How Can Metaheuristics Help Software Engineers

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "How Can Metaheuristics Help Software Engineers"

Transcription

1 and Software How Can Help Software Engineers Enrique Alba Universidad de Málaga, ESPAÑA Enrique Alba How Can Help Software Engineers of 8

2 and Software What s a Metaheuristic? A metaheuristicis a structured computer algorithm composed of different operators that is used to iteratively solve complex problems METAHEURISTIC Heuristic: information or procedure used to guide the search of algorithms Meta: high level structure containing operators later tailored to problems Many scientific fieldsinvolved: computer science, and also mathematics, operations research, industrial engineering, physics, Enrique Alba How Can Help Software Engineers of 8

3 Need of Introduction and Software Scienceis a way of creating and accumulating knowledge by different means, especially by transferring knowledge between domains allow knowledge transference between domains Some metaheuristics have a Nature-inspiredorigin, while others are pure abstract artifacts Science has provided in the past exhaustive mechanismsfor search, optimization and learning in an exact manner (branch and X, dynamic programming, etc.) However, exact methods cannot deal with complex instances of real problems: high dimension, constrains, epistasis, uncertain data, Traditional methods put so many constrainsand simplificationsto the problem (in order to solve it) that the found solution is no longer valid Enrique Alba How Can Help Software Engineers 3 of 8

4 When are they Useful? Introduction and Software Objective of a global optimization problem: f ( x r ) max : find a vector x r * r r r such that x M : f ( x) f ( x*) : = f * search optimization evolution learning ill problem definition high/unknown parameter correlation mixed variables uncertain data high dimensionality Minimizing is also possible Vectors can map to other data structures computational demanding Enrique Alba How Can Help Software Engineers 4 of 8

5 and Software Metaheuristic versus the rest of Algorithms (I) How they work Exhaustive Heuristics What this means Others cannot MetaH CAN! Enrique Alba How Can Help Software Engineers 5 of 8

6 Metaheuristic versus the rest of Algorithms (II),E+ THE N-QUEEN OPTIMIZATION PROBLEM Introduction and Software 3 4 Effort 3 4 Traditional Heuristic Metaheuristic # evaluations,e+,e+8,e+6,e+4,e+,e+ ANN GA BACKT LV SA problem size Enrique Alba How Can Help Software Engineers 6 of 8

7 Types of Introduction and Software Metaheuristic Algorithms Optimization Algorithms Trajectory Exact Ad-hoc Heuristic Population Metaheuristic Calculus Enumerative Trajectory Population Direct Indirect DP SA B&B VNS Newton TS Greedy EA ACO PSO nature inspired in red Enrique Alba How Can Help Software Engineers 7 of 8

8 and Software Efficient, Accurate, and even Nature-Inspired! Tentative Sol. Population Selection Recombination Mutation Insertion Enrique Alba How Can Help Software Engineers 8 of 8

9 and Software but all of them Run in a Computer as Programs Global best Convex Combination Metric Space New position Best known Inspiration (,; -,4; 3,5) (,;,3; 7,) (,7;,3;,) Solution Vector Standard Deviation Search Angles Present Solution New Solution Enrique Alba How Can Help Software Engineers 9 of 8

10 at Work Introduction and Software Generation= Generation=5 Generation= Generation=5 Enrique Alba How Can Help Software Engineers of 8

11 and Software Complex Problems are Everywhere! the world metaheuristics Enrique Alba How Can Help Software Engineers of 8

12 and Software Scientific Success Reported in Journals (Science) Enrique Alba How Can Help Software Engineers of 8

13 and Software Scientific Success Reported in Companies (Industry) National & European Projects, Companies, University & Industry * Enrique Alba How Can Help Software Engineers 3 of 8

14 and Software and Software s s s s3 s5 Memory s7 s6 s4 s8 s9 /mase Makespan Variance Pareto front Expected Makespan Enrique Alba How Can Help Software Engineers 4 of 8

15 and Software Potential Research Lines Testing and Debugging Distribution, Maintenance, Enhancement Management Design Tools and Techniques Software Verification Concurrent Systems Networks and Critical Systems Requirement Analysis and Design Coding Tools and Techniques Human Decision Making Others search optimization evolution learning Enrique Alba How Can Help Software Engineers 5 of 8

16 Finding Software Errors Introduction and Software Objective:Prove that model M satisfies the property : SPIN, JavaPathfinder, s 5 Model M s s s s 4 Using Nested-DFS s s 7 s 3 s s s 6 s 8 s 9 LTL formula f s 3 s s 4!p q s Product Büchi automaton s 5 q s p! q Safety Properties Deadlocks Invariants Assertions using SOTA techniques: - state compression - bitstate hashing - partial order reduction - symmetry reduction - symbolic model checking Enrique Alba How Can Help Software Engineers 6 of 8

