Methods for Constructing a Yield Curve

Size: px
Start display at page:

Download "Methods for Constructing a Yield Curve"

Transcription

1 Methods for Constructng a Yeld Curve Patrck S. Hagan Chef Investment Offce, JP Morgan Wood Street London, EC2V 7AN, England, e-mal: patrck.s.hagan@jpmorgan.com Graeme West Fnancal Modellng Agency, 9 Frst Ave East, Parktown North, 293, South Afrca e-mal: graeme@fnmod.co.za, Abstract In ths paper we survey a wde selecton of the nterpolaton algorthms that are n use n fnancal markets for constructon of curves such as forward curves, bass curves, and most mportantly, yeld curves. In the case of yeld curves we also revew the ssue of bootstrappng and dscuss how the nterpolaton algorthm should be ntmately connected to the bootstrap tself. As we wll see, many methods commonly n use suffer from problems: they post unreasonable expectons, or are not even necessarly arbtrage free. Moreover, many methods result n materal varaton n large sectons of the curve when only one nput s perturbed (the method s not local). In Hagan and West [26] we ntroduced two new nterpolaton methods the monotone convex method and the mnmal method. In ths paper we wll revew the monotone convex method and hghlght why ths method has a very hgh pedgree n terms of the constructon qualty crtera that one should be nterested n. Keywords yeld curve, nterpolaton, fxed ncome, dscount factors Basc Yeld Curve Mathematcs Much of what s sad here s a reprse of the excellent ntroducton n [Rebonato, 998,.2]. The term structure of nterest rates s defned as the relatonshp between the yeld-to-maturty on a zero coupon bond and the bond s maturty. If we are gong to prce dervatves whch have been modelled n contnuous-tme off of the curve, t makes sense to commt ourselves to usng contnuously-compounded rates from the outset. Now s denoted tme. The prce of an nstrument whch pays unt of currency at tme t such an nstrument s called a dscount or zero coupon bond s denoted Z(, t). The nverse of ths amount could be denoted C(, t) and called the captalsaton factor: t s the redempton amount earned at tme t from an nvestment at tme of unt of currency n sad zero coupon bonds. The frst and most obvous fact s that Z(, t) s decreasng n t (equvalently, C(, t) s ncreasng). Suppose Z(,t ) < Z(,t 2 ) for some t < t 2. Then the arbtrageur wll buy a zero coupon bond for tme t, and sell one for tme t 2, for an mmedate ncome of Z(,t 2 ) Z(,t ) >. At tme t they wll receve unt of currency from the bond they have bought, whch they could keep under ther bed for all we care untl tme t 2, when they delver n the bond they have sold. What we have sad so far assumes that such bonds do trade, wth suffcent lqudty, and as a contnuum.e. a zero coupon bond exsts for every redempton date t. In fact, such bonds rarely trade n the market. Rather what we need to do s mpute such a contnuum va a process known as bootstrappng. It s more common for the market practtoner to thnk and work n terms of contnuously compounded rates. The tme contnuously compounded rsk free rate for maturty t, denoted r(t), s gven by the relatonshp C(, t) = exp(r(t)t) () Z(, t) = exp( r(t)t) (2) r(t) = ln Z(, t) (3) t In so-called normal markets, yeld curves are upwardly slopng, wth longer term nterest rates beng hgher than short term. A yeld curve whch s downward slopng s called nverted. A yeld curve wth one or more turnng ponts s called mxed. It s often stated that such mxed yeld curves are sgns of market llqudty or nstablty. Ths s not the case. Supply and demand for the nstruments that are used to bootstrap the curve may smply mply such shapes. One can, n a stable market wth reasonable lqudty, observe a consstent mxed shape over long perods of tme. 7 WILMOTT magazne

2 TECHNICAL ARTICLE 2 Z(, t 2 ) f (t) = d ln(z(t)) (7) dt = d r(t)t (8) dt Z(, t ) t t 2 So f (t) = r(t) + r (t)t, so the forward rates wll le above the yeld curve when the yeld curve s normal, and below the yeld curve when t s nverted. By ntegratng, Fgure : The arbtrage argument that shows that Z(, t) must be decreasng. The shape of the graph for Z(, t) does not reflect the shape of the yeld curve n any obvous way. As already mentoned, the dscount factor curve must be monotoncally decreasng whether the yeld curve s normal, mxed or nverted. Nevertheless, many bootstrappng and nterpolaton algorthms for constructng yeld curves mss ths absolutely fundamental pont. Interestngly, there wll be at least one class of yeld curve where the above argument for a decreasng Z functon does not hold true a real (nflaton lnked) curve. Because the actual sze of the cash payments that wll occur are unknown (as they are determned by the evoluton of a prce ndex, whch s unknown) the arbtrage argument presented above does not hold. Thus, for a real curve the Z functon s not necessarly decreasng (and emprcally ths phenomenon does on occason occur).. Forward rates If we can borrow at a known rate at tme to date t, and we can borrow from t to t 2 at a rate known and fxed at, then effectvely we can borrow at a known rate at untl t 2. Clearly Z(, t )Z(; t, t 2 ) = Z(, t 2 ) (4) s the no arbtrage equaton: Z(; t, t 2 ) s the forward dscount factor for the perod from t to t 2 t has to be ths value at tme wth the nformaton avalable at that tme, to ensure no arbtrage. The forward rate governng the perod from t to t 2, denoted f (; t, t 2 ) satsfes exp( f (; t, t 2 )(t 2 t )) = Z(; t, t 2 ) Immedately, we see that forward rates are postve (and ths s equvalent to the dscount functon decreasng). We have ether of f (; t, t 2 ) = ln(z(, t 2)) ln(z(, t )) t 2 t (5) = r 2t 2 r t t 2 t (6) Let the nstantaneous forward rate for a tenor of t be denoted f(t), that s, f (t) = lm f (; t, t + ), for whchever t ths lmt exsts. Clearly then Also r(t)t = t Z(t) = exp r t r t t t = f (s)ds (9) ( t t t ) f (s)ds t t () f (s)ds () whch shows that the average of the nstantaneous forward rate over any of our ntervals [t, t ] s equal to the dscrete forward rate for that nterval. Fnally, t r(t)t = r t + f (s)ds, t [t, t ] (2) t whch s a crucal nterpolaton formula: gven the forward functon we easly fnd the rsk free functon. 2 Interpolaton And Bootstrap Of Yeld Curves Not Two Separate Processes As has been mentoned, many nterpolaton methods for curve constructon are avalable. What needs to be stressed s that n the case of bootstrappng yeld curves, the nterpolaton method s ntmately connected to the bootstrap, as the bootstrap proceeds wth ncomplete nformaton. Ths nformaton s completed (n a non unque way) usng the nterpolaton scheme. In Hagan and West [26] we llustrated ths pont usng swap curves; here we wll make the same ponts focusng on a bond curve. Suppose we have a reasonably small set of bonds that we want to use to bootstrap the yeld curve. (To decde whch bonds to nclude can be a non-trval exercse. Excludng too many runs the rsk of dsposng of market nformaton whch s actually meanngful, on the other hand, ncludng too many could result n a yeld curve whch s mplausble, wth a multtude of turnng ponts, or even a bootstrap algorthm whch fals to converge.) Recall that we nsst that whatever nstruments are ncluded wll be prced perfectly by the curve. Typcally some rates at the short end of the curve wll be known. For example, some zero-coupon bonds mght trade whch gve us exact rates. In some markets, where there s nsuffcent lqudty at the short end, some nter-bank money market rates wll be used. Each bond and the curve must satsfy the followng relatonshp: ^ WILMOTT magazne 7

