An Architecture for the Self-management of Lambda-Connections in Hybrid Networks

Size: px
Start display at page:

Download "An Architecture for the Self-management of Lambda-Connections in Hybrid Networks"

Transcription

1 An Architecture for the Self-management of Lambda-Connections in Hybrid Networks Tiago Fioreze, Remco van de Meent, and Aiko Pras University of Twente, Enschede, the Netherlands {t.fioreze, r.vandemeent, Abstract. Hybrid networks are networks capable of switching data at multiple levels (optical and IP packet level) by means of multi-service optical switches. As a result of that, huge flows at the IP-level may be moved to the optical-level, which is faster than the packet-level. Such move could be beneficial since congested IP networks could be off-loaded, leaving more resources for other IP flows. At the same time, the flows switched at the optical-level would get better Quality of Service (QoS). In order to achieve this beneficial move, huge IP flows have to be properly detected at the packet-level and lambda-connections are to be established for them at the optical-level. Two approaches are currently used for that purpose: the first is based on conventional management techniques and the second is based on GMPLS signaling. Both approaches mostly depend on human intervention, which can be error prone and slow. The idea proposed in this paper to overcome this problem consists of adding self-management capabilities to the multi-service optical switches. The optical switches would then be responsible for automatically identifying IP flows, and establishing and releasing lambdaconnections for such flows. The main goal of this paper is therefore to propose an architecture for the self-management of lambda-connections in hybrid networks. 1 Introduction Hybrid networks are networks that allow data to be switched both at the IP packetlevel and at the optical-level [1]. An example of a hybrid network is SURFnet6 [2], the Dutch research and education network. Hybrid networks are composed by multi-service optical switches, which have the capability to perform forwarding decisions at different levels in the protocol stack. As a result of that, big and long IP flows (so called elephant flows) could be moved from the packet-level to the optical-level. It is anticipated that such a move results in a better Quality of Service (QoS) for both elephant flows and remaining IP flows at the packet-level: the former would have less delay and jitter and plenty of bandwidth at the optical-level; the latter would be better served due to the off-loading of elephant flows. An accurate identification of IP flows and a proper management of lambdaconnections are important tasks to achieve the desired move. Two approaches are currently used for that [3]: conventional management and GMPLS signaling. The former is characterized by a centralized management entity (e.g., human manager or an automated management process) that is in charge of establishing lambda-connections and deciding which IP flows should be moved to the optical-level. In contrast, the latter A. Pras and M. van Sinderen (Eds.): EUNICE 2007, LNCS 4606, pp , c Springer-Verlag Berlin Heidelberg 2007

2 142 T. Fioreze, R. van de Meent, and A. Pras is characterized by the fact that optical switches coordinate the creation of lambdaconnections among themselves after being triggered for that. The decision which IP flows will be moved to the optical-level however is taken by a centralized entity or by the entities exchanging data flows. Both approaches, however, have some shortcomings. Both approaches require human interaction to detect flows and manage lambda-connections. This interaction may be slow and error prone. Currently, when a lambda-connection is requested within one single domain (intra-domain), several steps are taken (e.g., phone calls and s exchanging) between requesters and network domain administrators in order to establish the lambda-connection. Evidently, it may take hours or more before a desired lambdaconnection can be used. When the requests for a connection spans multiple domains (inter-domain), the lambda-connection provisioning may take even much longer. In addition to that, a troubleshooting process may be needed to solve connection problems, which may delay the connection setup still more. Moreover, several big IP flows may, for instance, be using resources at the packetlevel while the lambda-connection is being established, and therefore possibly congesting the IP-level. Moreover, by the time that the lambda-connection is finally established the elephant flows may no longer exist or not be large enough for a dedicated lambdaconnection. Our solution to overcome these shortcomings consists of extending the GMPLS approach by automatically detecting IP flows eligible for lambda-connections. With this extension, multi-service optical switches automatically detect IP flows and establish/release lambda-connections for them. This can be characterized as a selfmanagement behavior. In this context, the main goal of this paper is to propose an architecture for the self-management of lambda-connections in hybrid networks. The remainder of this paper is organized as follows. Section 2 shows the current approaches for the management of lambda-connections. Then, sect. 3 starts by presenting the shortcomings of the current approaches, which have motivated our proposal. In addition, sect. 3 also introduces our architecture for the self-management of lambdaconnections. Finally, conclusions and future plans are outlined in sect Current Management Approaches This section describes the two current approaches used to manage optical networks: the conventional management approach and the GMPLS signaling approach. 2.1 Conventional Management The conventional management approach is composed by managers and agents [4]. Managers consist of entities that are responsible for managing the network activity by ordering tasks (e.g., configuration or monitoring actions) for agents. Agents are entities in charge of performing the requested tasks. There may also be entities that can play a dual role, acting as both a manager and an agent. In the optical networks context a manager can be a centralized management entity (e.g., human manager) that is responsible for managing optical switches (agents) in the