17 Software Testing (I) Introduction and Software After codification, the software products require a test phase The objective is to find errors and assess software correctness Software companies dedicate 5% of resources to this task.,.3.,.3 OK!.5 Automatic generation of input data for the tests.7, 5.4 Wrong!.7, Important issues: - Object Orientation - Embedded Systems -SAP Enrique Alba How Can Help Software Engineers 7 of 8

18 Software Testing (II) Introduction and Software Object Orientation - Inheritance, Polymorphism, Embedded Systems SAP - Real time systems in cars (breaks), nuclear plants, - Assessing programmers in ABAP IV, automatic test case generation Program Instrumentation Program Generators Enrique Alba How Can Help Software Engineers 8 of 8

19 and Software Software Project Management Uncertainty in task durations and staff performance Project Scheduling Probability density function Density function Project makespan Task duration Task duration T T T3 Mean or median: a measure of quality Variance or iqr: a measure of robustness MO approach Objective : quality Objective : robustness Makespan Variance Pareto front Expected Makespan Project costs Staff skills Project tasks Restrictions Company Policies Enrique Alba How Can Help Software Engineers 9 of 8

20 and Software Next Release Problem in Software Systems Context -Customers with varying requirements are targeted for a next software release -Each requirement entails spending a certain amount of resources and provides some benefit Definition - Basic definition, with two objectives, requires: - Minimizing the required cost for developing the requirements - Maximizing the value the developed requirements provide to the company - Complex definitions include preferences over clients and dependences between requirements State-of-the-art - Most of previous work has considered only a single objective formulation - Works dealing with multiobjective formulation are still superficia: opportunities here in MO! Enrique Alba How Can Help Software Engineers of 8

21 a Growing Field! Introduction and Software [EVOLUTION OF INTERFACES] [WEB SERVICES] [EVOLUTION OF ARQUITECTURES] [WEB ONTOLOGIES] Enrique Alba How Can Help Software Engineers of 8

22 Several Guidelines Introduction and Software The key factor in a good design is the inclusion of problem knowledge: Non-traditional representations Fitness function Specialized operators Suggestions for selecting your algorithm: According to the representation: Binary: CHC, EDA, ILS,... Tree: GP Float: ES, PSO, DE,... Permutation: GA, VNS,... Graphs: ACO Very expensive fitness functions: Parallel Need fast solutions or the environment is dynamic: PSO, ES, ACO Multimodal search spaces: ceas or deas (structured methods) Managing constrains: Hybrids and specific operators Enrique Alba How Can Help Software Engineers of 8

23 Challenges Introduction and Software Stopping Criteria - Predefined effort, solution quality, convergence (ph/gen) and self-tuning! Landscape Visualization - Not much to say in metaheuristics apart from using existing tools and techniques Landscape Characterization - Lots of results: multimodality, epistasis, discontinuity maybe using F-D correlation Human Competitive Results -I think this is not that difficult for any realistic program Enrique Alba How Can Help Software Engineers 3 of 8

24 and Software Potential Benefits from Using in SE Scalability - Parallelism, grid computing but also numerically efficient techniques Robustness - Appropriate selection of the technique, operators, and fitness function Feedback and Insight - Self-explanatory results, maybe using GP and probably ACO, improved decision making! Enrique Alba How Can Help Software Engineers 4 of 8

25 (I) Introduction and Software Multiobjective Optimization - Rich set of information metaheuristics: goals, algorithms, metrics, statistics Interactive Optimization -Relation to GUIs, and avoid the fatigue by evolving rules (not eval. details in a program) Hybrid Optimization Algorithms - Sure, that s clear: strong (between algorithms, metah and exact also) and weak (repres.) On Line (Dynamic) Optimization -Lots of results in metaheuristics (!): adding memory, hypermutation, self-adaptation Applying New Models of Search -ACO and PSO already in use, also ES what s on VNS, SS, EDAs, DE Enrique Alba How Can Help Software Engineers 5 of 8

26 and Software (II) Software Libraries - MALLBA: UML design, architecture Data Structures -How a population or an individual should be better implemented in a GA? Profiling - Gather information on executions and propose better implementations Program Complexity -Characterize program complexity of well known techniques automatically??? New Frontiers -Especialized knowledge on how to implement parallel, multiobjective, web services, PP Enrique Alba How Can Help Software Engineers 6 of 8