3 where [A] = n p Z(; t settle, t ) = A s the all-n (drty) prce of the bond; t settle s the date on whch the cash s actually delvered for a purchased bond; p, p,...,p n are the cash flows assocated wth a unt bond (typcally p = e c, p 2 = c for < n and p 2 n = + c where c s the annual 2 coupon and e s the cum-ex swtch); t, t,...,t n are the dates on whch those cash flows occur. On the left s the prce of the bond tradng n the market. On the rght s the prce of the bond as strpped from the yeld curve. We rewrte ths n the computatonally more convenent form n [A ] Z(, t settle ) = p Z(, t ) (3) Suppose for the moment that the rsk free rates (and hence the dscount factors) have been determned at t, t,...,t n. Then we solve Z(, t n ) easly as ] Z(, t n ) = n [[A ] Z(, t settle ) p Z(, t ) p n whch s wrtten n the form of rsk-free rates rather than dscount factors as [ ]] r n = [ln n p n ln [A ] e rsettle tsettle p e rt (4) t n where the t s are now denomnated n years and the relevant day-count conventon s beng adhered to. Of course, n general, we do not know the earler rates, nether exactly (because t s unlkely that any money market nstruments expre exactly at t ) nor even after some nterpolaton (the rates for the smallest few t mght be avalable after nterpolaton, but the later ones not at all). However, as n the case of swap curves, (4) suggests an teratve soluton algorthm: we guess r n, ndeed other expry-date rates for other bonds, and take the rates already known from e.g. the money market, and nsert these rates nto our nterpolaton algorthm. We then determne r settle and r, r,...,r n. Next, we nsert these rates nto the rght-hand sde of (4) and solve for r n. We then take ths new guess for ths bond, and for all the other bonds, and agan apply the nterpolaton algorthm. We terate ths process. Even for farly wld curves (such as can often be the case n South Afrca) ths teraton wll reach a fxed pont wth accuracy of about 8 decmal places n 4 or 5 teratons. Ths then s our yeld curve. 3 How To Compare Yeld Curve Interpolaton Methodologes In general, the nterpolaton problem s as follows: we have some data x as a functon of tme, so we have τ,τ 2,...,τ n and x, x 2,...,x n known. An nterpolaton method s one that constructs a contnuous functon x(t) satsfyng x(τ ) = x for =, 2,...,n. In our settng, the x values = = = mght be rsk free rates, forward rates, or some transformaton of these the log of rates, etc. Of course, many choces of nterpolaton functon are possble accordng to the nature of the problem, one mposes requrements addtonal to contnuty, such as dfferentablty, twce dfferentablty, condtons at the boundary, and so on. The Lagrange polynomal s a polynomal of degree n whch passes through all the ponts, and of course ths functon s smooth. However, t s well known that ths functon s nadequate as an nterpolator, as t demonstrates remarkable oscllatory behavour. The typcal approach s to requre that n each nterval the functon s descrbed by some low dmensonal polynomal, so the requrements of contnuty and dfferentablty reduce to lnear equatons n the coeffcents, whch are solved usng standard lnear algebrac technques. The smplest example are where the polynomals are lnear, and these methods are surveyed n 4. However, these functons clearly wll not be dfferentable. Next, we try quadratcs however here we have a remarkable zg-zag nstablty whch we wll dscuss. So we move on to cubcs or even quartcs they overcome these already-mentoned dffcultes, and we wll see these n 5. All of the nterpolaton methods consdered n Hagan and West [26] appear n the rows of Table. We wll restrct attenton to the case where the number of nputs s reasonably small and so the bootstrappng algorthm s able to prce the nstruments exactly, and we restrct attenton to those methods where the nstruments are ndeed always prced exactly. The crtera to use n judgng a curve constructon and ts nterpolaton method that we wll consder are: (a) In the case of yeld curves, how good do the forward rates look? These are usually taken to be the m or 3m forward rates, but these are vrtually the same as the nstantaneous rates. We wll want to have postvty and contnuty of the forwards. It s requred that forwards be postve to avod arbtrage, whle contnuty s requred as the prcng of nterest senstve nstruments s senstve to the stablty of forward rates. As ponted out n McCulloch and Kochn [2], a dscontnuous forward curve mples ether mplausble expectatons about future short-term nterest rates, or mplausble expectatons about holdng perod returns. Thus, such an nterpolaton method should probably be avoded, especally when prcng dervatves whose value s dependent upon such forward values. Smoothness of the forward s desrable, but ths should not be acheved at the expense of the other crtera mentoned here. (b) How local s the nterpolaton method? If an nput s changed, does the nterpolaton functon only change nearby, wth no or mnor spll-over elsewhere, or can the changes elsewhere be materal? (c) Are the forwards not only contnuous, but also stable? We can quantfy the degree of stablty by lookng for the maxmum bass pont change n the forward curve gven some bass pont change (up or down) n one of the nputs. Many of the smpler methods can have ths quantty determned exactly, for others we can only derve estmates. (d) How local are hedges? Suppose we deal an nterest rate dervatve of a partcular tenor. We assgn a set of admssble hedgng nstruments, for example, n the case of a swap curve, we mght (even should) 72 WILMOTT magazne