3 An Architecture for the Self-management of Lambda-Connections 143 optical domain. This centralized management entity is responsible for identifying IP flows to the optical-level and as well the establishment of the optical connections. The identification of IP flows can be done with the help of monitoring mechanisms, such as NetFlow [5]. On its turn, the establishment of lambda-connections can be performed by using management technologies such as command line interface [6], the well-known SNMP protocol [7] and the TL1 language [8]. When the required lambdaconnection spans multiple optical switches, the establishment of the lambda-connection involves setting up each optical switch along the desired path. 2.2 GMPLS Signaling The Generalized Multiprotocol Label Switching (GMPLS) architecture [9] aims at extending the characteristics of the MPLS architecture [10] to support peculiarities existing in today s optical networks. GMPLS extends MPLS in order to provide to the control plane (signaling and routing) with new label capabilities. GMPLS supports spatial (port), lambda, and time-division switching, besides the traditional packet switching. Unlike in MPLS, however, in the GMPLS architecture the labels are no longer carried in the data, but they are defined in the optical switches. With regard to the configuration process of the optical switches, GMPLS works similarly to MPLS by using signaling messages in order to establish lambda-connections. On the other hand, regarding to its operational model, GMPLS can be deployed as two different operational models [11]: peer and overlay model. In the peer model, the topology of the core network is not hidden from users (e.g., adjacent IP networks) of the optical networks, which enables the users to see the entire optical network topology and to choose the desired lambda-connection path. Once the desired path is chosen, the users have to communicate with the most adjacent optical switch by informing it with the desired path, the source and destination addresses of the selected IP flow, and also inform GMPLS signaling parameters (e.g., switching type). Once the adjacent optical switch gets this information, it starts then the process of establishing the desired path by interacting with other switches along the path. In the overlay model, only the adjacent optical switches are revealed to users of the optical network; topology of the core network is hidden. Hence, users are not able to choose their entire desired connection path. Therefore, to create a lambda-connection, the users can inform their adjacent switch only with the source and destination addresses of the selected IP flow and the GMPLS signaling parameters. The adjacent switch then interacts with other switches to decide which path will be chosen (by using interior gateway protocols such as OSPF or IS-IS) based on the connection parameters provided by the users. 3 The Self-management Architecture This section presents our architecture for the self-management of lambda-connections in hybrid networks. The section starts by showing some shortcomings of the current approaches and by presenting our idea to overcome them. Then, our proposed architecture is introduced by presenting first its functional part and then its physical part.

4 144 T. Fioreze, R. van de Meent, and A. Pras 3.1 Self-management of Lambda-Connections The management approaches presented in section 2 have some shortcomings. Both approaches depend on human intervention to select and move IP flows to the optical-level and establish/release lambda-connections. This intervention can be therefore prone to errors and take considerable time to be performed (e.g. weeks). In the conventional management approach, the network manager has the task of deciding which flows will be moved to the optical-level. This decision is mostly made manually by collecting network information and analyze it. Nonetheless, the network manager has also to configure each optical switch along the chosen path in order to establish lambda-connections for the selected flows. In addition to that, he is required to release the connections when no longer needed as well. On its turn, the GMPLS signaling approach offers some autonomy in the steps of establishing and releasing lambda-connections. However, these steps must still explicitly be triggered by the users or network managers of the optical network. In addition to that, these users and network managers must also to provide the information about which IP flows will be moved to the optical-level. Our solution to overcome these shortcomings consists of providing self-management capabilities to optical switches. Our self-management solution allow optical switches to be in charge of automatically selecting IP flows to the optical-level and as well creating/releasing lambda-connections for them. Network managers would only be required to configure the optical switches in order to instruct them on which flows to look for and when lambda-connections have to be established and released by using GMPLS signaling protocols. Once configured, the optical switches cooperatively work by their own. Figure 1 depicts how our proposal for a self-management of lambda-connections in hybrid networks would look like. In Figure 1 IP and optical domains coordinate with one another in order to detect IP flows and manage lambda-connections. Both domains are assumed as already been configured by network managers. IP routers located at IP domain B are Fig. 1. Self-management of lambda-connection in hybrid networks

5 An Architecture for the Self-management of Lambda-Connections 145 exchanging network information (e.g. bandwidth consumed per flow and its duration) regarding to the existence of a elephant flow transiting between IP domains A and C (step 1). Based on this exchanged information and the configuration performed by network managers they make decisions on if a flow is eligible or no longer eligible for a dedicated lambda-connection at the optical-level. If the decision is in favor of creating a lambda-connection (i.e., the elephant flow is eligible to be moved to the opticallevel), the IP routers signal the optical switches in lambda domain A (step 2). Then, the optical switches coordinate among themselves in order to create a dedicated lambdaconnection to the detected elephant IP flow (step 3). From that point on, the elephant flow is switched at the optical-level and IP routing is accordingly changed. Further information about our self-management approach can be found at [12]. 3.2 Functional Architecture Our functional architecture presents the functional blocks involved in our selfmanagement approach and as well their interaction. Our architecture deals with the layers 1 (Network interface layer) and 2 (Internet layer) of the four-layer TCP/IP network architecture, as can be seen in figure 2. Start node Intermediate node End node GFP GFP GFP n 1 0 Caption n 1 0 Internet layer Network interface layer SONET/SDH frames IP packets Selfmanagement Selfmanagement Selfmanagement lambdaconnection Fig. 2. Self-management functional blocks Figure 2 shows 4 functional blocks: cross-connection and routing s, traffic, and a Generic Framing Procedure (GFP) module, which maps IP packets into the underlying transport protocol. In the case of SURFnet6, the underlying transport layer is based on SONET/SDH. Figure 2 also shows our self-management functional block. The main tasks of the self-management block are to analyze network information and decide when a lambda-connection should be established/released for a certain set of flows. The analysis consists of obtaining network information from the traffic and characterizing it (e.g. by ordering and/or filtering fields). Then, self-management blocks correlate their collected information and cooperatively decide when

6 146 T. Fioreze, R. van de Meent, and A. Pras characterizer Decision maker GFP Lambda releaser OC-48 OC-192 OC-48 Active connections Lambda creator n 1 0 Caption n 1 0 Internet layer Network interface layer SONET/SDH frames IP packets lambdaconnection Fig. 3. Zooming in into a self-management functional block establishing/releasing a lambda-connection. Once decided, the self-management blocks involved in the decision process locally adjust the routing and cross-connection s. Figure 3 shows more internal details of the self-management functional block. The self-management functional block is composed by 5 elements: traffic characterizer, decision maker, lambda creator, lambda releaser, and active connections. The traffic characterizer is in charge of collecting network information exported by the traffic (e.g., a NetFlow ) and characterizing it. The characterized information is then sent to the decision maker, which cooperatively decides with other decision makers on moving IP flows from the IP-level to the optical-level and vice-versa. If a decision to move IP flows to the optical-level is taken, then each decision maker contacts its local lambda creator, which is responsible for establishing lambdaconnections. The lambda creator performs that by adjusting the routing and crossconnection s. Once the lambda-connection is established, the lambda creator adds the new entry in the active connections. The active connections lists the current active connections locally held by certain network node. On the other hand, if a decision to move IP flows back to the IP-level is taken, each decision maker contacts its lambda releaser, which is responsible for tearing down lambda-connections. The lambda releaser then reconfigures the routing and crossconnection s in order to release the connection. Once the lambda-connection is released, the lambda releaser removes the entry in the active connections.