27 Some s Introduction and Software are efficient and effective modern problem solvers Working in metaheuristics means also using traditional algorithms Wide set of applications is possible, existing results show this Knowledge transfer is possible, so potential impact is almost infinite Merging metaheuristics and software engineering is relatively recent Multiobjective approaches are very important in this field A big deal of crossfertillization is needed between SEARCH and S.E. Learning and evolution also could play a main role in software engineering What on using software engineering for designing metaheuristics?! Let s reuse the existing knowledge Enrique Alba How Can Help Software Engineers 7 of 8

28 and Software Muchas Gracias por su Atención! Málaga (España) /mase Enrique Alba How Can Help Software Engineers 8 of 8

Finding Liveness Errors with ACO

Finding Liveness Errors with ACO Hong Kong, June 1-6, 2008 1 / 24 Finding Liveness Errors with ACO Francisco Chicano and Enrique Alba Motivation Motivation Nowadays software is very complex An error in a software system can imply the

More information

Ant Colony Optimization and Constraint Programming

Ant Colony Optimization and Constraint Programming Ant Colony Optimization and Constraint Programming Christine Solnon Series Editor Narendra Jussien WILEY Table of Contents Foreword Acknowledgements xi xiii Chapter 1. Introduction 1 1.1. Overview of the

More information

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008 Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report

More information

Bachelor of Games and Virtual Worlds (Programming) Subject and Course Summaries

Bachelor of Games and Virtual Worlds (Programming) Subject and Course Summaries First Semester Development 1A On completion of this subject students will be able to apply basic programming and problem solving skills in a 3 rd generation object-oriented programming language (such as

More information

Static Program Transformations for Efficient Software Model Checking

Static Program Transformations for Efficient Software Model Checking Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major

More information

Projects - Neural and Evolutionary Computing

Projects - Neural and Evolutionary Computing Projects - Neural and Evolutionary Computing 2014-2015 I. Application oriented topics 1. Task scheduling in distributed systems. The aim is to assign a set of (independent or correlated) tasks to some

More information

Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms

Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms Symposium on Automotive/Avionics Avionics Systems Engineering (SAASE) 2009, UC San Diego Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms Dipl.-Inform. Malte Lochau

More information

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS 133 CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS The proposed scheduling algorithms along with the heuristic intensive weightage factors, parameters and ß and their impact on the performance of the algorithms

More information

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)

14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,

More information

What is a life cycle model?

What is a life cycle model? What is a life cycle model? Framework under which a software product is going to be developed. Defines the phases that the product under development will go through. Identifies activities involved in each

More information

1.1 The Nature of Software... Object-Oriented Software Engineering Practical Software Development using UML and Java. The Nature of Software...

1.1 The Nature of Software... Object-Oriented Software Engineering Practical Software Development using UML and Java. The Nature of Software... 1.1 The Nature of Software... Object-Oriented Software Engineering Practical Software Development using UML and Java Chapter 1: Software and Software Engineering Software is intangible Hard to understand

More information

Software Engineering Introduction & Background. Complaints. General Problems. Department of Computer Science Kent State University

Software Engineering Introduction & Background. Complaints. General Problems. Department of Computer Science Kent State University Software Engineering Introduction & Background Department of Computer Science Kent State University Complaints Software production is often done by amateurs Software development is done by tinkering or

More information

Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine

Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine Biogeography Based Optimization (BBO) Approach for Sensor Selection in Aircraft Engine V.Hymavathi, B.Abdul Rahim, Fahimuddin.Shaik P.G Scholar, (M.Tech), Department of Electronics and Communication Engineering,

More information

2. MOTIVATING SCENARIOS 1. INTRODUCTION

2. MOTIVATING SCENARIOS 1. INTRODUCTION Multiple Dimensions of Concern in Software Testing Stanley M. Sutton, Jr. EC Cubed, Inc. 15 River Road, Suite 310 Wilton, Connecticut 06897 ssutton@eccubed.com 1. INTRODUCTION Software testing is an area

More information

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms MIGUEL CAMELO, YEZID DONOSO, HAROLD CASTRO Systems and Computer Engineering Department Universidad de los

More information

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

MEng, BSc Computer Science with Artificial Intelligence

MEng, BSc Computer Science with Artificial Intelligence School of Computing FACULTY OF ENGINEERING MEng, BSc Computer Science with Artificial Intelligence Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give

More information

Practical Applications of Evolutionary Computation to Financial Engineering

Practical Applications of Evolutionary Computation to Financial Engineering Hitoshi Iba and Claus C. Aranha Practical Applications of Evolutionary Computation to Financial Engineering Robust Techniques for Forecasting, Trading and Hedging 4Q Springer Contents 1 Introduction to