4 TECHNICAL ARTICLE 2 decree that the admssble hedgng nstruments are exactly those nstruments that were used to bootstrap the yeld curve. Does most of the delta rsk get assgned to the hedgng nstruments that have maturtes close to the gven tenors, or does a materal amount leak nto other regons of the curve? We wll now survey a handful of these methods, and hghlght the ssues that arse. 4 Lnear Methods 4. Lnear on rates For t < t < t the nterpolaton formula s Usng (8) we get r(t) = t t r + t t r (5) t t t t f (t) = 2t t t t r + t 2t t t r (6) Of course f s undefned at the t, as the functon r(t)t s clearly not dfferentable there. Moreover, n the actual rate nterpolaton formula, by the tme t reaches t, the mport of r t has been reduced to zero that rate has been forgotten. But we clearly see that ths s not the case for the forward, so the left and rght lmts f (t + ) and f (t ) are dfferent the forward jumps. Furthermore, the choce of nterpolaton does not prevent negatve forward rates: suppose we have the (t, r) ponts (y, 8%) and (2y, 5%). Of course, ths s a rather contrved economy: the one year nterest rate s 8% and the one year forward rate n one year s tme s 2%. Nevertheless, t s an arbtrage free economy. But usng lnear nterpolaton the nstantaneous forwards are negatve from about.84 years onwards. 4.2 Lnear on the log of rates Now for t t t the nterpolaton formula s whch as a rate formula s ln(r(t)) = t t ln(r ) + t t ln(r ) t t t t r(t) = r t t t t t t t r t (7) A smple objecton to the above formula s that t does not allow negatve nterest rates. Also, the same argument as before shows that the forward jumps at each node, and smlar expermentaton wll provde an example of a Z functon whch s not decreasng. 4.3 Lnear on dscount factors Now for t t t the nterpolaton formula s whch as a rate formula s r(t) = t Z(t) = t t Z + t t Z t t t t ln [ t t e rt + t ] t r r t t t t t Agan, the forward jumps at each node, and the Z functon may not be decreasng. 4.4 Raw nterpolaton (lnear on the log of dscount factors) Ths method corresponds to pecewse constant forward curves. Ths method s very stable, s trval to mplement, and s usually the startng pont for developng models of the yeld curve. One can often fnd mstakes n fancer methods by comparng the raw method wth the more sophstcated method. By defnton, raw nterpolaton s the method whch has constant nstantaneous forward rates on every nterval t < t < t. From () we see that that constant must be the dscrete forward rate for the nterval, so rt r t f (t) = for t < t < t. Then from (2) we have that t t r(t)t = r t + (t t ) r t r t t t By wrtng the above expresson wth a common denomnator of t t, and smplfyng, we get that the nterpolaton formula on that nterval s (8) r(t)t = t t r t + t t r t (9) t t t t whch explans yet another choce of name for ths method: lnear rt ; the method s lnear nterpolaton on the ponts r t. Snce ± r t s the logarthm of the captalsaton/dscount factors, we see that callng ths method lnear on the log of captalsaton factors or lnear on the log of dscount factors s also merted. Ths raw method s very attractve because wth no effort whatsoever we have guaranteed that all nstantaneous forwards are postve, because every nstantaneous forward s equal to the dscrete forward for the parent nterval. As we have seen, ths s an achevement not to be sneezed at. It s only at the ponts t, t 2,...,t n that the nstantaneous forward s undefned, moreover, the functon jumps at that pont. 4.5 Pecewse lnear forward Havng decded that the raw method s qute attractve, what happens f we try to remedy ts only defect n the most obvous way? What we wll do s that nstead of the forwards beng pecewse constant we wll demand that they be a pecewse contnuous lnear functon. What could be more natural than to smply ask to gently rotate the raw nterpolants so that they are now not only pecewse lnear, but contnuous as well? Unfortunately, ths very plausble requrement gves rse to at least two types of very unpleasant behavour ndeed. Ths s easly understood by means of an example. ^ WILMOTT magazne 73