7 An Architecture for the Self-management of Lambda-Connections Physical Architecture The physical architecture consists of showing the physical location of the functional blocks. In our physical architecture, the functional blocks are located at two different physical locations: in the multi-service optical switches and in an external management device. The traffic and routing and cross-connection s are already supported inside current multi-service optical switches, so they will be kept where they are. This assertion is based on discussions with network managers. The remaining blocks are located in the external management device. Figure 4 shows our physical architecture. Management device characterizer Decision maker Lambda creator OC-192 OC-192 OC-48C.... OC-48C Lambda releaser Active connections Common physical link Internet layer Network interface layer Multi-service optical switch Fig. 4. Physical architecture Even though all functional blocks could internally be implemented into the multiservice optical switches, doing that is not trivial because vendors may not be willing to change the implementation of the optical switches operating systems. That is the reason our new functional blocks will be implemented in an external management device. 4 Conclusions Section 2 of this paper identified the current approaches to manage lambda-connection in hybrid networks. In practice two approaches are being used: conventional management, which is based on SNMP or TL1 manager-agent interactions, and GMPLS. Both approaches, however, require human interaction to detect flows and create / release lambda-connections. As discussed in Section 3.1, traditional approaches for lambdaconnection management are therefore slow and error prone. To overcome these problems, the remainder of this paper proposed a functional and physical architecture for self-management of lambda-connections.

8 148 T. Fioreze, R. van de Meent, and A. Pras The functional architecture defines which functions and interactions are needed to perform self-management in a logical and comprehensible way. The physical architecture defines how these functions and interactions can be implemented; an important goal hereby is to avoid as much as possible modifications to current implementations of multi-service optical switches. This decision allows us to create, in later stages of our research, a testbed to evaluate our architecture. This paper describes work that is still in progress. More research is needed, for instance, to determine proper configurationparametervalues forthe self-management functional blocks in order to decide when to establish and release a lambda-connection. A next goal is therefore to simulate our architecture in order to find answers for this question. Acknowledgments The research on self-management has been supported by SURFnet in the context of the GigaPort-RoN project, and by the EC IST-EMANICS Network of Excellence (#26854). The work presented in this paper has also benefited from collaboration with INRIA Lorraine. References 1. Gauger, C.M., Kuhn, P.J., Breusegem, E., Pickavet, M., Demeester, P.: Hybrid Optical Network Architectures: Bringing Packets and Circuits Together. IEEE Communications Magazine 44(8), (2006) 2. SURFnet: SURFnet6 lighpaths mark start of the new Internet area (press release), Available in: objectnumber= Bernstein, G., Rajagopalan, B., Saha, D.: Optical Network Control: Architecture, Protocols, and Standards. Addison-Wesley, Reading (2003) 4. Schoenwaelder, J., Quittek, J., Kappler, C.: Building Distributed Management Applications with the IETF Script MIB. IEEE Journal on Selected Areas in Communications 18, (2000) 5. Claise, B.: Cisco Systems NetFlow Services Export Version 9. Request for Comments: 3954 (RFC 3954) (2004) 6. Schoenwaelder, J.: Overview of the 2002 IAB Network Management Workshop. Request for Comments: 3535 (RFC 3535) (2003) 7. Case, J., Mundy, R., Partain, D., Stewart, B.: Introduction and Applicability Statements for Internet Standard Management Framework. Request for Comments: 3410 (RFC 3410) (2002) 8. Man, F.-T.: A Brief History of TL1 Journal of Network and Systems Management 7 (1999) 9. Mannie, E.: Generalized Multi-Protocol Label Switching (GMPLS) Architecture. Request for Comments: 3945 (RFC 3945) (2004) 10. Rosen, E.C., Viswanathan, A., Callon, R.: Multi-Protocol Label Switching (GMPLS) Architecture. Request for Comments: 3031 (RFC 3031) (2001) 11. Banerjee, A., Drake, J., Lang, J., Turner, B., Kompella, K., Rekhter, Y.: Generalized Multiprotocol Label Switching: An Overview of and Management Enhancements. IEEE Communications Magazine 39(1), (2001) 12. Fioreze, T., Pras, A.: Using self-management for establishing light paths in optical networks: an overview. In: Poster session proceedings of the 12th EUNICE Open European Summer School 2006 (EUNICE 2006), pp (2006)

Management of lambda paths

Management of lambda paths Management of lambda paths by Tiago Fioreze Supervisor: Aiko Pras Institution: University of Twente Outline You are here! Outline Background information Current management approaches Self-management of

More information

Characterization of IP Flows Eligible for Lambda-Connections in Optical Networks

Characterization of IP Flows Eligible for Lambda-Connections in Optical Networks Characterization of IP Flows Eligible for Lambda-Connections in Optical Networks Tiago Fioreze, Mattijs Oude Wolbers, Remco van de Meent, Aiko Pras University of Twente Faculty of Electrical Engineering,

More information

How To Understand The History Of Mpls

How To Understand The History Of Mpls CHAPTER Introduction 1 Multiprotocol Label Switching (MPLS) is over 10 years old. Born at a time when the Internet had just become a household word, MPLS had a hugely enthusiastic childhood and rapidly

More information

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran hyaghmae@ferdowsi.um.ac.ir

More information

Relationship between SMP, ASON, GMPLS and SDN

Relationship between SMP, ASON, GMPLS and SDN Relationship between SMP, ASON, GMPLS and SDN With the introduction of a control plane in optical networks, this white paper describes the relationships between different protocols and architectures. Introduction