More information

Development Process Automation Experiences in Japan

Development Process Automation Experiences in Japan Development Process Automation Experiences in Japan Dr. Olaf Kath ikv ++ technologies ag Germany ikv++ technologies ag 2007 who we are core business optimization and automation of our customer s system

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Francisco J. Garcia COMBINED VISUALIZATION OF STRUCTURAL AND ANALYSIS

Francisco J. Garcia COMBINED VISUALIZATION OF STRUCTURAL AND ANALYSIS Antonio Gonzalez, Roberto Theron, AlexandruTeleaand Francisco J. Garcia COMBINED VISUALIZATION OF STRUCTURAL AND METRIC INFORMATION FOR SOFTWARE EVOLUTION ANALYSIS Combined Visualization of Structural

More information

MEng, BSc Applied Computer Science

MEng, BSc Applied Computer Science School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions

More information

Search Algorithm in Software Testing and Debugging

Search Algorithm in Software Testing and Debugging Search Algorithm in Software Testing and Debugging Hsueh-Chien Cheng Dec 8, 2010 Search Algorithm Search algorithm is a well-studied field in AI Computer chess Hill climbing A search... Evolutionary Algorithm

More information

HYBRID GENETIC ALGORITHM PARAMETER EFFECTS FOR OPTIMIZATION OF CONSTRUCTION RESOURCE ALLOCATION PROBLEM. Jin-Lee KIM 1, M. ASCE

HYBRID GENETIC ALGORITHM PARAMETER EFFECTS FOR OPTIMIZATION OF CONSTRUCTION RESOURCE ALLOCATION PROBLEM. Jin-Lee KIM 1, M. ASCE 1560 HYBRID GENETIC ALGORITHM PARAMETER EFFECTS FOR OPTIMIZATION OF CONSTRUCTION RESOURCE ALLOCATION PROBLEM Jin-Lee KIM 1, M. ASCE 1 Assistant Professor, Department of Civil Engineering and Construction

More information

An ACO/VNS Hybrid Approach for a Large-Scale Energy Management Problem

An ACO/VNS Hybrid Approach for a Large-Scale Energy Management Problem An ACO/VNS Hybrid Approach for a Large-Scale Energy Management Problem Challenge ROADEF/EURO 2010 Roman Steiner, Sandro Pirkwieser, Matthias Prandtstetter Vienna University of Technology, Austria Institute

More information

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0

A Binary Model on the Basis of Imperialist Competitive Algorithm in Order to Solve the Problem of Knapsack 1-0 212 International Conference on System Engineering and Modeling (ICSEM 212) IPCSIT vol. 34 (212) (212) IACSIT Press, Singapore A Binary Model on the Basis of Imperialist Competitive Algorithm in Order

More information

Fast Matching of Binary Features

Fast Matching of Binary Features Fast Matching of Binary Features Marius Muja and David G. Lowe Laboratory for Computational Intelligence University of British Columbia, Vancouver, Canada {mariusm,lowe}@cs.ubc.ca Abstract There has been

More information

The Telelogic Harmony/ESW process for realtime and embedded development.

The Telelogic Harmony/ESW process for realtime and embedded development. White paper October 2008 The Telelogic Harmony/ESW process for realtime and embedded development. Bruce Powel Douglass, IBM Page 2 Contents 3 Overview 4 Telelogic Harmony/ESW core principles 6 Harmony/ESW

More information

Knowledge Discovery from patents using KMX Text Analytics

Knowledge Discovery from patents using KMX Text Analytics Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs anton.heijs@treparel.com Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers

More information

Bachelor Degree in Informatics Engineering Master courses

Bachelor Degree in Informatics Engineering Master courses Bachelor Degree in Informatics Engineering Master courses Donostia School of Informatics The University of the Basque Country, UPV/EHU For more information: Universidad del País Vasco / Euskal Herriko

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Research Motivation In today s modern digital environment with or without our notice we are leaving our digital footprints in various data repositories through our daily activities,

More information

Analysis of the Specifics for a Business Rules Engine Based Projects

Analysis of the Specifics for a Business Rules Engine Based Projects Analysis of the Specifics for a Business Rules Engine Based Projects By Dmitri Ilkaev and Dan Meenan Introduction In recent years business rules engines (BRE) have become a key component in almost every

More information

KITES TECHNOLOGY COURSE MODULE (C, C++, DS)

KITES TECHNOLOGY COURSE MODULE (C, C++, DS) KITES TECHNOLOGY 360 Degree Solution www.kitestechnology.com/academy.php info@kitestechnology.com technologykites@gmail.com Contact: - 8961334776 9433759247 9830639522.NET JAVA WEB DESIGN PHP SQL, PL/SQL