5 Curve, frst scenaro. Curve, second scenaro Fgure 2: The pecewse lnear forward method. Forward, frst scenaro. Forward, second scenaro Quadratc splnes To complete a quadratc splne of a functon x, we desre coeffcents (a, b, c ) for n. Gven these coeffcents, the functon value at any term τ wll be x(τ ) = a + b (τ τ ) + c (τ τ ) 2 τ τ τ + (2) The constrants wll be that the nterpolatng functon ndeed meets the gven data (and hence s contnuous) and the entre functon s dfferentable. There are thus 3n 4 constrants: n left hand functon values to be satsfed, n rght hand functon values to be satsfed, and n 2 nternal knots where dfferentablty needs to be satsfed. However, there are 3n 3 unknowns. Wth one degree of freedom remanng, t makes sense to requre that the left-hand dervatve at τ n be zero, so that the curve can be extrapolated wth a horzontal asymptote. Suppose we apply ths method to the rates (so x = r ). The forward curves that are produced are very smlar to the pecewse lnear forward curves the curve can have a zg-zag appearance, and ths zg-zag s subject to the same party of nput consderatons as before. So, next we try a cubc splne. 5.2 Cubc splnes Frstly, suppose we have a curve wth nput zero coupon rates at every year node, wth a value of r(t) = 5% for t =, 2,...,5 and r(t) = 6% for t = 6, 7,...,. We must have f (t) = r() for t. In order to assure contnuty, we see then we must have f (t) = r() for every 5. Now, the dscrete forward rate for [5, 6] s %. In order for the average of the pecewse lnear functon f on the nterval [5, 6] to be % we must have that f (6) = 7%. And now n turn, the dscrete forward rate for [6, 7] s 6% and so n order for the average of the pecewse lnear functon f on the nterval [6, 7] to be 6% we must have that f (7) = 5%. Ths zg-zag feature contnues recursvely; see Fgure 2. Note also the mplausble shape of the actual yeld curve tself. Secondly, suppose now we nclude a new node, namely that r(6.5) = 6%. It s farly ntutve that ths mparts lttle new nformaton 2. Nevertheless, the bootstrapped curve changes dramatcally. The party of the zg-zag s reversed. So we see that the localness of the method s exceptonally poor. 5 Splnes The varous lnear methods are the smplest examples of polynomal splnes: a polynomal splne s a functon whch s pecewse n each nterval a polynomal, wth the coeffcents arranged to ensure at least that the splne concdes wth the nput data (and so s contnuous). In the lnear case that s all that one can do the lnear coeffcents are now determned. If the polynomals are of hgher degree, we can use up the degrees of freedom by demandng other propertes, such as dfferentablty, twce dfferentablty, asymptotes at ether end, etc. The frst thng we try s a quadratc splne. Ths tme we desre coeffcents (a, b, c, d ) for n. Gven these coeffcents, the functon value at any term τ wll be x(τ ) = a + b (τ τ ) + c (τ τ ) 2 + d (τ τ ) 3 τ τ τ + (2) As before we have 3n 4 constrants, but ths tme there are 4n 4 unknown coeffcents. There are several possble ways to proceed to fnd another n constrants. Here are the ones that we have seen: x = r. The functon s requred to be twce dfferentable, whch for the same reason as prevously adds another n 2 constrants. For the fnal two constrants, the functon s requred to be lnear at the extremes.e. the second dervatve of the nterpolator at τ and at τ n are zero. Ths s the so-called natural cubc splne. x = r. The functon s agan requred to be twce dfferentable; for the fnal two constrants we have that the functon s lnear on the left and horzontal on the rght. Ths s the so-called fnancal cubc splne Adams [2]. x = r τ. The functon s agan requred to be twce dfferentable; for the fnal two constrants we have that ths functon s lnear on the rght and quadratc on the left. Ths s the quadratc-natural splne proposed n McCulloch and Kochn [2]. x = r. The values of b for < < n are chosen to be the slope at τ of the quadratc that passes through (τ j, r j ) for j =,, +. The value of b s chosen to be the slope at τ of the quadratc that passes through (τ j, r j ) for j =, 2, 3; the value of b n s chosen lkewse. Ths s the Bessel method [de Boor, 978, 2, Chapter IV], although often somewhat rregularly called the Hermte method by software vendors. 74 WILMOTT magazne

6 TECHNICAL ARTICLE 2 x = r τ. Agan, Bessel nterpolaton. Gong one step further, quartc splnes. Accordng to Adams [2] the quartc splne gves the smoothest nterpolator of the forward curve. The splne can proceed on nstantaneous forward rates, ths tme there are 5n 5 unknowns and 3 addtonal condtons at τ or τ n requred. Although one must ask: when does one actually have a set of nstantaneous forwards as nputs for nterpolaton? Alternatvely f we apply (9) then the nputs are rsk free rates, and the splne s of the form r(τ ) = a + b τ + c τ + d τ 2 + e τ 3 + g τ 4, wth 6n 6 unknowns and 4 addtonal condtons requred. x = r. The monotone preservng cubc splne of Hyman [983]. The method specfes the values of b for n, n a way to be dscussed n more detal shortly. Sgnfcant problems can become apparent when usng some of these methods. The splne s supposed to allevate the problem of oscllaton seen when fttng a sngle polynomal to a data set (the Lagrange polynomal), nevertheless, sgnfcant oscllatory behavour can stll be present. Furthermore, the varous types of clampng we see wth some of the methods above (clampng refers to mposng condtons at the boundares τ or τ n ) can compromse localness of the nterpolator, sometmes grossly. In fact, the teratve procedure from 2 often fals to converge for the quartc nterpolaton methods, and we exclude them from further analyss. The method of Hyman s a method whch attempts to address these problems. Ths method s qute dfferent to the others; t s a local method the nterpolatory values are only determned by local behavour, not global behavour. Ths method ensures that n regons of monotoncty of the nputs (so, three successve ncreasng or decreasng values) the nterpolatng functon preserves ths property; smlarly f the data has a mnmum/maxmum then the output nterpolator wll have a mnmum/maxmum at the node. frst thng we do s calculate f d rτ r τ = for n, r τ τ =. (Here we also check that these are all postve, and so conclude that the curve s legal.e. arbtrage free (except n those few cases where forward rates may be negatve). As an nterpolaton algorthm the monotone convex method wll now bootstrap a forward curve, and then f requred recover the contnuum of rsk free rates usng (2). One rather smple observaton s that all of the splne methods we saw n 5 fal n forward extrapolaton beyond the nterval [τ,τ n ]. Clearly f the nterpolaton s on rates then we wll apply horzonal extrapolaton to the rate outsde of that nterval: r(τ ) = r for τ <τ and r(τ ) = r n for τ>τ n. So far so good. What happens to the forward rates? Perhaps surprsngly we cannot apply the same extrapolaton rule to the forwards, n fact, we need to set f (τ ) = r for τ <τ and f (τ ) = r n for τ >τ n consder (8). Ths makes t almost certan that the forward curve has a materal dscontnuty at τ, and probably one at τ n too (the latter wll be less severe as the curve, ether by desgn or by nature, probably has a horzontal asymptote as τ τ n ). In order to avod ths pathology, we now have terms = τ,τ,...,τ n and the generc nterval for consderaton s [τ,τ ]. A short rate (nstantaneous) rate may be provded, f not, the algorthm wll model one. Usually the shortest rate that mght be nput wll be an overnght rate, f t s provded, the algorthm here smply has some overkll there wll be an overnght rate and an nstantaneous short rate but t need not be modfed. f d s the dscrete rate whch belongs to the entre nterval [τ,τ ]; t would be a mstake to model that rate as beng the nstantaneous rate at τ. Rather, we begn by assgnng t to the mdpont of the nterval, and then modellng the nstantaneous rate at τ. as beng on the straght lne that jons the adjacent mdponts. Let ths rate f (τ ) be denoted f. Ths explans (22). In (23) and (24) the values f = f () and f n = f (τ n ) are selected so that f () = = f (τ n ). Thus 6 Monotone Convex Many of the deas of the method of Hyman wll now have a natural development the monotone convex method was developed to resolve the only remanng defcency of Hyman [983]. Very smply, none of the methods mentoned so far are aware that they are tryng to solve a fnancal problem ndeed, the breedng ground for these methods s typcally engneerng or physcs. As such, there s no mechansm whch ensures that the forward rates generated by the method are postve, and some smple expermentaton wll uncover a set of nputs to a yeld curve whch gve some negatve forward rates under all of the methods mentoned here, as seen n Hagan and West [26]. Thus, n ntroducng the monotone convex method, we use the deas of Hyman [983], but explctly ensure that the contnuous forward rates are postve (whenever the dscrete forward rates are themselves postve). The pont of vew taken n the monotone convex method s that the nputs are (or can be manpulated to be) dscrete forwards belongng to ntervals; the nterpolaton s not performed on the nterest rate curve tself. We may have actual dscrete forwards FRA rates. On the other hand f we have nterest rates r, r 2,...,r n for perods τ,τ 2,...,τ n then the f = τ τ τ + τ f d + + τ + τ τ + τ f d, for =, 2,...,n (22) f = f d 2 (f f d ) (23) f n = f d n 2 (f n f d n ) (24) Note that f the dscrete forward rates are postve then so are the f for =, 2,...,n. We now seek an nterpolatory functon f defned on [,τ n ] for f, f,...,f n that satsfes the condtons below (n some sense, they are arranged n decreasng order of necessty). τ () f (t)dt = f d τ τ τ, so the dscrete forward s recovered by the curve, as n (). () f s postve. () f s contnuous. (v) If f d < f d < f d + then f (τ ) s ncreasng on [τ,τ ], and f f d > f d > f d + then f (τ ) s decreasng on [τ,τ ]. Let us frst normalse thngs, so we seek a functon g defned on [, ] such that 3 ^ WILMOTT magazne 75