More information

Policy-Based Fault Management for Integrating IP over Optical Networks

Policy-Based Fault Management for Integrating IP over Optical Networks Policy-Based Fault Management for Integrating IP over Optical Networks Cláudio Carvalho 1, Edmundo Madeira 1, Fábio Verdi 2, and Maurício Magalhães 2 1 Institute of Computing (IC-UNICAMP) 13084-971 Campinas,

More information

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1

More information

Generalized MultiProtocol Label Switching

Generalized MultiProtocol Label Switching Generalized MultiProtocol Label Switching The DRAGON implementation at SARA J u l y 5 t h 2 0 0 6 M a r k M e i j e r i n k R o b P r i c k a e rt s Outline Hybrid networks and SARA GMPLS in a nutshell

More information

Comparative Analysis of Mpls and Non -Mpls Network

Comparative Analysis of Mpls and Non -Mpls Network Comparative Analysis of Mpls and Non -Mpls Network Madhulika Bhandure 1, Gaurang Deshmukh 2, Prof. Varshapriya J N 3 1, 2, 3 (Department of Computer Science and IT, VJTI, Mumbai-19 ABSTRACT A new standard

More information

Lightpath Planning and Monitoring

Lightpath Planning and Monitoring Lightpath Planning and Monitoring Ronald van der Pol 1, Andree Toonk 2 1 SARA, Kruislaan 415, Amsterdam, 1098 SJ, The Netherlands Tel: +31205928000, Fax: +31206683167, Email: rvdp@sara.nl 2 SARA, Kruislaan

More information

QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities)

QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities) QoS Switching H. T. Kung Division of Engineering and Applied Sciences Harvard University November 4, 1998 1of40 Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p

More information

DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL

DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL IJVD: 3(1), 2012, pp. 15-20 DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL Suvarna A. Jadhav 1 and U.L. Bombale 2 1,2 Department of Technology Shivaji university, Kolhapur, 1 E-mail: suvarna_jadhav@rediffmail.com

More information

Enterprise Network Simulation Using MPLS- BGP

Enterprise Network Simulation Using MPLS- BGP Enterprise Network Simulation Using MPLS- BGP Tina Satra 1 and Smita Jangale 2 1 Department of Computer Engineering, SAKEC, Chembur, Mumbai-88, India tinasatra@gmail.com 2 Department of Information Technolgy,

More information

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs

CHAPTER 6. VOICE COMMUNICATION OVER HYBRID MANETs CHAPTER 6 VOICE COMMUNICATION OVER HYBRID MANETs Multimedia real-time session services such as voice and videoconferencing with Quality of Service support is challenging task on Mobile Ad hoc Network (MANETs).

More information

MPLS is the enabling technology for the New Broadband (IP) Public Network

MPLS is the enabling technology for the New Broadband (IP) Public Network From the MPLS Forum Multi-Protocol Switching (MPLS) An Overview Mario BALI Turin Polytechnic Mario.Baldi@polito.it www.polito.it/~baldi MPLS is the enabling technology for the New Broadband (IP) Public

More information

Implementing VPN over MPLS

Implementing VPN over MPLS IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 3, Ver. I (May - Jun.2015), PP 48-53 www.iosrjournals.org Implementing VPN over

More information

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL

More information

A Fast Path Recovery Mechanism for MPLS Networks

A Fast Path Recovery Mechanism for MPLS Networks A Fast Path Recovery Mechanism for MPLS Networks Jenhui Chen, Chung-Ching Chiou, and Shih-Lin Wu Department of Computer Science and Information Engineering Chang Gung University, Taoyuan, Taiwan, R.O.C.

More information

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved.

WAN Topologies MPLS. 2006, Cisco Systems, Inc. All rights reserved. Presentation_ID.scr. 2006 Cisco Systems, Inc. All rights reserved. MPLS WAN Topologies 1 Multiprotocol Label Switching (MPLS) IETF standard, RFC3031 Basic idea was to combine IP routing protocols with a forwarding algoritm based on a header with fixed length label instead

More information

Building MPLS VPNs with QoS Routing Capability i

Building MPLS VPNs with QoS Routing Capability i Building MPLS VPNs with QoS Routing Capability i Peng Zhang, Raimo Kantola Laboratory of Telecommunication Technology, Helsinki University of Technology Otakaari 5A, Espoo, FIN-02015, Finland Tel: +358

More information

Network Management, MIBs and MPLS

Network Management, MIBs and MPLS Network Management, MIBs and MPLS Principles, Design and Implementation Stephen B. Morris 6 Network Management Software Components 2 Network Management, MIBs and MPLS Telnet/ HTTP/ HTTPS/ IPSec Northbound

More information

IP routing work area in TF-NGN (activity 9.3) Mauro.Campanella (a) garr.it

IP routing work area in TF-NGN (activity 9.3) Mauro.Campanella (a) garr.it IP routing work area in TF-NGN (activity 9.3) Mauro.Campanella (a) garr.it Why? : Routing Status The main characteristic of the routing topology are: - each AS has multiple, often redundant, peerings to

More information

ASON for Optical Networks

ASON for Optical Networks 1/287 01-FGC1010609 Rev B ASON for Optical Networks Ericsson Control Plane for DWDM Optically Switched Networks ASON for MHL3000 Introduction The growing demand for multiple service is changing the network

More information

CISCO INFORMATION TECHNOLOGY AT WORK CASE STUDY: CISCO IOS NETFLOW TECHNOLOGY

CISCO INFORMATION TECHNOLOGY AT WORK CASE STUDY: CISCO IOS NETFLOW TECHNOLOGY CISCO INFORMATION TECHNOLOGY AT WORK CASE STUDY: CISCO IOS NETFLOW TECHNOLOGY CISCO INFORMATION TECHNOLOGY SEPTEMBER 2004 1 Overview Challenge To troubleshoot capacity and quality problems and to understand

