continuous latent variables that are needed to explain the correlations among a set of observed variables. The continuous latent variables are referred to as factors, and the observed variables are referred to as factor. In EFA, factor can be continuous, censored, binary, ordered categorical (ordinal), counts, or combinations of these variable types. EFA can also be carried out using exploratory structural equation modeling (ESEM; Asparouhov & Muthén, 2009a) when factor are continuous, censored, binary, ordered categorical (ordinal), and combinations of these variable types. ESEM examples are shown under Confirmatory Factor Analysis. Several rotations are available using both orthogonal and oblique procedures. The algorithms used in the rotations are described in Jennrich and Sampson (1966), Browne (2001), Bernaards and Jennrich (2005), Browne et al. (2004), and Jennrich and Bentler (2011, 2012). Standard errors for the rotated solutions are available using algorithms described in Jennrich (1973, 1974, 2007). Cudeck and O Dell (1994) discuss the benefits of standard errors for rotated solutions. All EFA models can be estimated using the following special features: Missing data Complex survey data Mixture modeling The default is to estimate the model under missing data theory using all available data. The LISTWISE option of the DATA command can be used to delete all observations from the analysis that have missing values on one or more of the analysis variables. Corrections to the standard errors and chi-square test of model fit that take into account stratification, non-independence of observations, and unequal probability of selection are obtained by using the TYPE=COMPLEX option of the ANALYSIS command in conjunction with the STRATIFICATION, 43

2 CHAPTER 4 CLUSTER, and WEIGHT options of the VARIABLE command. The SUBPOPULATION option is used to select observations for an analysis when a subpopulation (domain) is analyzed. Graphical displays of observed data and analysis results can be obtained using the PLOT command in conjunction with a post-processing graphics module. The PLOT command provides histograms, scatterplots, plots of eigenvalues, individual observed and estimated values, and plots of sample and estimated means and proportions/probabilities. These are available for the total sample, by group, by class, and adjusted for covariates. The PLOT command includes a display showing a set of descriptive statistics for each variable. The graphical displays can be edited and exported as a DIB, EMF, or JPEG file. In addition, the data for each graphical display can be saved in an external file for use by another graphics program. Following is the set of EFA examples included in this chapter. 4.1: Exploratory factor analysis with continuous factor 4.2: Exploratory factor analysis with categorical factor 4.3: Exploratory factor analysis with continuous, censored, categorical, and count factor * 4.4: Exploratory factor mixture analysis with continuous latent class 4.5: Two-level exploratory factor analysis with continuous factor 4.6: Two-level exploratory factor analysis with both individual- and cluster-level factor 4.7: Bi-factor exploratory factor analysis with continuous factor * Example uses numerical integration in the estimation of the model. This can be computationally demanding depending on the size of the problem. 44

3 Examples: Exploratory Factor Analysis EXAMPLE 4.1: EXPLORATORY FACTOR ANALYSIS WITH CONTINUOUS FACTOR INDICATORS TITLE: this is an example of an exploratory factor analysis with continuous factor DATA: FILE IS ex4.1a.dat; VARIABLE: NAMES ARE y1-y12; ANALYSIS: TYPE = EFA 1 4; OUTPUT: MODINDICES; In the first part of this example, an exploratory factor analysis with continuous factor is carried out. Rotated solutions with standard errors are obtained for each number of factors. Modification indices are requested for the residual correlations. In the second part of this example, the same exploratory factor analysis for four factors is carried out using exploratory structural equation modeling (ESEM). TITLE: this is an example of an exploratory factor analysis with continuous factor The TITLE command is used to provide a title for the analysis. The title is printed in the output just before the Summary of Analysis. DATA: FILE IS ex4.1.dat; The DATA command is used to provide information about the data set to be analyzed. The FILE option is used to specify the name of the file that contains the data to be analyzed, ex4.1.dat. Because the data set is in free format, the default, a FORMAT statement is not required. VARIABLE: NAMES ARE y1-y12; The VARIABLE command is used to provide information about the variables in the data set to be analyzed. The NAMES option is used to assign names to the variables in the data set. The data set in this example contains 12 variables: y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, and y12. Note that the hyphen can be used as a convenience feature in order to generate a list of names. 45