7 g() g() Fgure 3: The functon g. x = τ = τ x = τ = τ g(x) = f (τ + (τ τ )x) f d. (25) Before proceedng, let us gve a sketch of how we wll proceed. We wll choose g to be pecewse quadratc n such a way that () s satsfed by constructon. Of course, g s contnuous, so () s satsfed. As a quadratc, t s easy to perform an analyss of where the mnmum or maxmum occurs, and we thereby are able to apply some modfcatons to g to ensure that (v) s satsfed, whle ensurng () and () are stll satsfed. Also, we see a posteror that f the values of f had satsfed certan constrants, then () would have been satsfed. So, the algorthm wll be to construct (22), (23) and (24), then modfy the f to satsfy those constrants, then construct the quadratcs, and then modfy those quadratcs. Fnally, ( ) τ τ f (τ ) = g + f d. (26) τ τ Thus, the current choces of f are provsonal; we mght make some adjustments n order to guarantee the postvty of the nterpolatng functon f. Here follow the detals. We have only three peces of nformaton about g: g() = f f d, g() = f f d, and g(x)dx =. We postulate a functonal form g(x) = K + Lx + Mx 2, havng 3 equatons n 3 unknowns we get K g() L = g(), and easly solve to fnd that M 2 3 g(x) = g()[ 4x + 3x 2 ] + g()[ 2x + 3x 2 ] (27) Note that by (22) that (v) s equvalent to requrng that f f < f d < f then f (τ ) s ncreasng on [τ,τ ], whle f f > f d > f then f (τ ) s decreasng on [τ,τ ]. Ths s equvalent to requrng that f g() and g() are of opposte sgn then g s monotone. Now g (x) = g()( 4 + 6x) + g()( 2 + 6x) g () = 4g() 2g() g () = 2g() + 4g() g beng a quadratc t s now easy to determne, smply by nspectng g () and g (), the behavour of g on [, ]. The cases where g () = and g () = are crucal; these correspond to g() = 2g() and g() = 2g() respectvely. These two lnes dvde the g()/g() plane nto eght sectors. We seek to modfy the defnton of g on each sector, takng care that on the boundary of any two sectors, the formulae from those g() () () (v) () C () (v) () A g() = 2g() two sectors actually concde (to preserve contnuty). In actual fact the treatment for every dametrcally opposte par of sectors s the same, so we really have four cases to consder, as follows (refer Fgure 4): () In these sectors g() and g() are of opposte sgns and g () and g () are of the same sgn, so g s monotone, and does not need to be modfed. () In these sectors g() and g() are also of opposte sgn, but g () and g () are of opposte sgn, so g s currently not monotone, but needs to be adjusted to be so. Furthermore, the formula for () and for () need to agree on the boundary A to ensure contnuty. () The stuaton here s the same as n the prevous case. Now the formula for () and for () need to agree on the boundary B to ensure contnuty. (v) In these sectors g() and g() are of the same sgn so at frst t appears that g does not need to be modfed. Unfortunately ths s not the case: modfcaton wll be needed to ensure that the formula for () and (v) agree on C and () and (v) agree on D. The orgn s a specal case: f g () = = g () then g(x) = for all x, and f d = f d = f d d +, and we put f (τ ) = f for τ [τ,τ ]. So we proceed as follows: () As already mentoned g does not need to be modfed. Note that on A we have g(x) = g()( 3x 2 ) and on B we have g(x) = g() ( 3x x2 ). () A smple soluton s to nsert a flat segment, whch changes to a quadratc at exactly the rght moment to ensure that g(x)dx =. So we take { g() for x η g(x) = ( ) 2 g() + (g() g()) x η (28) for η<x η g() η = + 3 g() g() = g() + 2g() g() g() g() = 2g() g() (29) Note that η as g() 2g(), so the nterpolaton formula reduces to g(x) = g()( 3x 2 ) at A, as requred. () Fgure 4: The reformulated possbltes for g. B D 76 WILMOTT magazne