More information

Sprint Global MPLS VPN IP Whitepaper

Sprint Global MPLS VPN IP Whitepaper Sprint Global MPLS VPN IP Whitepaper Sprint Product Marketing and Product Development January 2006 Revision 7.0 1.0 MPLS VPN Marketplace Demand for MPLS (Multiprotocol Label Switching) VPNs (standardized

More information

Research and Development of IP and Optical Networking

Research and Development of IP and Optical Networking : The Future of IP and Optical Networking Research and Development of IP and Optical Networking Kohei Shiomoto, Ichiro Inoue, Ryuichi Matsuzaki, and Eiji Oki Abstract This article presents the targets,

More information

- Multiprotocol Label Switching -

- Multiprotocol Label Switching - 1 - Multiprotocol Label Switching - Multiprotocol Label Switching Multiprotocol Label Switching (MPLS) is a Layer-2 switching technology. MPLS-enabled routers apply numerical labels to packets, and can

More information

Disjoint Path Algorithm for Load Balancing in MPLS network

Disjoint Path Algorithm for Load Balancing in MPLS network International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 193-199 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

MPLS/BGP Network Simulation Techniques for Business Enterprise Networks

MPLS/BGP Network Simulation Techniques for Business Enterprise Networks MPLS/BGP Network Simulation Techniques for Business Enterprise Networks Nagaselvam M Computer Science and Engineering, Nehru Institute of Technology, Coimbatore, Abstract Business Enterprises used VSAT

More information

Path Selection Analysis in MPLS Network Based on QoS

Path Selection Analysis in MPLS Network Based on QoS Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt:36, No: 6 Özel Sayı (2015) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 36, No: 6 Special

More information

MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans

MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans MPLS Layer 2 VPNs Functional and Performance Testing Sample Test Plans Contents Overview 1 1. L2 VPN Padding Verification Test 1 1.1 Objective 1 1.2 Setup 1 1.3 Input Parameters 2 1.4 Methodology 2 1.5

More information

A Statistical Analysis of Network Parameters for the Self-management of Lambda-Connections

A Statistical Analysis of Network Parameters for the Self-management of Lambda-Connections A Statistical Analysis of Network Parameters for the Self-management of Lambda-Connections Tiago Fioreze 1, Lisandro Granville 2,RaminSadre 1,andAikoPras 1 1 University of Twente Design and Analysis of

More information

Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles.

Data Networking and Architecture. Delegates should have some basic knowledge of Internet Protocol and Data Networking principles. Data Networking and Architecture The course focuses on theoretical principles and practical implementation of selected Data Networking protocols and standards. Physical network architecture is described

More information

Addressing Inter Provider Connections With MPLS-ICI

Addressing Inter Provider Connections With MPLS-ICI Addressing Inter Provider Connections With MPLS-ICI Introduction Why migrate to packet switched MPLS? The migration away from traditional multiple packet overlay networks towards a converged packet-switched

More information

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Rameshbabu Prabagaran & Joseph B. Evans Information and Telecommunications Technology Center Department of Electrical Engineering

More information

A Customer Service Management Architecture for the Internet

A Customer Service Management Architecture for the Internet A Customer Service Management Architecture for the Internet Ron A. M. Sprenkels 1, Aiko Pras 1, Bert-Jan van Beijnum 1 and Leo de Goede 1 1 Computer Science department University of Twente (UT) P.O. Box

More information

An Emulation Study on PCE with Survivability: Protocol Extensions and Implementation

An Emulation Study on PCE with Survivability: Protocol Extensions and Implementation 1 An Emulation Study on PCE with Survivability: Protocol Extensions and Implementation Xiaomin Chen, Yuesheng Zhong, Admela Jukan Technische Universität Carolo-Wilhelmina zu Braunschweig Email: chen@ida.ing.tu-bs.de,y.zhong@tu-bs.de,

More information

Performance Analysis of a Traffic Engineering Solution for Multi-Layer Networks based on the GMPLS Paradigm

Performance Analysis of a Traffic Engineering Solution for Multi-Layer Networks based on the GMPLS Paradigm Performance Analysis of a Traffic Engineering Solution for Multi-Layer Networks based on the GMPLS Paradigm P. Iovanna, M. Settembre, R. Sabella ERI - Ericsson Lab Italy Roma, Italy {paola.iovanna, marina.settembre,

More information

SBSCET, Firozpur (Punjab), India

SBSCET, Firozpur (Punjab), India Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based

More information

DREAMER and GN4-JRA2 on GTS

DREAMER and GN4-JRA2 on GTS GTS Tech+Futures Workshop (Copenhagen) GTS Tech+Futures Workshop (Copenhagen) DREAMER and GN4-JRA2 on GTS CNIT Research Unit of Rome University of Rome Tor Vergata Outline DREAMER (Distributed REsilient

More information

MPLS Multiprotocol Label Switching

MPLS Multiprotocol Label Switching MPLS Multiprotocol Label Switching José Ruela, Manuel Ricardo FEUP Fac. Eng. Univ. Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200-465

More information

QoS Implementation For MPLS Based Wireless Networks

QoS Implementation For MPLS Based Wireless Networks QoS Implementation For MPLS Based Wireless Networks Subramanian Vijayarangam and Subramanian Ganesan Oakland University, Rochester, Michigan Abstract : Voice has been the primary application in wireless

More information

How To Provide Qos Based Routing In The Internet

How To Provide Qos Based Routing In The Internet CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Lightweight Monitoring of Label Switched Paths for Bandwidth Management

Lightweight Monitoring of Label Switched Paths for Bandwidth Management Lightweight ing of Label Switched Paths for Bandwidth Management P. Vilà, J.L. Marzo, E. Calle, L. Carrillo Institut d Informàtica i Aplicacions Universitat de Girona Girona (Spain) { perev marzo eusebi

More information

Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone

Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 9 ISSN 2047-3338 Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone Mushtaq

More information

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Fu-Min Chang #1, I-Ping Hsieh 2, Shang-Juh Kao 3 # Department of Finance, Chaoyang University of Technology