4 CHAPTER 4 ANALYSIS: TYPE = EFA 1 4; The ANALYSIS command is used to describe the technical details of the analysis. The TYPE option is used to describe the type of analysis that is to be performed. By specifying TYPE=EFA, an exploratory factor analysis will be carried out. The numbers following EFA give the lower and upper limits on the number of factors to be extracted. The default rotation is the oblique rotation of GEOMIN. The ROTATION option of the ANALYSIS command can be used to select a different rotation. The default estimator for this type of analysis is maximum likelihood. The ESTIMATOR option of the ANALYSIS command can be used to select a different estimator. OUTPUT: MODINDICES; The MODINDICES option is used with EFA to request modification indices and expected parameter change indices for the residual correlations which are fixed at zero in EFA. TITLE: this is an example of an exploratory factor analysis with continuous factor using exploratory structural equation modeling (ESEM) DATA: FILE IS ex4.1b.dat; VARIABLE: NAMES ARE y1-y12; MODEL: f1-f4 BY y1-y12 (*1); OUTPUT: MODINDICES; The difference between this part of the example and the first part is that an exploratory factor analysis for four factors is carried out using exploratory structural equation modeling (ESEM). In the MODEL command, the BY statement specifies that the factors f1 through f4 are measured by the continuous factor y1 through y12. The label 1 following an asterisk (*) in parentheses following the BY statement is used to indicate that f1, f2, f3, and f4 are a set of EFA factors. When no rotation is specified using the ROTATION option of the ANALYSIS command, the default oblique GEOMIN rotation is used. The intercepts and residual variances of the factor are estimated and the residuals are not correlated as the default. The variances of the factors are fixed at one as the default. The factors are correlated under the default oblique GEOMIN rotation. The results are the same as for the four-factor EFA in the first part of the example. 46

5 Examples: Exploratory Factor Analysis EXAMPLE 4.2: EXPLORATORY FACTOR ANALYSIS WITH CATEGORICAL FACTOR INDICATORS TITLE: this is an example of an exploratory factor analysis with categorical factor DATA: FILE IS ex4.2.dat; VARIABLE: NAMES ARE u1-u12; CATEGORICAL ARE u1-u12; ANALYSIS: TYPE = EFA 1 4; The difference between this example and Example 4.1 is that the factor are binary or ordered categorical (ordinal) variables instead of continuous variables. Estimation of factor analysis models with binary variables is discussed in Muthén (1978) and Muthén et al. (1997). The CATEGORICAL option is used to specify which dependent variables are treated as binary or ordered categorical (ordinal) variables in the model and its estimation. In the example above, all twelve factor are binary or ordered categorical variables. Categorical variables can be binary or ordered categorical. The program determines the number of categories for each variable. The default estimator for this type of analysis is a robust weighted least squares estimator. The ESTIMATOR option of the ANALYSIS command can be used to select a different estimator. With maximum likelihood estimation, numerical integration is used with one dimension of integration for each factor. To reduce computational time with several factors, the number of integration points per dimension can be reduced from the default of 7 for exploratory factor analysis to as few as 3 for an approximate solution. An explanation of the other commands can be found in Example

6 CHAPTER 4 EXAMPLE 4.3: EXPLORATORY FACTOR ANALYSIS WITH CONTINUOUS, CENSORED, CATEGORICAL, AND COUNT FACTOR INDICATORS TITLE: this is an example of an exploratory factor analysis with continuous, censored, categorical, and count factor DATA: FILE = ex4.3.dat; VARIABLE: NAMES = u4-u6 y4-y6 u1-u3 y1-y3; CENSORED = y4-y6(b); CATEGORICAL = u1-u3; COUNT = u4-u6; ANALYSIS: TYPE = EFA 1 4; The difference between this example and Example 4.1 is that the factor are a combination of continuous, censored, binary or ordered categorical (ordinal), and count variables instead of all continuous variables. The CENSORED option is used to specify which dependent variables are treated as censored variables in the model and its estimation, whether they are censored from above or below, and whether a censored or censored-inflated model will be estimated. In the example above, y4, y5, and y6 are censored variables. The b in parentheses indicates that they are censored from below, that is, have a floor effect, and that the model is a censored regression model. The censoring limit is determined from the data. The CATEGORICAL option is used to specify which dependent variables are treated as binary or ordered categorical (ordinal) variables in the model and its estimation. In the example above, the factor u1, u2, and u3 are binary or ordered categorical variables. The program determines the number of categories for each variable. The COUNT option is used to specify which dependent variables are treated as count variables in the model and its estimation and whether a Poisson or zero-inflated Poisson model will be estimated. In the example above, u4, u5, and u6 are count variables. The variables y1, y2, and y3 are continuous variables. The default estimator for this type of analysis is maximum likelihood with robust standard errors using a numerical integration algorithm. Note that numerical integration becomes increasingly more computationally demanding as the number of factors and the sample size increase. In this example, the four-factor solution requires four 48