8 TECHNICAL ARTICLE 2 () Here agan we nsert a flat segment. So we take { ( ) 2 g() + (g() g()) η x for < x <η g(x) = η g() for η x < g() η = 3 g() g() Note that η as g() g(), so the nterpolaton formula 2 reduces to g(x) = g()( 3x x2 ) at B, as requred. (v) We want a formula that reduces n form to that defned n () as we approach C, and to that defned n () as we approach D. Ths suggests ( ) 2 A + (g() A) η x for < x <η η g(x) = ( ) 2 (32) A + (g() A) x η for η<x < η (3) (3) where A = when g() = - so the frst lne satsfes ()) and A = when g() = (so the second lne satsfes (). Straghtforward calculus gves and so g(x)dx = 2 3 A + η 3 g() + η 3 g() () Determne the f d from the nput data. (2) Defne f for =,,..., n as n (22), (23) and (24). (3) If f s requred to be everywhere postve, then collar f between and 2f d, for =, 2,...,n collar f between and 2mn(f d, f d + ), and collar f n between and 2fn d. If f s not requred to be everywhere postve, smply omt ths step. (4) Construct g wth regard to whch of the four sectors we are n. (5) Defne f as n (26). (6) If requred recover r as n (2). Integraton formulae are easly establshed as the functons forms of g are straghtforward. Pseudo-code for ths recpe s provded n an Appendx. Workng code for ths nterpolaton scheme s avalable from the second author s webste. 6.2 Ameloraton In Hagan and West [26] an enhancement of ths method s consdered where the curve s amelorated (smoothed). Ths s acheved by makng the nterpolaton method slghtly less local.e. by usng as nputs not only neghbourng nformaton but also nformaton whch s two nodes away. 7 Hedgng We can now ask the queston: how do we use the nstruments whch have been used n our bootstrap to hedge other nstruments? In general A = [ηg() + ( η)g()] 2 A smple choce satsfyng the varous requrements s η = 6. Ensurng postvty g() g() + g() A = g()g() g() + g() Suppose we wsh to guarantee that the nterpolatory functon f s everywhere postve. Clearly from the formula (26) t suffces to ensure that g(x) > f d for x [, ]. Now g() = f f d > f d and g() = f f d > f d snce f, f are postve. Thus the nequalty s satsfed at the endponts of the nterval. Now, n regons (), () and (), g s monotone, so those regons are fne. In regon (v) g s not monotone. g s postve at the endponts and has a mnmum of A (as n (34)) at the x-value η (as n (33)). So, t now suffces to prove that g()g() < f d g()+g(). Ths s the case f f, f < 3f d. To see ths, note that then < g(), g() <2f d and the result follows, snce f < y, z < 2a then y+z = + > + = yz and so > a. yz z y 2a 2a a y+z We choose the slghtly strcter condton f, f < 2f d. Thus, our algorthm s (33) (34) Fgure 5: The g functon as we cross the boundares. From left to rght: boundares A, B, C and D. From top to bottom: approachng the boundary, at the boundary (central), leavng the boundary. Only at the boundary of Cand D are there dscontnutes. ^ WILMOTT magazne 77

9 Hedgng under waves m 3x6 6x9 9x2 2x5 5x8 2y 3y 4y 5y 6y 7y 8y 9y y 5y 2y 25y 3y Hedgng under forward trangles. 2 3m 3x6 6x9 9x2 2x5 5x8 2y 3y 4y 5y 6y 7y 8y 9y y 5y 2y 25y 3y.8 Hedgng under forward boxes m 3x6 6x9 9x2 2x5 5x8 2y 3y 4y 5y 6y 7y 8y 9y y 5y 2y 25y 3y Fgure 6: The obvous superorty of usng forward boxes to determne hedge portfolos: not only s the hedge portfolo smple and ntutve, but the portfolo composton s practcally nvarant under the nterpolaton method. the trader wll have a portfolo of other, more complcated nstruments, and wll want to hedge them aganst yeld curve moves by usng lqudly traded nstruments (whch, n general, should exactly be those nstruments whch were used to bootstrap the orgnal curve). For smplcty, we wll assume that these nstruments are ndeed avalable for hedgng, and the rsky nstrument to be hedged s nothng more complcated that another vanlla swap: for example, one wth term whch s not one of the bootstrap terms, s a forward startng swap, or s a stubbed swap. Suppose ntally that, wth n nstruments beng used n our bootstrap, there are exactly n yeld curve movements that we wsh to hedge aganst. It s easy to see that we can construct a perfect hedge. Frst one calculates the square matrx P where P j s the change n prce of the j th bootstrappng nstrument under the th curve. Next we calculate the change n value of our rsk nstrument under the th curve to form a column vector V. The quantty of the th bootstrappng nstrument requred for the perfect replcaton s the quantty Q where Q s the soluton to the matrx equaton PQ = V. Assumng for the moment that P s nvertble, we fnd the soluton. Of course, n realty, the set of possble yeld curve movements s far, far greater. What one wants to do then s fnd a set of n yeld curve changes whose moves are somehow representatve. Some methods have been suggested as follows: Perturbng the curve: creaton of bumps. In bumpng, we form new curves ndexed by : to create the th curve one bumps up the th nput rate by say bass pont, and bootstraps the curve agan. Perturbng the forward curve wth trangles. One approach s to agan form new curves, agan ndexed by : the th curve has the orgnal forward curve ncremented by a trangle, wth left hand endpont at t, fxed heght say one bass pont and apex at t, and rght hand endpont at t +. (The frst and last trangle wll n fact be rght angled, wth ther apex at the frst and last tme ponts respectvely.) Perturbng the forward curve wth boxes. In boxes: the th curve has the orgnal forward curve ncremented by a rectangle, wth left hand endpont at t and rght hand endpont at t, and fxed heght say one bass pont. Such a perturbaton curve corresponds exactly wth what we get from bumpng, f one of the nputs s a t t FRA rate, we bump ths rate, and we use the raw nterpolaton method. More generally the user mght want to defne generc key terms e.g. w, m, 3m, 6m, y, 2y, etc. and defne trangles or boxes relatve to these 78 WILMOTT magazne