More information

The Model Checker SPIN

The Model Checker SPIN The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(

More information

The ACO Encoding. Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson

The ACO Encoding. Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson The ACO Encoding Alberto Moraglio, Fernando E. B. Otero, and Colin G. Johnson School of Computing and Centre for Reasoning, University of Kent, Canterbury, UK {A.Moraglio, F.E.B.Otero, C.G.Johnson}@kent.ac.uk

More information

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])

REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) 299 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference

More information

GUJARAT TECHNOLOGICAL UNIVERSITY Computer Engineering (07) BE 1st To 8th Semester Exam Scheme & Subject Code

GUJARAT TECHNOLOGICAL UNIVERSITY Computer Engineering (07) BE 1st To 8th Semester Exam Scheme & Subject Code GUJARAT TECHNOLOGICAL UNIVERSITY Computer Engineering (07) BE 1st To 8th Semester Scheme & EVALUATION SCHEME Continuous (Theory) (E) Evaluation Practical (I) (Practical) (E) Process(M) MAX MIN MAX MIN

More information

Artificial Intelligence Methods (G52AIM)

Artificial Intelligence Methods (G52AIM) Artificial Intelligence Methods (G52AIM) Dr Rong Qu rxq@cs.nott.ac.uk Constructive Heuristic Methods Constructive Heuristics method Start from an empty solution Repeatedly, extend the current solution

More information

An optimisation framework for determination of capacity in railway networks

An optimisation framework for determination of capacity in railway networks CASPT 2015 An optimisation framework for determination of capacity in railway networks Lars Wittrup Jensen Abstract Within the railway industry, high quality estimates on railway capacity is crucial information,

More information

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS

HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS HYBRID ACO-IWD OPTIMIZATION ALGORITHM FOR MINIMIZING WEIGHTED FLOWTIME IN CLOUD-BASED PARAMETER SWEEP EXPERIMENTS R. Angel Preethima 1, Margret Johnson 2 1 Student, Computer Science and Engineering, Karunya

More information

Software Engineering/Courses Description Introduction to Software Engineering Credit Hours: 3 Prerequisite: 0306211(Computer Programming 2).

Software Engineering/Courses Description Introduction to Software Engineering Credit Hours: 3 Prerequisite: 0306211(Computer Programming 2). 0305203 0305280 0305301 0305302 Software Engineering/Courses Description Introduction to Software Engineering Prerequisite: 0306211(Computer Programming 2). This course introduces students to the problems

More information

Bachelorclass 2014-2015

Bachelorclass 2014-2015 Bachelorclass 2014-2015 Siegfried Nijssen 14 January 2015 Research at LIACS Algorithms and Software Technology (AST) Data science (data mining, databases) Joost Kok Aske Plaat Jaap van den Herik Siegfried

More information

Mathematical Reasoning in Software Engineering Education. Peter B. Henderson Butler University

Mathematical Reasoning in Software Engineering Education. Peter B. Henderson Butler University Mathematical Reasoning in Software Engineering Education Peter B. Henderson Butler University Introduction Engineering is a bridge between science and mathematics, and the technological needs of mankind.

More information

WORKFLOW ENGINE FOR CLOUDS

WORKFLOW ENGINE FOR CLOUDS WORKFLOW ENGINE FOR CLOUDS By SURAJ PANDEY, DILEBAN KARUNAMOORTHY, and RAJKUMAR BUYYA Prepared by: Dr. Faramarz Safi Islamic Azad University, Najafabad Branch, Esfahan, Iran. Workflow Engine for clouds

More information

Optimal Allocation of renewable Energy Parks: A Two Stage Optimization Model. Mohammad Atef, Carmen Gervet German University in Cairo, EGYPT

Optimal Allocation of renewable Energy Parks: A Two Stage Optimization Model. Mohammad Atef, Carmen Gervet German University in Cairo, EGYPT Optimal Allocation of renewable Energy Parks: A Two Stage Optimization Model Mohammad Atef, Carmen Gervet German University in Cairo, EGYPT JFPC 2012 1 Overview Egypt & Renewable Energy Prospects Case

More information

A genetic algorithm for resource allocation in construction projects

A genetic algorithm for resource allocation in construction projects Creative Construction Conference 2015 A genetic algorithm for resource allocation in construction projects Sofia Kaiafa, Athanasios P. Chassiakos* Sofia Kaiafa, Dept. of Civil Engineering, University of

More information

Management of Software Projects with GAs

Management of Software Projects with GAs MIC05: The Sixth Metaheuristics International Conference 1152-1 Management of Software Projects with GAs Enrique Alba J. Francisco Chicano Departamento de Lenguajes y Ciencias de la Computación, Universidad

More information

Total Exploration & Production: Field Monitoring Case Study

Total Exploration & Production: Field Monitoring Case Study Total Exploration & Production: Field Monitoring Case Study 1 Summary TOTAL S.A. is a word-class energy producer and provider, actually part of the super majors, i.e. the worldwide independent oil companies.