7 Examples: Exploratory Factor Analysis dimensions of integration. Using the default of 7 integration points per factor for exploratory factor analysis, a total of 2,401 integration points is required for this analysis. To reduce computational time with several factors, the number of integration points per dimension can be reduced from the default of 7 for exploratory factor analysis to as few as 3 for an approximate solution. The ESTIMATOR option of the ANALYSIS command can be used to select a different estimator. An explanation of the other commands can be found in Example 4.1. EXAMPLE 4.4: EXPLORATORY FACTOR MIXTURE ANALYSIS WITH CONTINUOUS LATENT CLASS INDICATORS TITLE: this is an example of an exploratory factor mixture analysis with continuous latent class DATA: FILE = ex4.4.dat; VARIABLE: NAMES = y1-y8; CLASSES = c(2); ANALYSIS: TYPE = MIXTURE EFA 1 2; In this example, an exploratory factor mixture analysis with continuous latent class is carried out. Factor mixture analysis uses a combination of categorical and continuous latent variables. Mixture modeling refers to modeling with categorical latent variables that represent subpopulations where population membership is not known but is inferred from the data. With continuous latent class, the means of the latent class vary across the classes as the default. The continuous latent variables describe within-class correlations among the latent class. The within-class correlations follow an exploratory factor analysis model that varies across the latent classes. This is the mixtures of factor analyzers model discussed in McLachlan and Peel (2000) and McLachlan et al. (2004). Rotated solutions with standard errors are obtained for each latent class. See Example 7.27 for a confirmatory factor mixture analysis. The CLASSES option is used to assign names to the categorical latent variables in the model and to specify the number of latent classes in the model for each categorical latent variable. In the example above, there is one categorical latent variable c that has two latent classes. The 49

8 CHAPTER 4 ANALYSIS command is used to describe the technical details of the analysis. The TYPE option is used to describe the type of analysis that is to be performed. By specifying TYPE=MIXTURE EFA, an exploratory factor mixture analysis will be carried out. The numbers following EFA give the lower and upper limits on the number of factors to be extracted. The default rotation is the oblique rotation of GEOMIN. The ROTATION option of the ANALYSIS command can be used to select a different rotation. The default estimator for this type of analysis is maximum likelihood with robust standard errors. The ESTIMATOR option of the ANALYSIS command can be used to select a different estimator. An explanation of the other commands can be found in Example 4.1. EXAMPLE 4.5: TWO-LEVEL EXPLORATORY FACTOR ANALYSIS WITH CONTINUOUS FACTOR INDICATORS TITLE: this is an example of a two-level exploratory factor analysis with continuous factor DATA: FILE IS ex4.5.dat; VARIABLE: NAMES ARE y1-y6 x1 x2 w clus; USEVARIABLES = y1-y6; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL EFA 1 2 UW 1 1 UB; In this example, a two-level exploratory factor analysis model with individual-level continuous factor is carried out. Two-level analysis models non-independence of observations due to cluster sampling. An exploratory factor analysis is specified for both the within and between parts of the model. Rotated solutions with standard errors are obtained for both the within and between parts of the model. See Example 9.6 for a two-level confirmatory factor analysis. The CLUSTER option is used to identify the variable that contains clustering information. The ANALYSIS command is used to describe the technical details of the analysis. The TYPE option is used to describe the type of analysis that is to be performed. By specifying TYPE=TWOLEVEL EFA, a two-level exploratory factor analysis will be carried out. The numbers following EFA give the lower and upper limits on the number of factors to be extracted. The first set of numbers are for the within part of the model. The second set of numbers are for 50