More information

ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling

ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling ICTTEN6172A Design and configure an IP- MPLS network with virtual private network tunnelling Release: 1 ICTTEN6172A Design and configure an IP-MPLS network with virtual private network tunnelling Modification

More information

ADAPTIVE RESOURCE ALLOCATION AND INTERNET TRAFFIC ENGINEERING ON DATA NETWORK

ADAPTIVE RESOURCE ALLOCATION AND INTERNET TRAFFIC ENGINEERING ON DATA NETWORK ADAPTIVE RESOURCE ALLOCATION AND INTERNET TRAFFIC ENGINEERING ON DATA NETWORK ABSTRACT Hatim Hussein Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia, USA hhussei1@gmu.edu

More information

Abstract. 978-1-4244-3487-9/09/$25.00 c 2009 IEEE

Abstract. 978-1-4244-3487-9/09/$25.00 c 2009 IEEE Abstract Network monitoring allows network managers to get a better insight in the network traffic transiting in a managed network. In order to make the tasks of a network manager easier, many network

More information

Independent Submission. R. Huang L. Andersson M. Chen. Huawei Technologies Co., Ltd. August 2015

Independent Submission. R. Huang L. Andersson M. Chen. Huawei Technologies Co., Ltd. August 2015 Independent Submission Request for Comments: 7625 Category: Informational ISSN: 2070-1721 J. T. Hao Huawei Technologies Co., Ltd P. Maheshwari Bharti Airtel, Ltd. R. Huang L. Andersson M. Chen Huawei Technologies

More information

Section 1: Network monitoring based on flow measurement techniques

Section 1: Network monitoring based on flow measurement techniques Section 1: Network monitoring based on flow measurement techniques This research is performed within the scope of the SURFnet Research on Networking (RON) project (Activity 1.2 - Measurement Scenarios).

More information

WHITE PAPER. Addressing Inter Provider Connections with MPLS-ICI CONTENTS: Introduction. IP/MPLS Forum White Paper. January 2008. Introduction...

WHITE PAPER. Addressing Inter Provider Connections with MPLS-ICI CONTENTS: Introduction. IP/MPLS Forum White Paper. January 2008. Introduction... Introduction WHITE PAPER Addressing Inter Provider Connections with MPLS-ICI The migration away from traditional multiple packet overlay networks towards a converged packet-switched MPLS system is now

More information

Quality of Service Routing Network and Performance Evaluation*

Quality of Service Routing Network and Performance Evaluation* Quality of Service Routing Network and Performance Evaluation* Shen Lin, Cui Yong, Xu Ming-wei, and Xu Ke Department of Computer Science, Tsinghua University, Beijing, P.R.China, 100084 {shenlin, cy, xmw,

More information

Cisco Discovery 3: Introducing Routing and Switching in the Enterprise 157.8 hours teaching time

Cisco Discovery 3: Introducing Routing and Switching in the Enterprise 157.8 hours teaching time Essential Curriculum Computer Networking II Cisco Discovery 3: Introducing Routing and Switching in the Enterprise 157.8 hours teaching time Chapter 1 Networking in the Enterprise-------------------------------------------------

More information

SSVP SIP School VoIP Professional Certification

SSVP SIP School VoIP Professional Certification SSVP SIP School VoIP Professional Certification Exam Objectives The SSVP exam is designed to test your skills and knowledge on the basics of Networking and Voice over IP. Everything that you need to cover

More information

IxNetwork TM MPLS-TP Emulation

IxNetwork TM MPLS-TP Emulation IxNetwork TM MPLS-TP Emulation Test the Functionality, Performance, and Scalability of an MPLS-TP Ingress, Egress, or Transit Node MPLS has come a long way since its original goal to allow core routers

More information

Lesson 13: MPLS Networks

Lesson 13: MPLS Networks Slide supporting material Lesson 13: MPLS Networks Giovanni Giambene Queuing Theor and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved IP Over ATM Once defined IP

More information

An Optical UNI Architecture for the GIGA Project Testbed Network

An Optical UNI Architecture for the GIGA Project Testbed Network An Optical UNI Architecture for the GIGA Project Testbed Network Rafael Pasquini, Student, IEEE, Fábio L. Verdi, Student, IEEE, Luiz Gustavo Zuliani, Student, IEEE, Maurício Magalhães, Member, IEEE and

More information

SINET. Optical Network Testbeds Workshop 3 (ONT3) September 8, 2006. Jun Matsukata National Institute of Informatics

SINET. Optical Network Testbeds Workshop 3 (ONT3) September 8, 2006. Jun Matsukata National Institute of Informatics SINET Optical Network Testbeds Workshop 3 (ONT3) September 8, 2006 Jun Matsukata National Institute of Informatics 1 SINET The Science Information Network (SINET) has been serving as the information network

More information

A Resilient Path Management for BGP/MPLS VPN

A Resilient Path Management for BGP/MPLS VPN A Resilient Path Management for BGP/MPLS VPN APNOMS2003 1 Introduction APNOMS2003 2 APNOMS2003 3 BGP/MPLS VPN Configuration MPLS/MP-iBGP VPN 1 VPN 1 VPN 2 VPN 2 BGP/MPLS VPN Overview BGP/MPLS Virtual Private

More information

Junos MPLS and VPNs (JMV)

Junos MPLS and VPNs (JMV) Junos MPLS and VPNs (JMV) Course No: EDU-JUN-JMV Length: Five days Onsite Price: $32500 for up to 12 students Public Enrollment Price: $3500/student Course Level JMV is an advanced-level course. Prerequisites

More information

Recovery Modeling in MPLS Networks

Recovery Modeling in MPLS Networks Proceedings of the Int. Conf. on Computer and Communication Engineering, ICCCE 06 Vol. I, 9-11 May 2006, Kuala Lumpur, Malaysia Recovery Modeling in MPLS Networks Wajdi Al-Khateeb 1, Sufyan Al-Irhayim

More information

AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0

AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0 AT&T Managed IP Network Service (MIPNS) MPLS Private Network Transport Technical Configuration Guide Version 1.0 Introduction...2 Overview...2 1. Technology Background...2 2. MPLS PNT Offer Models...3