More information

Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges. Presenter: Sancheng Peng Zhaoqing University

Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges. Presenter: Sancheng Peng Zhaoqing University Social Influence Analysis in Social Networking Big Data: Opportunities and Challenges Presenter: Sancheng Peng Zhaoqing University 1 2 3 4 35 46 7 Contents Introduction Relationship between SIA and BD

More information

SYSTEMS, CONTROL AND MECHATRONICS

SYSTEMS, CONTROL AND MECHATRONICS 2015 Master s programme SYSTEMS, CONTROL AND MECHATRONICS INTRODUCTION Technical, be they small consumer or medical devices or large production processes, increasingly employ electronics and computers

More information

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Journal of Computer Science 2 (2): 118-123, 2006 ISSN 1549-3636 2006 Science Publications Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Alaa F. Sheta Computers

More information

Information and Communications Technology Courses at a Glance

Information and Communications Technology Courses at a Glance Information and Communications Technology Courses at a Glance Level 1 Courses ICT121 Introduction to Computer Systems Architecture This is an introductory course on the architecture of modern computer

More information

An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment

An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment IJCSC VOLUME 5 NUMBER 2 JULY-SEPT 2014 PP. 110-115 ISSN-0973-7391 An Efficient Approach for Task Scheduling Based on Multi-Objective Genetic Algorithm in Cloud Computing Environment 1 Sourabh Budhiraja,

More information

DataCenter optimization for Cloud Computing

DataCenter optimization for Cloud Computing DataCenter optimization for Cloud Computing Benjamín Barán National University of Asuncion (UNA) bbaran@pol.una.py Paraguay Content Cloud Computing Commercial Offerings Basic Problem Formulation Open Research

More information

Best-Practice Software Engineering: Software Processes to Support Project Success. Dietmar Winkler

Best-Practice Software Engineering: Software Processes to Support Project Success. Dietmar Winkler Best-Practice Software Engineering: Software Processes to Support Project Success Dietmar Winkler Vienna University of Technology Institute of Software Technology and Interactive Systems Dietmar.Winkler@qse.ifs.tuwien.ac.at

More information

MULTIDIMENSIONAL META-MODELLING FOR AIR TRAFFIC MANAGEMENT SERVICE PROCESSES

MULTIDIMENSIONAL META-MODELLING FOR AIR TRAFFIC MANAGEMENT SERVICE PROCESSES Computer Modelling and New Technologies, 2010, Vol.14, No.2, 50 57 Transport and Telecommunication Institute, Lomonosov 1, LV-1019, Riga, Latvia MULTIDIMENSIONAL META-MODELLING FOR AIR TRAFFIC MANAGEMENT

More information

COURSE CODE : 4072 COURSE CATEGORY : A PERIODS / WEEK : 4 PERIODS / SEMESTER : 72 CREDITS : 4

COURSE CODE : 4072 COURSE CATEGORY : A PERIODS / WEEK : 4 PERIODS / SEMESTER : 72 CREDITS : 4 COURSE TITLE : SOFTWARE ENGINEERING COURSE CODE : 4072 COURSE CATEGORY : A PERIODS / WEEK : 4 PERIODS / SEMESTER : 72 CREDITS : 4 TIME SCHEDULE MODULE TOPICS PERIODS 1 Software engineering discipline evolution

More information

High-performance local search for planning maintenance of EDF nuclear park

High-performance local search for planning maintenance of EDF nuclear park High-performance local search for planning maintenance of EDF nuclear park Frédéric Gardi Karim Nouioua Bouygues e-lab, Paris fgardi@bouygues.com Laboratoire d'informatique Fondamentale - CNRS UMR 6166,

More information

BUSINESS RULES AND GAP ANALYSIS

BUSINESS RULES AND GAP ANALYSIS Leading the Evolution WHITE PAPER BUSINESS RULES AND GAP ANALYSIS Discovery and management of business rules avoids business disruptions WHITE PAPER BUSINESS RULES AND GAP ANALYSIS Business Situation More

More information

Increasing Development Knowledge with EPFC

Increasing Development Knowledge with EPFC The Eclipse Process Framework Composer Increasing Development Knowledge with EPFC Are all your developers on the same page? Are they all using the best practices and the same best practices for agile,