9 Examples: Exploratory Factor Analysis the between part of the model. In both parts of the model, one- and twofactors solutions and an unrestricted solution will be obtained. The unrestricted solution for the within part of the model is specified by UW and the unrestricted solution for the between part of the model is specified by UB. The within and between specifications are crossed. Factor solutions will be obtained for one factor within and one factor between, two factors within and one factor between, unrestricted within and one factor between, one factor within and unrestricted between, and two factors within and unrestricted between. Rotations are not given for unrestricted solutions. The default rotation is the oblique rotation of GEOMIN. The ROTATION option of the ANALYSIS command can be used to select a different rotation. The default estimator for this type of analysis is maximum likelihood with robust standard errors. The ESTIMATOR option of the ANALYSIS command can be used to select a different estimator. An explanation of the other commands can be found in Example 4.1. EXAMPLE 4.6: TWO-LEVEL EXPLORATORY FACTOR ANALYSIS WITH BOTH INDIVIDUAL- AND CLUSTER- LEVEL FACTOR INDICATORS TITLE: this is an example of a two-level exploratory factor analysis with both individual- and cluster-level factor DATA: FILE = ex4.6.dat; VARIABLE: NAMES = u1-u6 y1-y4 x1 x2 w clus; USEVARIABLES = u1-u6 y1-y4; CATEGORICAL = u1-u6; CLUSTER = clus; BETWEEN = y1-y4; ANALYSIS: TYPE = TWOLEVEL EFA 1 2 UW 1 2 UB; SAVEDATA: SWMATRIX = ex4.6sw.dat; The difference between this example and Example 4.5 is that there is a combination of individual-level categorical factor and between-level continuous factor. The exploratory factor analysis structure for the within part of the model includes only the individual-level factor whereas the exploratory factor analysis structure for the between part of the model includes the between part of the individual-level factor and the between-level factor 51

10 CHAPTER 4. Rotated solutions with standard errors are obtained for both the within and between parts of the model. The BETWEEN option is used to identify the variables in the data set that are measured on the cluster level and modeled only on the between level. Variables not mentioned on the WITHIN or the BETWEEN statements are measured on the individual level and can be modeled on both the within and between levels. The default rotation is the oblique rotation of GEOMIN. The ROTATION option of the ANALYSIS command can be used to select a different rotation. The default estimator for this type of analysis is a robust weighted least squares estimator using a diagonal weight matrix (Asparouhov & Muthén, 2007). The ESTIMATOR option of the ANALYSIS command can be used to select a different estimator. The SWMATRIX option of the SAVEDATA command is used with TYPE=TWOLEVEL and weighted least squares estimation to specify the name and location of the file that contains the within- and between-level sample statistics and their corresponding estimated asymptotic covariance matrix. It is recommended to save this information and use it in subsequent analyses along with the raw data to reduce computational time during model estimation. An explanation of the other commands can be found in Examples 4.1, 4.3, and 4.5. EXAMPLE 4.7: BI-FACTOR EXPLORATORY FACTOR ANALYSIS WITH CONTINUOUS FACTOR INDICATORS TITLE: this is an example of a bi-factor exploratory factor analysis with continuous factor DATA: FILE = ex4.7.dat; VARIABLE: NAMES = y1-y10; ANALYSIS: TYPE = EFA 2 3; ROTATION = BI-GEOMIN; In this example, a bi-factor exploratory factor analysis (Jennrich & Bentler, 2011, 2012) with continuous factor is carried out using a Geomin rotation. By specifying TYPE=EFA, an exploratory factor analysis will be carried out. The number 2 is the lower limit and the number 3 is the upper limit on the number of factors to be extracted. By specifying BI-GEOMIN, a bi-factor EFA will be carried out using a 52

11 Examples: Exploratory Factor Analysis bi-factor Geomin rotation. Because this is a bi-factor analysis, the twofactor solution will have one general factor and one specific factor. The three-factor solution will have one general factor and two specific factors. The default for the BI-GEOMIN rotation is an oblique rotation where the specific factors are correlated with the general factor and are correlated with each other. In the orthogonal rotation, the specific factors are uncorrelated with the general factor and are uncorrelated with each other. An orthogonal rotation is obtained by specifying ROTATION=BI-GEOMIN(ORTHOGONAL). An alternative bi-factor rotation can be obtained using the BI-CF-QUARTIMAX setting of the ROTATION option. The default estimator for this type of analysis is maximum likelihood. The ESTIMATOR option of the ANALYSIS command can be used to select a different estimator. An explanation of the other commands can be found in Example

12 CHAPTER 4 54

CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA

Examples: Multilevel Modeling With Complex Survey Data CHAPTER 9 EXAMPLES: MULTILEVEL MODELING WITH COMPLEX SURVEY DATA Complex survey data refers to data obtained by stratification, cluster sampling and/or

CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA

Examples: Mixture Modeling With Longitudinal Data CHAPTER 8 EXAMPLES: MIXTURE MODELING WITH LONGITUDINAL DATA Mixture modeling refers to modeling with categorical latent variables that represent subpopulations

CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS

Examples: Regression And Path Analysis CHAPTER 3 EXAMPLES: REGRESSION AND PATH ANALYSIS Regression analysis with univariate or multivariate dependent variables is a standard procedure for modeling relationships

CHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES

Examples: Monte Carlo Simulation Studies CHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES Monte Carlo simulation studies are often used for methodological investigations of the performance of statistical

CHAPTER 13 EXAMPLES: SPECIAL FEATURES

Examples: Special Features CHAPTER 13 EXAMPLES: SPECIAL FEATURES In this chapter, special features not illustrated in the previous example chapters are discussed. A cross-reference to the original example

SHORT COURSE ON MPLUS Getting Started with Mplus HANDOUT

SHORT COURSE ON MPLUS Getting Started with Mplus HANDOUT Instructor: Cathy Zimmer 962-0516, cathy_zimmer@unc.edu INTRODUCTION a) Who am I? Who are you? b) Overview of Course i) Mplus capabilities ii) The

Simple Second Order Chi-Square Correction

Simple Second Order Chi-Square Correction Tihomir Asparouhov and Bengt Muthén May 3, 2010 1 1 Introduction In this note we describe the second order correction for the chi-square statistic implemented

A Brief Introduction to SPSS Factor Analysis

A Brief Introduction to SPSS Factor Analysis SPSS has a procedure that conducts exploratory factor analysis. Before launching into a step by step example of how to use this procedure, it is recommended

Common factor analysis

Common factor analysis This is what people generally mean when they say "factor analysis" This family of techniques uses an estimate of common variance among the original variables to generate the factor

Comparison of Estimation Methods for Complex Survey Data Analysis

Comparison of Estimation Methods for Complex Survey Data Analysis Tihomir Asparouhov 1 Muthen & Muthen Bengt Muthen 2 UCLA 1 Tihomir Asparouhov, Muthen & Muthen, 3463 Stoner Ave. Los Angeles, CA 90066.

Data analysis process

Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: PRELIS User s Guide

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng LISREL for Windows: PRELIS User s Guide Table of contents INTRODUCTION... 1 GRAPHICAL USER INTERFACE... 2 The Data menu... 2 The Define Variables

Overview of Factor Analysis

Overview of Factor Analysis Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August 1,

Introduction to Principal Components and FactorAnalysis

Introduction to Principal Components and FactorAnalysis Multivariate Analysis often starts out with data involving a substantial number of correlated variables. Principal Component Analysis (PCA) is a

Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

Mplus Tutorial August 2012

August 2012 Mplus for Windows: An Introduction Section 1: Introduction... 3 1.1. About this Document... 3 1.2. Introduction to EFA, CFA, SEM and Mplus... 3 1.3. Accessing Mplus... 3 Section 2: Latent Variable

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: SIMPLIS Syntax Files

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng LISREL for Windows: SIMPLIS Files Table of contents SIMPLIS SYNTAX FILES... 1 The structure of the SIMPLIS syntax file... 1 \$CLUSTER command... 4

Factor Analysis Using SPSS

Psychology 305 p. 1 Factor Analysis Using SPSS Overview For this computer assignment, you will conduct a series of principal factor analyses to examine the factor structure of a new instrument developed

How to report the percentage of explained common variance in exploratory factor analysis

UNIVERSITAT ROVIRA I VIRGILI How to report the percentage of explained common variance in exploratory factor analysis Tarragona 2013 Please reference this document as: Lorenzo-Seva, U. (2013). How to report

Doing Quantitative Research 26E02900, 6 ECTS Lecture 2: Measurement Scales. Olli-Pekka Kauppila Rilana Riikkinen

Doing Quantitative Research 26E02900, 6 ECTS Lecture 2: Measurement Scales Olli-Pekka Kauppila Rilana Riikkinen Learning Objectives 1. Develop the ability to assess a quality of measurement instruments

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

Factor Analysis Example: SAS program (in blue) and output (in black) interleaved with comments (in red)

Factor Analysis Example: SAS program (in blue) and output (in black) interleaved with comments (in red) The following DATA procedure is to read input data. This will create a SAS dataset named CORRMATR

5.2 Customers Types for Grocery Shopping Scenario

------------------------------------------------------------------------------------------------------- CHAPTER 5: RESULTS AND ANALYSIS -------------------------------------------------------------------------------------------------------