More information

Multiple Layer Traffic Engineering in NTT Network Service

Multiple Layer Traffic Engineering in NTT Network Service Multi-layer traffic engineering in photonic-gmpls-router networks Naoaki Yamanaka, Masaru Katayama, Kohei Shiomoto, Eiji Oki and Nobuaki Matsuura * NTT Network Innovation Laboratories * NTT Network Service

More information

SSVVP SIP School VVoIP Professional Certification

SSVVP SIP School VVoIP Professional Certification SSVVP SIP School VVoIP Professional Certification Exam Objectives The SSVVP exam is designed to test your skills and knowledge on the basics of Networking, Voice over IP and Video over IP. Everything that

More information

MPLS Pseudowire Innovations: The Next Phase Technology for Today s Service Providers

MPLS Pseudowire Innovations: The Next Phase Technology for Today s Service Providers MPLS Innovations: The Next Phase Technology for Today s Service Providers Introduction MPLS technology enables a smooth evolution of core networks within today s service provider infrastructures. In particular,

More information

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport

MPLS-TP. Future Ready. Today. Introduction. Connection Oriented Transport MPLS-TP Future Ready. Today Introduction As data traffic started dominating telecom networks, there was a need for transport data networks, as opposed to transport TDM networks. Traditional transport technologies

More information

Flexible SDN Transport Networks With Optical Circuit Switching

Flexible SDN Transport Networks With Optical Circuit Switching Flexible SDN Transport Networks With Optical Circuit Switching Multi-Layer, Multi-Vendor, Multi-Domain SDN Transport Optimization SDN AT LIGHT SPEED TM 2015 CALIENT Technologies 1 INTRODUCTION The economic

More information

Testing VoIP on MPLS Networks

Testing VoIP on MPLS Networks Application Note Testing VoIP on MPLS Networks Why does MPLS matter for VoIP? Multi-protocol label switching (MPLS) enables a common IP-based network to be used for all network services and for multiple

More information

Analyzing Capabilities of Commercial and Open-Source Routers to Implement Atomic BGP

Analyzing Capabilities of Commercial and Open-Source Routers to Implement Atomic BGP Telfor Journal, Vol. 2, No. 1, 2010. 13 Analyzing Capabilities of Commercial and Open-Source Routers to Implement Atomic BGP Aleksandar Cvjetić and Aleksandra Smiljanić Abstract The paper analyzes implementations

More information

4 Internet QoS Management

4 Internet QoS Management 4 Internet QoS Management Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se September 2008 Overview Network Management Performance Mgt QoS Mgt Resource Control

More information

Designing and Developing Scalable IP Networks

Designing and Developing Scalable IP Networks Designing and Developing Scalable IP Networks Guy Davies Telindus, UK John Wiley & Sons, Ltd Contents List of Figures List of Tables About the Author Acknowledgements Abbreviations Introduction xi xiii

More information

An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks

An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks Arunkumar C K M.Tech student, Dept. of ECE, Dayananda Sagar College of Engineering, VTU, Banglore, India ABSTRACT: Increasing demand

More information

Redefine Network Visibility in the Data Center with the Cisco NetFlow Generation Appliance

Redefine Network Visibility in the Data Center with the Cisco NetFlow Generation Appliance White Paper Redefine Network Visibility in the Data Center with the Cisco NetFlow Generation Appliance What You Will Learn Modern data centers power businesses through a new generation of applications,

More information

Short Case Study: Automation, Risk Reduction, and Fail Over Routing of Imagery Products Using Multiprotocol Label Switching (MPLS) Cloud

Short Case Study: Automation, Risk Reduction, and Fail Over Routing of Imagery Products Using Multiprotocol Label Switching (MPLS) Cloud Short Case Study: Automation, Risk Reduction, and Fail Over Routing of Imagery Products Using Multiprotocol Label Switching (MPLS) Cloud Olga Aparicio & Mun-Wai Hon Ground Systems Architecture Workshop

More information

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone.

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone. Anritsu Network Solutions Voice Over IP Application Note MultiFlow 5048 CALL Manager Serv # 10.100.27 255.255.2 IP address 10.100.27.4 OC-48 Link 255 255 25 IP add Introduction Voice communications over

More information

2004 Networks UK Publishers. Reprinted with permission.

2004 Networks UK Publishers. Reprinted with permission. Riikka Susitaival and Samuli Aalto. Adaptive load balancing with OSPF. In Proceedings of the Second International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks (HET

More information

Cisco Configuring Basic MPLS Using OSPF

Cisco Configuring Basic MPLS Using OSPF Table of Contents Configuring Basic MPLS Using OSPF...1 Introduction...1 Mechanism...1 Hardware and Software Versions...2 Network Diagram...2 Configurations...2 Quick Configuration Guide...2 Configuration

More information

IP Traffic Engineering over OMP technique

IP Traffic Engineering over OMP technique IP Traffic Engineering over OMP technique 1 Károly Farkas, 1 Zoltán Balogh, 2 Henrik Villför 1 High Speed Networks Laboratory Department of Telecommunications and Telematics Technical University of Budapest,

More information

PRASAD ATHUKURI Sreekavitha engineering info technology,kammam

PRASAD ATHUKURI Sreekavitha engineering info technology,kammam Multiprotocol Label Switching Layer 3 Virtual Private Networks with Open ShortestPath First protocol PRASAD ATHUKURI Sreekavitha engineering info technology,kammam Abstract This paper aims at implementing

More information

Multi Protocol Label Switching with Quality of Service in High Speed Computer Network

Multi Protocol Label Switching with Quality of Service in High Speed Computer Network Multi Protocol Label Switching with Quality of Service in High Speed Computer Network Jitendra Joshi, Sonali Gupta, Priti Gupta, Nisha Singh, Manjari Kumari Department of Computer Science and Engineering