More information

School of Computer Science

School of Computer Science School of Computer Science Computer Science - Honours Level - 2014/15 October 2014 General degree students wishing to enter 3000- level modules and non- graduating students wishing to enter 3000- level

More information

Instructional Design Framework CSE: Unit 1 Lesson 1

Instructional Design Framework CSE: Unit 1 Lesson 1 Instructional Design Framework Stage 1 Stage 2 Stage 3 If the desired end result is for learners to then you need evidence of the learners ability to then the learning events need to. Stage 1 Desired Results

More information

BOOLEAN CONSENSUS FOR SOCIETIES OF ROBOTS

BOOLEAN CONSENSUS FOR SOCIETIES OF ROBOTS Workshop on New frontiers of Robotics - Interdep. Research Center E. Piaggio June 2-22, 22 - Pisa (Italy) BOOLEAN CONSENSUS FOR SOCIETIES OF ROBOTS Adriano Fagiolini DIEETCAM, College of Engineering, University

More information

Data, Measurements, Features

Data, Measurements, Features Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

More information

Bogdan Vesovic Siemens Smart Grid Solutions, Minneapolis, USA bogdan.vesovic@siemens.com

Bogdan Vesovic Siemens Smart Grid Solutions, Minneapolis, USA bogdan.vesovic@siemens.com Evolution of Restructured Power Systems with Regulated Electricity Markets Panel D 2 Evolution of Solution Domains in Implementation of Market Design Bogdan Vesovic Siemens Smart Grid Solutions, Minneapolis,

More information

Expert Systems with Applications

Expert Systems with Applications Expert Systems with Applications 38 (2011) 8403 8413 Contents lists available at ScienceDirect Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa A knowledge-based evolutionary

More information

Why is SAS/OR important? For whom is SAS/OR designed?

Why is SAS/OR important? For whom is SAS/OR designed? Fact Sheet What does SAS/OR software do? SAS/OR software provides a powerful array of optimization, simulation and project scheduling techniques to identify the actions that will produce the best results,

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

Using Web-based Tools to Enhance Student Learning and Practice in Data Structures Course

Using Web-based Tools to Enhance Student Learning and Practice in Data Structures Course Using Web-based Tools to Enhance Student Learning and Practice in Data Structures Course 1. Introduction Chao Chen January 2014 The purpose of this project is to enhance student learning and practice in

More information

Theodor Borangiu UVHC, ENSIAME 2013

Theodor Borangiu UVHC, ENSIAME 2013 Theodor Borangiu UVHC, ENSIAME 2013 Introduction Manufacturing Systems Performance Monitoring Monitoring Solution for Holonic Manufacturing Systems Conclusions June 19, 2013 2 Three inter-related vectors

More information

Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe. Table of Contents. A. Short Table of Contents

Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe. Table of Contents. A. Short Table of Contents Fundamentals of Database Systems, 4 th Edition By Ramez Elmasri and Shamkant Navathe Table of Contents A. Short Table of Contents (This Includes part and chapter titles only) PART 1: INTRODUCTION AND CONCEPTUAL

More information

The Bi-Objective Pareto Constraint

The Bi-Objective Pareto Constraint The Bi-Objective Pareto Constraint Renaud Hartert and Pierre Schaus UCLouvain, ICTEAM, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium {renaud.hartert,pierre.schaus}@uclouvain.be Abstract. Multi-Objective

More information

Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001

Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS

More information

CO320 Introduction to Object- Oriented Programming

CO320 Introduction to Object- Oriented Programming CO320 Introduction to Object- Oriented Programming Michael Kölling 3.0 Take control of your own learning Lecture Classes Exercises Book Web page Discussion forum Study groups Practice, practice, practice!

More information

Solving Method for a Class of Bilevel Linear Programming based on Genetic Algorithms

Solving Method for a Class of Bilevel Linear Programming based on Genetic Algorithms Solving Method for a Class of Bilevel Linear Programming based on Genetic Algorithms G. Wang, Z. Wan and X. Wang Abstract The paper studies and designs an genetic algorithm (GA) of the bilevel linear programming

More information

CREDENTIALS & CERTIFICATIONS 2015

CREDENTIALS & CERTIFICATIONS 2015 THE COMMUNITY FOR TECHNOLOGY LEADERS www.computer.org CREDENTIALS & CERTIFICATIONS 2015 KEYS TO PROFESSIONAL SUCCESS CONTENTS SWEBOK KNOWLEDGE AREA CERTIFICATES Software Requirements 3 Software Design

More information

Introduction To Genetic Algorithms

Introduction To Genetic Algorithms 1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: rkbc@iitg.ernet.in References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization

More information

Structure of Presentation. The Role of Programming in Informatics Curricula. Concepts of Informatics 2. Concepts of Informatics 1

Structure of Presentation. The Role of Programming in Informatics Curricula. Concepts of Informatics 2. Concepts of Informatics 1 The Role of Programming in Informatics Curricula A. J. Cowling Department of Computer Science University of Sheffield Structure of Presentation Introduction The problem, and the key concepts. Dimensions

More information

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

More information

Course Title: Software Development

Course Title: Software Development Course Title: Software Development Unit: Customer Service Content Standard(s) and Depth of 1. Analyze customer software needs and system requirements to design an information technology-based project plan.

More information

Measuring the Performance of an Agent

Measuring the Performance of an Agent 25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational

More information

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES

More information

Model Checking of Software

Model Checking of Software Model Checking of Software Patrice Godefroid Bell Laboratories, Lucent Technologies SpecNCheck Page 1 August 2001 A Brief History of Model Checking Prehistory: transformational programs and theorem proving

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 sanjeevk@iasri.res.in 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

Clustering & Visualization

Clustering & Visualization Chapter 5 Clustering & Visualization Clustering in high-dimensional databases is an important problem and there are a number of different clustering paradigms which are applicable to high-dimensional data.

More information

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM

CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM CLOUD DATABASE ROUTE SCHEDULING USING COMBANATION OF PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM *Shabnam Ghasemi 1 and Mohammad Kalantari 2 1 Deparment of Computer Engineering, Islamic Azad University,

More information

A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems

A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No 2 Sofia 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2015-0025 A Survey of Solving Approaches

More information

WHITE PAPER. Harnessing the Power of Advanced Analytics How an appliance approach simplifies the use of advanced analytics

WHITE PAPER. Harnessing the Power of Advanced Analytics How an appliance approach simplifies the use of advanced analytics WHITE PAPER Harnessing the Power of Advanced How an appliance approach simplifies the use of advanced analytics Introduction The Netezza TwinFin i-class advanced analytics appliance pushes the limits of

More information

Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009

Prentice Hall Algebra 2 2011 Correlated to: Colorado P-12 Academic Standards for High School Mathematics, Adopted 12/2009 Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level

More information

SOFT 437. Software Performance Analysis. Ch 5:Web Applications and Other Distributed Systems

SOFT 437. Software Performance Analysis. Ch 5:Web Applications and Other Distributed Systems SOFT 437 Software Performance Analysis Ch 5:Web Applications and Other Distributed Systems Outline Overview of Web applications, distributed object technologies, and the important considerations for SPE

More information

The University of Jordan

The University of Jordan The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S

More information

3D Interactive Information Visualization: Guidelines from experience and analysis of applications

3D Interactive Information Visualization: Guidelines from experience and analysis of applications 3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, rbrath@vdi.com 1. EXPERT

More information

INFORMATION TECHNOLOGY PROGRAM

INFORMATION TECHNOLOGY PROGRAM INFORMATION TECHNOLOGY PROGRAM The School of Information Technology offers a two-year bachelor degree program in Information Technology for students having acquired an advanced vocational certificate.

More information

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.

More information

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent

More information

Chapter 4 Software Lifecycle and Performance Analysis

Chapter 4 Software Lifecycle and Performance Analysis Chapter 4 Software Lifecycle and Performance Analysis This chapter is aimed at illustrating performance modeling and analysis issues within the software lifecycle. After having introduced software and

More information

Doctor of Philosophy in Computer Science

Doctor of Philosophy in Computer Science Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects

More information

CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014)

CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014) CS Standards Crosswalk: CSTA K-12 Computer Science Standards and Oracle Java Programming (2014) CSTA Website Oracle Website Oracle Contact http://csta.acm.org/curriculum/sub/k12standards.html https://academy.oracle.com/oa-web-introcs-curriculum.html

More information

Measurement Information Model

Measurement Information Model mcgarry02.qxd 9/7/01 1:27 PM Page 13 2 Information Model This chapter describes one of the fundamental measurement concepts of Practical Software, the Information Model. The Information Model provides

More information

Subgraph Patterns: Network Motifs and Graphlets. Pedro Ribeiro

Subgraph Patterns: Network Motifs and Graphlets. Pedro Ribeiro Subgraph Patterns: Network Motifs and Graphlets Pedro Ribeiro Analyzing Complex Networks We have been talking about extracting information from networks Some possible tasks: General Patterns Ex: scale-free,

More information