The Latent Variable Growth Model In Practice. Individual Development Over Time

The Latent Variable Growth Model In Practice 37 Individual Development Over Time y i = 1 i = 2 i = 3 t = 1 t = 2 t = 3 t = 4 ε 1 ε 2 ε 3 ε 4 y 1 y 2 y 3 y 4 x η 0 η 1 (1) y ti = η 0i + η 1i x t + ε ti

Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model

Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

Factor Analysis and Structural equation modelling

Factor Analysis and Structural equation modelling Herman Adèr Previously: Department Clinical Epidemiology and Biostatistics, VU University medical center, Amsterdam Stavanger July 4 13, 2006 Herman Adèr

EXPLORATORY FACTOR ANALYSIS IN MPLUS, R AND SPSS. sigbert@wiwi.hu-berlin.de

EXPLORATORY FACTOR ANALYSIS IN MPLUS, R AND SPSS Sigbert Klinke 1,2 Andrija Mihoci 1,3 and Wolfgang Härdle 1,3 1 School of Business and Economics, Humboldt-Universität zu Berlin, Germany 2 Department of

lavaan: an R package for structural equation modeling

lavaan: an R package for structural equation modeling Yves Rosseel Department of Data Analysis Belgium Utrecht April 24, 2012 Yves Rosseel lavaan: an R package for structural equation modeling 1 / 20 Overview

Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP

Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

FACTOR ANALYSIS. Factor Analysis is similar to PCA in that it is a technique for studying the interrelationships among variables.

FACTOR ANALYSIS Introduction Factor Analysis is similar to PCA in that it is a technique for studying the interrelationships among variables Both methods differ from regression in that they don t have

4. There are no dependent variables specified... Instead, the model is: VAR 1. Or, in terms of basic measurement theory, we could model it as:

1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data 2. Linearity (in the relationships among the variables--factors are linear constructions of the set of variables; the critical source

PARTIAL LEAST SQUARES IS TO LISREL AS PRINCIPAL COMPONENTS ANALYSIS IS TO COMMON FACTOR ANALYSIS. Wynne W. Chin University of Calgary, CANADA

PARTIAL LEAST SQUARES IS TO LISREL AS PRINCIPAL COMPONENTS ANALYSIS IS TO COMMON FACTOR ANALYSIS. Wynne W. Chin University of Calgary, CANADA ABSTRACT The decision of whether to use PLS instead of a covariance

Getting Started in Factor Analysis (using Stata 10) (ver. 1.5)

Getting Started in Factor Analysis (using Stata 10) (ver. 1.5) Oscar Torres-Reyna Data Consultant otorres@princeton.edu http://dss.princeton.edu/training/ Factor analysis is used mostly for data reduction

2015 TUHH Online Summer School: Overview of Statistical and Path Modeling Analyses

: Overview of Statistical and Path Modeling Analyses Prof. Dr. Christian M. Ringle (Hamburg Univ. of Tech., TUHH) Prof. Dr. Jӧrg Henseler (University of Twente) Dr. Geoffrey Hubona (The Georgia R School)

6 Steps for Two-Level SEM

6 Steps for Two-Level SEM Step 0: Do a Type=Basic run to get the cluster information, intraclass correlations, and pooled-within covariance matrix and estimated between correlation matrix. Input: basic,

SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011

SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis

The Case for Hyperplane Fitting Rotations in Factor Analysis: A Comparative Study of Simple Structure

Journal of Data Science 10(2012), 419-439 The Case for Hyperplane Fitting Rotations in Factor Analysis: A Comparative Study of Simple Structure James S. Fleming Southwest Psychometrics and Psychology Resources

Latent Class Regression Part II

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com

SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING

MS 2007-0081-RR Booil Jo. Supplemental Materials (to be posted on the Web)

MS 2007-0081-RR Booil Jo Supplemental Materials (to be posted on the Web) Table 2 Mplus Input title: Table 2 Monte Carlo simulation using externally generated data. One level CACE analysis based on eqs.

7 Generalized Estimating Equations

Chapter 7 The procedure extends the generalized linear model to allow for analysis of repeated measurements or other correlated observations, such as clustered data. Example. Public health of cials can

Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES. From Exploratory Factor Analysis Ledyard R Tucker and Robert C.

CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES From Exploratory Factor Analysis Ledyard R Tucker and Robert C MacCallum 1997 180 CHAPTER 8 FACTOR EXTRACTION BY MATRIX FACTORING TECHNIQUES In

Applied Multivariate Analysis

Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Janette Walde janette.walde@uibk.ac.at Department of Statistics University of Innsbruck Outline I Introduction Idea of PCA Principle of the Method Decomposing an Association

Exploratory Factor Analysis: rotation. Psychology 588: Covariance structure and factor models

Exploratory Factor Analysis: rotation Psychology 588: Covariance structure and factor models Rotational indeterminacy Given an initial (orthogonal) solution (i.e., Φ = I), there exist infinite pairs of

Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

An introduction to. Principal Component Analysis & Factor Analysis. Using SPSS 19 and R (psych package) Robin Beaumont robin@organplayers.co.

An introduction to Principal Component Analysis & Factor Analysis Using SPSS 19 and R (psych package) Robin Beaumont robin@organplayers.co.uk Monday, 23 April 2012 Acknowledgment: The original version

Rachel J. Goldberg, Guideline Research/Atlanta, Inc., Duluth, GA

PROC FACTOR: How to Interpret the Output of a Real-World Example Rachel J. Goldberg, Guideline Research/Atlanta, Inc., Duluth, GA ABSTRACT THE METHOD This paper summarizes a real-world example of a factor

Installing R and the psych package

Installing R and the psych package William Revelle Department of Psychology Northwestern University August 17, 2014 Contents 1 Overview of this and related documents 2 2 Install R and relevant packages

A Brief Introduction to Factor Analysis

1. Introduction A Brief Introduction to Factor Analysis Factor analysis attempts to represent a set of observed variables X 1, X 2. X n in terms of a number of 'common' factors plus a factor which is unique

When to Use Which Statistical Test

When to Use Which Statistical Test Rachel Lovell, Ph.D., Senior Research Associate Begun Center for Violence Prevention Research and Education Jack, Joseph, and Morton Mandel School of Applied Social Sciences

Simple Linear Regression, Scatterplots, and Bivariate Correlation

1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

2. Linearity (in relationships among the variables--factors are linear constructions of the set of variables) F 2 X 4 U 4

1 Neuendorf Factor Analysis Assumptions: 1. Metric (interval/ratio) data. Linearity (in relationships among the variables--factors are linear constructions of the set of variables) 3. Univariate and multivariate

HLM software has been one of the leading statistical packages for hierarchical

Introductory Guide to HLM With HLM 7 Software 3 G. David Garson HLM software has been one of the leading statistical packages for hierarchical linear modeling due to the pioneering work of Stephen Raudenbush

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round \$200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

PRINCIPAL COMPONENT ANALYSIS

1 Chapter 1 PRINCIPAL COMPONENT ANALYSIS Introduction: The Basics of Principal Component Analysis........................... 2 A Variable Reduction Procedure.......................................... 2

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate

Factor Analysis. Advanced Financial Accounting II Åbo Akademi School of Business

Factor Analysis Advanced Financial Accounting II Åbo Akademi School of Business Factor analysis A statistical method used to describe variability among observed variables in terms of fewer unobserved variables

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

Mplus Short Courses Topic 7. Multilevel Modeling With Latent Variables Using Mplus: Cross-Sectional Analysis

Mplus Short Courses Topic 7 Multilevel Modeling With Latent Variables Using Mplus: Cross-Sectional Analysis Linda K. Muthén Bengt Muthén Copyright 2011 Muthén & Muthén www.statmodel.com 03/29/2011 1 Table

SPSS Introduction. Yi Li

SPSS Introduction Yi Li Note: The report is based on the websites below http://glimo.vub.ac.be/downloads/eng_spss_basic.pdf http://academic.udayton.edu/gregelvers/psy216/spss http://www.nursing.ucdenver.edu/pdf/factoranalysishowto.pdf

I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s

I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s Confirmatory Factor Analysis using Amos, LISREL, Mplus, SAS/STAT CALIS* Jeremy J. Albright

Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

A Beginner s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis

Tutorials in Quantitative Methods for Psychology 2013, Vol. 9(2), p. 79-94. A Beginner s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis An Gie Yong and Sean Pearce University of Ottawa

SPSS and AMOS. Miss Brenda Lee 2:00p.m. 6:00p.m. 24 th July, 2015 The Open University of Hong Kong

Seminar on Quantitative Data Analysis: SPSS and AMOS Miss Brenda Lee 2:00p.m. 6:00p.m. 24 th July, 2015 The Open University of Hong Kong SBAS (Hong Kong) Ltd. All Rights Reserved. 1 Agenda MANOVA, Repeated