More information

MPLS Network Design & Monitoring

MPLS Network Design & Monitoring Slide 1 MPLS Network Design & Monitoring Slide 2 What Is MPLS Traffic Engineering? Traffic Control -Unexpected Incidences -Fiber Cut -Delay Network Optimization Efficient Use of Network Resources Topology

More information

GMPLS Network Management: Challenges and Solutions

GMPLS Network Management: Challenges and Solutions GMPLS Network Management: Challenges and Solutions Thomas D. Nadeau Technical Leader 1 Fundamental Question Why is network management so important to the success of GMPLS/UCP? 2 Agenda Motivations and

More information

Avaya ExpertNet Lite Assessment Tool

Avaya ExpertNet Lite Assessment Tool IP Telephony Contact Centers Mobility Services WHITE PAPER Avaya ExpertNet Lite Assessment Tool April 2005 avaya.com Table of Contents Overview... 1 Network Impact... 2 Network Paths... 2 Path Generation...

More information

Bandwidth Management in MPLS Networks

Bandwidth Management in MPLS Networks School of Electronic Engineering - DCU Broadband Switching and Systems Laboratory 1/17 Bandwidth Management in MPLS Networks Sanda Dragos & Radu Dragos Supervised by Dr. Martin Collier email: dragoss@eeng.dcu.ie

More information

MPLS in Private Networks Is It a Good Idea?

MPLS in Private Networks Is It a Good Idea? MPLS in Private Networks Is It a Good Idea? Jim Metzler Vice President Ashton, Metzler & Associates March 2005 Introduction The wide area network (WAN) brings indisputable value to organizations of all

More information

Tackling the Challenges of MPLS VPN Testing. Todd Law Product Manager Advanced Networks Division

Tackling the Challenges of MPLS VPN Testing. Todd Law Product Manager Advanced Networks Division Tackling the Challenges of MPLS VPN ing Todd Law Product Manager Advanced Networks Division Agenda Background Why test MPLS VPNs anyway? ing Issues Technical Complexity and Service Provider challenges

More information

Networking 4 Voice and Video over IP (VVoIP)

Networking 4 Voice and Video over IP (VVoIP) Networking 4 Voice and Video over IP (VVoIP) Course Objectives This course will give delegates a good understanding of LANs, WANs and VVoIP (Voice and Video over IP). It is aimed at those who want to move

More information

packet retransmitting based on dynamic route table technology, as shown in fig. 2 and 3.

packet retransmitting based on dynamic route table technology, as shown in fig. 2 and 3. Implementation of an Emulation Environment for Large Scale Network Security Experiments Cui Yimin, Liu Li, Jin Qi, Kuang Xiaohui National Key Laboratory of Science and Technology on Information System

More information

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University

More information

TE in action. Some problems that TE tries to solve. Concept of Traffic Engineering (TE)

TE in action. Some problems that TE tries to solve. Concept of Traffic Engineering (TE) 1/28 2/28 TE in action S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning Networking laboratory 3/28 4/28 Concept of Traffic Engineering (TE) Traffic Engineering (TE) (Traffic Management)

More information

Software Defined Networking (SDN) - Open Flow

Software Defined Networking (SDN) - Open Flow Software Defined Networking (SDN) - Open Flow Introduction Current Internet: egalitarian routing/delivery based on destination address, best effort. Future Internet: criteria based traffic management,

More information

A Coordinated. Enterprise Networks Software Defined. and Application Fluent Programmable Networks

A Coordinated. Enterprise Networks Software Defined. and Application Fluent Programmable Networks A Coordinated Virtual Infrastructure for SDN in Enterprise Networks Software Defined Networking (SDN), OpenFlow and Application Fluent Programmable Networks Strategic White Paper Increasing agility and

More information

Network Virtualization Server for Adaptive Network Control

Network Virtualization Server for Adaptive Network Control Network Virtualization Server for Adaptive Network Control Takashi Miyamura,YuichiOhsita, Shin ichi Arakawa,YukiKoizumi, Akeo Masuda, Kohei Shiomoto and Masayuki Murata NTT Network Service Systems Laboratories,

More information

software networking Jithesh TJ, Santhosh Karipur QuEST Global

software networking Jithesh TJ, Santhosh Karipur QuEST Global software defined networking Software Defined Networking is an emerging trend in the networking and communication industry and it promises to deliver enormous benefits, from reduced costs to more efficient

More information

Backbone Modeling for Carrying Local Content and Over-the-Top Traffic

Backbone Modeling for Carrying Local Content and Over-the-Top Traffic White Paper Backbone Modeling for Carrying Local Content and Over-the-Top Traffic Decision-Making Criteria Using Cisco MATE Collector and Cisco MATE Design and Their Impact on Backbone Design What You

More information

Opnet Based simulation for route redistribution in EIGRP, BGP and OSPF network protocols

Opnet Based simulation for route redistribution in EIGRP, BGP and OSPF network protocols IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. IV (Jan. 2014), PP 47-52 Opnet Based simulation for route redistribution

More information

Data Communication Networks and Converged Networks

Data Communication Networks and Converged Networks Data Communication Networks and Converged Networks The OSI Model and Encapsulation Layer traversal through networks Protocol Stacks Converged Data/Telecommunication Networks From Telecom to Datacom, Asynchronous

More information

MPLS Traffic Engineering in ISP Network

MPLS Traffic Engineering in ISP Network MPLS Traffic Engineering in ISP Network Mohsin Khan Birmingham City University, England ABSTRACT Multi Protocol Label Switching (MPLS) is an innovative and vibrant technology. The most famous applications

More information

ISTANBUL. 1.1 MPLS overview. Alcatel Certified Business Network Specialist Part 2

ISTANBUL. 1.1 MPLS overview. Alcatel Certified Business Network Specialist Part 2 1 ISTANBUL 1.1 MPLS overview 1 1.1.1 Principle Use of a ATM core network 2 Overlay Network One Virtual Circuit per communication No routing protocol Scalability problem 2 1.1.1 Principle Weakness of overlay

More information