10 TECHNICAL ARTICLE 2 Table : A synopss of the comparson between methods. Yeld curve type Forwards postve? Forward smoothness Method local? Forwards stable? Bump hedges local? Lnear on dscount no not contnuous excellent excellent very good Lnear on rates no not contnuous excellent excellent very good Raw (lnear on log of dscount) yes not contnuous excellent excellent very good Lnear on the log of rates no not contnuous excellent excellent very good Pecewse lnear forward no contnuous poor very poor very poor Quadratc no contnuous poor very poor very poor Natural cubc no smooth poor good poor Hermte/Bessel no smooth very good good poor Fnancal no smooth poor good poor Quadratc natural no smooth poor good poor Hermte/Bessel on rt functon no smooth very good good poor Monotone pecewse cubc no contnuous very good good good Quartc no smooth poor very poor very poor Monotone convex (unamelorated) yes contnuous very good good good Monotone convex (amelorated) yes contnuous good good good Mnmal no contnuous poor good very poor terms - the nputs to the bootstrap do not necessarly correspond to these nodes. In ether case we have (an automated or user defned) set of dates t, t 2,...,t n whch wll be the bass for our waves, where the trangles are defned as above. Some obvous deas whch are just as obvously rejected are to form correspondng perturbatons to the yeld curve tself - such curves wll not be arbtrage free (the derved Z functon wll not be decreasng). As an example, consder a 5m swap, where (for smplcty, and ndeed, n some markets, such as the second author s domestc market) both fxed and floatng payments n swaps occur every 3 months. Thus our swap les between the 4 and 5 year swap, whch let us assume are nputs to the curve. The type of results we get are n Fgure 6. The very plausble and popular bump method performs adequately for many methods, but some methods - for example, the mnmal method - can be rejected out of hand f bumpng s to be used. Furthermore, for all of the cubc splnng methods, there s hedge leakage of varyng degrees. Perturbng wth trangles can be rejected out of hand as a method - ndeed, the pathology that occurs here s akn to the pathology that arses when one uses the pecewse forward lnear method of bootstrap: addng or removng an nput to the bootstrap wll reverse the sgn of the hedge quanttes before the nput n queston. Anyway, to have these magntudes n the hedge portfolo s smply absurd. Perturbng wth boxes s the method of choce, but unfortunately does not enable us to dstngush between the qualty of the dfferent nterpolaton methods. 8 Concluson The comparson of the methods we analyse n Hagan and West [26] appears n Table. It s our opnon that the new method derved n Hagan and West [26], namely monotone convex (n partcular, the unamelorated verson) should be the method of choce for nterpolaton. To the best of our knowledge ths s the only publshed method where smultaneously () all nput nstruments to the bootstrap are exactly reproduced as outputs of the bootstrap, (2) the nstantaneous forward curve s guaranteed to be postve f the nputs allow t (n partcular, the curve s arbtrage free), and (3) the nstantaneous forward curve s typcally contnuous. In addton, as bonuses (4) the method s local.e. changes n nputs at a certan locaton do not affect n any way the value of the curve at other locatons. (5) the forwards are stable.e. as nputs change, the nstantaneous forwards change more or less proportonately. (6) hedges constructed by perturbatons of ths curve are reasonable and stable. In Hagan and West [26] we have revewed many nterpolaton methods avalable and have ntroduced a couple of new methods. In the fnal analyss, the choce of whch method to use wll always be subjectve, and needs to be decded on a case by case bass. But we hope to have provded some warnng flags about many of the methods, and have outlned several qualtatve and quanttatve crtera for makng the selecton on whch method to use. ^ WILMOTT magazne 79

11 FOOTNOTES & REFERENCES. We have r(s)s + C = f (s)ds, so r(t)t = [r(s)s] t = t f (s)ds. 2. It would be wrong to say that there s no new nformaton; that would be the case under lnear nterpolaton of rates, but not necessarly here. 3. Strctly speakng, we are defnng functons g, each correspondng to the nterval [τ,τ ]. As the g are constructed one at a tme, we suppress the subscrpt. [] Ken Adams. Smooth nterpolaton of zero curves. Algo Research Quarterly, 4(/2): 22, 2. [2] Carl de Boor. A Practcal Gude to Splnes: Revsed Edton, volume 27 of Appled Mathematcal Scences. Sprnger-Verlag New York Inc., 978, 2. Pseudo Code For Monotone Convex Interpolaton Frst the estmates for f, f,...,f n. Ths mplementaton assumes that t s requred that the output curve s everywhere postve. Varous arrays [3] Patrck S. Hagan and Graeme West. Interpolaton methods for curve constructon. Appled Mathematcal Fnance, 3 (2):89 29, 26. [4] James M. Hyman. Accurate monotoncty preservng cubc nterpolaton. SIAM Journal on Scentfc and Statstcal Computng, 4(4): , 983. [5] J. Huston McCulloch and Levs A. Kochn. The nflaton premum mplct n the US real and nomnal term structures of nterest rates. Techncal Report 2, Oho State Unversty Economcs Department, 2. URL [6] Rcardo Rebonato. Interest-Rate Opton Models. John Wley and Sons Ltd, second edton, 998. have already been dmensoned, the raw data nputs have already been provded, and t has been specfed wth the boolean varable InputsareForwards where those nputs are rates r, r 2,...,r n or dscrete forwards f d, f 2 d,...,f n d. Further, a collar and mn utlty functons are used (not shown). Of course, collar(a, b, c) = max(a, mn(b, c)). Havng found the estmates for f, f,...,f n, we can fnd the value of f (τ ) for any τ. The key functon here s LastIndex, whch determnes the unque value of for whch τ [τ,τ + ). Extrapolaton s as n the thrd paragraph of 6. 8 WILMOTT magazne

12 TECHNICAL ARTICLE 2 Workng code for ths nterpolaton scheme, wth proper dmensonng of all arrays and code for all the mssng functons, s avalable from the second author s webste on the resources page. W WILMOTT magazne 8

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Hedging Interest-Rate Risk with Duration

Hedging Interest-Rate Risk with Duration FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

Interest Rate Fundamentals

Interest Rate Fundamentals Lecture Part II Interest Rate Fundamentals Topcs n Quanttatve Fnance: Inflaton Dervatves Instructor: Iraj Kan Fundamentals of Interest Rates In part II of ths lecture we wll consder fundamental concepts

More information

YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology.

YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology. YIELD CURVE FITTING 2.0 Constructng Bond and Money Market Yeld Curves usng Cubc B-Splne and Natural Cubc Splne Methodology Users Manual YIELD CURVE FITTING 2.0 Users Manual Authors: Zhuosh Lu, Moorad Choudhry

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

A Probabilistic Theory of Coherence

A Probabilistic Theory of Coherence A Probablstc Theory of Coherence BRANDEN FITELSON. The Coherence Measure C Let E be a set of n propostons E,..., E n. We seek a probablstc measure C(E) of the degree of coherence of E. Intutvely, we want

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

An Overview of Financial Mathematics

An Overview of Financial Mathematics An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

Interest Rate Forwards and Swaps

Interest Rate Forwards and Swaps Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (n-m) months, startng n m months: Example: Depostor wants to fx rate

More information

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

A Master Time Value of Money Formula. Floyd Vest

A Master Time Value of Money Formula. Floyd Vest A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.

More information

How To Calculate The Accountng Perod Of Nequalty

How To Calculate The Accountng Perod Of Nequalty Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

1. Math 210 Finite Mathematics

1. Math 210 Finite Mathematics 1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

Interest Rate Futures

Interest Rate Futures Interest Rate Futures Chapter 6 6.1 Day Count Conventons n the U.S. (Page 129) Treasury Bonds: Corporate Bonds: Money Market Instruments: Actual/Actual (n perod) 30/360 Actual/360 The day count conventon

More information

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143 1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative. Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When

More information

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000 Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

Traffic-light a stress test for life insurance provisions

Traffic-light a stress test for life insurance provisions MEMORANDUM Date 006-09-7 Authors Bengt von Bahr, Göran Ronge Traffc-lght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax

More information

8 Algorithm for Binary Searching in Trees

8 Algorithm for Binary Searching in Trees 8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

Implied (risk neutral) probabilities, betting odds and prediction markets

Implied (risk neutral) probabilities, betting odds and prediction markets Impled (rsk neutral) probabltes, bettng odds and predcton markets Fabrzo Caccafesta (Unversty of Rome "Tor Vergata") ABSTRACT - We show that the well known euvalence between the "fundamental theorem of

More information

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

More information

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly

More information

Small pots lump sum payment instruction

Small pots lump sum payment instruction For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

On the pricing of illiquid options with Black-Scholes formula

On the pricing of illiquid options with Black-Scholes formula 7 th InternatonalScentfcConferenceManagngandModellngofFnancalRsks Ostrava VŠB-TU Ostrava, Faculty of Economcs, Department of Fnance 8 th 9 th September2014 On the prcng of llqud optons wth Black-Scholes

More information

Hollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA )

Hollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA ) February 17, 2011 Andrew J. Hatnay ahatnay@kmlaw.ca Dear Sr/Madam: Re: Re: Hollnger Canadan Publshng Holdngs Co. ( HCPH ) proceedng under the Companes Credtors Arrangement Act ( CCAA ) Update on CCAA Proceedngs

More information

Portfolio Loss Distribution

Portfolio Loss Distribution Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment

More information

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy Fnancal Tme Seres Analyss Patrck McSharry patrck@mcsharry.net www.mcsharry.net Trnty Term 2014 Mathematcal Insttute Unversty of Oxford Course outlne 1. Data analyss, probablty, correlatons, vsualsaton

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

The Cox-Ross-Rubinstein Option Pricing Model

The Cox-Ross-Rubinstein Option Pricing Model Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage

More information

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

How To Understand The Results Of The German Meris Cloud And Water Vapour Product Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

Fixed income risk attribution

Fixed income risk attribution 5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group chthra.krshnamurth@rskmetrcs.com We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two

More information

17 Capital tax competition

17 Capital tax competition 17 Captal tax competton 17.1 Introducton Governments would lke to tax a varety of transactons that ncreasngly appear to be moble across jursdctonal boundares. Ths creates one obvous problem: tax base flght.

More information

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Conversion between the vector and raster data structures using Fuzzy Geographical Entities Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,

More information

Fast degree elevation and knot insertion for B-spline curves

Fast degree elevation and knot insertion for B-spline curves Computer Aded Geometrc Desgn 22 (2005) 183 197 www.elsever.com/locate/cagd Fast degree elevaton and knot nserton for B-splne curves Q-Xng Huang a,sh-mnhu a,, Ralph R. Martn b a Department of Computer Scence

More information

Project Networks With Mixed-Time Constraints

Project Networks With Mixed-Time Constraints Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa

More information

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn & Ln Wen Arzona State Unversty Introducton Electronc Brokerage n Foregn Exchange Start from a base of zero n 1992

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity Trade Adjustment Productvty n Large Crses Gta Gopnath Department of Economcs Harvard Unversty NBER Brent Neman Booth School of Busness Unversty of Chcago NBER Onlne Appendx May 2013 Appendx A: Dervaton

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

The Short-term and Long-term Market

The Short-term and Long-term Market A Presentaton on Market Effcences to Northfeld Informaton Servces Annual Conference he Short-term and Long-term Market Effcences en Post Offce Square Boston, MA 0209 www.acadan-asset.com Charles H. Wang,

More information

Cautiousness and Measuring An Investor s Tendency to Buy Options

Cautiousness and Measuring An Investor s Tendency to Buy Options Cautousness and Measurng An Investor s Tendency to Buy Optons James Huang October 18, 2005 Abstract As s well known, Arrow-Pratt measure of rsk averson explans a ratonal nvestor s behavor n stock markets

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

An Empirical Study of Search Engine Advertising Effectiveness

An Empirical Study of Search Engine Advertising Effectiveness An Emprcal Study of Search Engne Advertsng Effectveness Sanjog Msra, Smon School of Busness Unversty of Rochester Edeal Pnker, Smon School of Busness Unversty of Rochester Alan Rmm-Kaufman, Rmm-Kaufman

More information

Calculating the high frequency transmission line parameters of power cables

Calculating the high frequency transmission line parameters of power cables < ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

The impact of hard discount control mechanism on the discount volatility of UK closed-end funds

The impact of hard discount control mechanism on the discount volatility of UK closed-end funds Investment Management and Fnancal Innovatons, Volume 10, Issue 3, 2013 Ahmed F. Salhn (Egypt) The mpact of hard dscount control mechansm on the dscount volatlty of UK closed-end funds Abstract The mpact

More information

0.02t if 0 t 3 δ t = 0.045 if 3 < t

0.02t if 0 t 3 δ t = 0.045 if 3 < t 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve

More information

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model

More information

SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.

SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976-76-10-00

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

FINANCIAL MATHEMATICS

FINANCIAL MATHEMATICS 3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information