Introduction to Multilevel Modeling Using HLM 6. By ATS Statistical Consulting Group

Introduction to Multilevel Modeling Using HLM 6 By ATS Statistical Consulting Group Multilevel data structure Students nested within schools Children nested within families Respondents nested within interviewers

Running head: ONLINE VALUE AND SELF-EFFICACY SCALE

Online Value and Self-Efficacy Scale Running head: ONLINE VALUE AND SELF-EFFICACY SCALE Development and Initial Validation of the Online Learning Value and Self-Efficacy Scale Anthony R. Artino Jr. and

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

LISREL for Windows: Getting Started Guide. Gerhard Mels

LISREL for Windows: Getting Started Guide Gerhard Mels The correct bibliographic citation for this guide is as follows: Mels, G. (2006) LISREL for Windows: Getting Started Guide Lincolnwood, IL: Scientific

FACTOR ANALYSIS EXPLORATORY APPROACHES. Kristofer Årestedt

FACTOR ANALYSIS EXPLORATORY APPROACHES Kristofer Årestedt 2013-04-28 UNIDIMENSIONALITY Unidimensionality imply that a set of items forming an instrument measure one thing in common Unidimensionality is

Linda K. Muthén Bengt Muthén. Copyright 2008 Muthén & Muthén www.statmodel.com. Table Of Contents

Mplus Short Courses Topic 2 Regression Analysis, Eploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes Linda K. Muthén

Exploratory Factor Analysis

Exploratory Factor Analysis ( 探 索 的 因 子 分 析 ) Yasuyo Sawaki Waseda University JLTA2011 Workshop Momoyama Gakuin University October 28, 2011 1 Today s schedule Part 1: EFA basics Introduction to factor

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

What is Rotating in Exploratory Factor Analysis?

A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to

Imputing Missing Data using SAS

ABSTRACT Paper 3295-2015 Imputing Missing Data using SAS Christopher Yim, California Polytechnic State University, San Luis Obispo Missing data is an unfortunate reality of statistics. However, there are

Exploratory Data Analysis with MATLAB

Computer Science and Data Analysis Series Exploratory Data Analysis with MATLAB Second Edition Wendy L Martinez Angel R. Martinez Jeffrey L. Solka ( r ec) CRC Press VV J Taylor & Francis Group Boca Raton

WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat

Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise

Factor Analysis. Chapter 420. Introduction

Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

Common factor analysis versus principal component analysis: a comparison of loadings by means of simulations

1 Common factor analysis versus principal component analysis: a comparison of loadings by means of simulations Joost C. F. de Winter, Dimitra Dodou Faculty of Mechanical, Maritime and Materials Engineering,

1. The standardised parameters are given below. Remember to use the population rather than sample standard deviation.

Kapitel 5 5.1. 1. The standardised parameters are given below. Remember to use the population rather than sample standard deviation. The graph of cross-validated error versus component number is presented

Gamma Distribution Fitting

Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

Simple Predictive Analytics Curtis Seare

Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs

Using Excel Jeffrey L. Rummel Emory University Goizueta Business School BBA Seminar Jeffrey L. Rummel BBA Seminar 1 / 54 Excel Calculations of Descriptive Statistics Single Variable Graphs Relationships

To do a factor analysis, we need to select an extraction method and a rotation method. Hit the Extraction button to specify your extraction method.

Factor Analysis in SPSS To conduct a Factor Analysis, start from the Analyze menu. This procedure is intended to reduce the complexity in a set of data, so we choose Data Reduction from the menu. And the

11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

Exploratory Factor Analysis of Demographic Characteristics of Antenatal Clinic Attendees and their Association with HIV Risk

Doi:10.5901/mjss.2014.v5n20p303 Abstract Exploratory Factor Analysis of Demographic Characteristics of Antenatal Clinic Attendees and their Association with HIV Risk Wilbert Sibanda Philip D. Pretorius

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

Exploratory Factor Analysis

Exploratory Factor Analysis Definition Exploratory factor analysis (EFA) is a procedure for learning the extent to which k observed variables might measure m abstract variables, wherein m is less than

Goodness of fit assessment of item response theory models

Goodness of fit assessment of item response theory models Alberto Maydeu Olivares University of Barcelona Madrid November 1, 014 Outline Introduction Overall goodness of fit testing Two examples Assessing

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

T-test & factor analysis

Parametric tests T-test & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue