Human cord blood reprogrammed into embryonic-like stem cells

Size: px
Start display at page:

Download "Human cord blood reprogrammed into embryonic-like stem cells"

Transcription

1 STATE OF THE ART 3B-PL2 ISBT Science Series (2011) 6, ª 2011 The Author(s). ISBT Science Series ª 2011 International Society of Blood Transfusion Human cord blood reprogrammed into embryonic-like stem cells A. Giorgetti, R. Fazzina, M. Li & J. C. I. Belmonte Salk Institute for Biological Studies, La Jolla, USA Embryonic stem (ES) cell therapies are often promoted as the optimal stem cell source for regenerative medicine applications. Although the first clinical trail involving hes progenitors has been approved, ES cell applications are currently limited by ethical, political and regulatory hurdles. In addition, the use of hes cell-derived progenitors has been fraught with difficulties associated with immunological incompatibility, due in part to the increase in expression of major histocompatibility complex molecules during differentiation of hes cells. Induced pluripotent stem (ips) cells could solve both the ethical problem of human embryo use and the immunological rejection problem. Patient-specific ipsc have been hailed as an enormous development for regenerative medicine since transplantation of the differentiated progeny of these individual ipsc should not be subject to immune rejection when transplanted back into a patient. However, in many instances, a ready to use approach could be desirable, such as for cell therapy of acute conditions or when the patient s somatic cells are altered as a consequence of a chronic disease or ageing. An alternative could be the generation of healthy ipsc lines with a wide genetic variety rather than specific-patient ipsc, which will enable broader immune histocompatibility. However, this is not presently feasible as many thousand of hips-cell lines would be required to ensure sufficient diversity. Cord blood (CB) stem cells could represent a new source of cells for the generation of clinically sound ipsc in an allogenic setting. For example, a bank of CB-iPSC derived from selected donors homozygous for common human leukocyte antigen (HLA) haplotypes, could significantly reduce the number of CB-iPSC lines needed to provide a perfect HLA match for a large percentage of the population. We have recently reported that the overexpression of only two transcription factors, OCT4 and SOX2, are sufficient to reprogram CB CD133+ cells faster than fibroblasts and keratinocytes. CB-iPSC showed a differential potential similar to human embryonic stem cells in vitro and in vivo. Following specific in vitro differentiation protocols, CBiPSC gave rise also to specialized cell types such as rhythmically beating cardiomyocytes and dopaminergic neurons. The generation of CB-iPSC lines from thawed CB units, that had been stored frozen for more than 8 years, has excluded the possibility that the standard cryopreservation protocol could affect the reprogramming process. In addition, we have demonstrated that CB cells were properly reprogrammed into pluripotent stem cells from both the expression and the epigenetic point of view. However, a number of technical issues need to be resolved before the ips technology can be used in a clinical setting. These include the establishment of efficient reprogramming strategies that do not result in genetically modified cells as well as the development of robust protocols for differentiating ipsc to self-renewing stem cells and lineage-committed cells. Ultimately, these methods must be adapted to the generation of ipsc under good manufacturing practice conditions. Correspondence: J.C. Izpisua Belmonte, Salk Institute for Biological Studies, La Jolla, USA 107

2 108 A. Giorgetti et al. Introduction A primary goal of regenerative medicine is to produce new cells to repair or replace diseased and damaged tissues. The discovery of human embryonic stem cells (hesc) opened up the possibility for the application of human pluripotent stem cells in transplantation therapy, drug screening, and toxicology studies, as well as functional genomics and proteomics research [1,2]. Recently, the Food and Drug Administration (FDA) has approved clinical trials involving hes cell progenitors for the treatment of patients with spinal cord injury and congenital retinopathies. However, the use of hes cell-derived progenitors has been fraught difficulties associated with the fact that they could form tumours and they are ethically controversial because they originate from human embryos. In addition, problems related to the immune rejection represent another limit for the application of hesc in transplantation. It would be difficult to obtain the large numbers of embryos required to cover a wide range of human leukocyte antigen (HLA) haplotype for close tissue matching to patients [3]. Reprogramming somatic cells into pluripotent cells could address these limitations. Among the many approaches proposed, such as somatic cell nuclear transfer (SCNI) [4,5] or cell-cell fusion of somatic cells and hescs [6,7], the generation of induced pluripotent stem cells (ips- Cs) represents the most promising reprogramming technique for human cells [8,9]. So far, human ipscs have been generated from numerous somatic cell types [10] and recently our group have described the possibility to generate ipscs also from Cord BLOOD (CB) stem cells [11]. Generation of human ips cells A huge amount of effort has gone into developing functional equivalents of hesc that do not involve the destruction of human embryos or eggs. The most straight forward way for the induction of pluripotent stem cells was pioneered by Takahashi and Yamanaka [8]. They demonstrated that retroviral-mediated overexpression of just four transcription factors (OCT4, SOX2, KLF4 and c-myc), was sufficient to reprogramme murine fibroblasts to an embryonic-like state. Lately the same group, contemporaneously with other groups [12,13], succeeded in generating ipscs starting from human somatic cells. The ipscs are similar to nesc in morphology, proliferation, differentiation and teratoma formation. However, small differences in gene expression and DNA methylation patterns between ipscs and nesc have been observed [14]. In general, the efficiency of ipscs generation is low and the KINETIC of reprogramming varies with different target cell populations. Although human ipscs have been generated using different type of somatic cells, such as skin fibroblasts and keratinocytes, neural stem cells is hepatocytes and blood cells, it is still under debate what the best source to derive ipscs [9,15,16]. The possibility of reprogramming mature somatic cells has allowed for the production of pluripotent cells that carry the specific GENOME of individuals, providing an unprecedented experimental platform to model human diseases. Patient-specific ipscs could help to establish in vitro disease models and might lead to the discovery of drugs for treating patients. This is particularly important for diseases that lack adequate in vitro or animal models. Therefore, patient-specific ipscs have been hailed as an enormous development for regenerative medicine as transplantation of the differentiated progeny of these individual ipscs should not be subject to immune rejection when transplanted back into a patient. So far, disease-specific ipsc lines have already generated from fibroblasts of patients with amyotrophic later sclerosis [17], juvenile onset type-1 diabetes mellitus [18], Parkinson s disease and spinal muscular atrophy [19], as well as b-thalassemia and Fanconi anaemia [20]. However, in many instances, a ready to use approach could be desirable, such as for cell therapy of acute conditions or when the patient s somatic cells are altered as a consequence of a chronic disease or ageing. An option could be the generation of healthy ipsc lines with a wide genetic variety rather than specific-patient ipscs, which will enable broader immune histocompatibility. CB stem cells, currently widely used as a source of haematopoietic stem cells for transplantation, appear ideally suited for the generation of clinically sound ipscs in an allogenic setting. Cord blood ipscs A general impression is that the differentiation status of the target cells influences the reprogramming process, as illustrated by the fact that haematopoietic stem cells are more efficiently reprogrammed than terminally differentiated B and T-lymphocytes [21]. CB cells have several distinct advantages over other haematopoietic stem cell sources: they can be cryopreserved and stored for years without loss of viability and selfrenewal capability. In comparison with stem cell population derived from Bone Marrow (BM) or mobilized peripheral blood (mpb), they have greater tolerance across 1 or 2 HLA mismatching and reduced risk of viral contamination and graft-versus-host disease during allogenic transplantation. Moreover, CB cells can be harvested without any risk for the donor and there are easily characterized and banked. Public banking of CB units has been established throughout the world, providing easy access to CB cells from worldwide registries [22]. Currently the clinical use of ipscs is limited, because they are generated from somatic cells that have accumulated genetic mutations

3 Human cord blood reprogrammed 109 (a) (b) (c) (d) (e) Fig. 1 Images related to ips cells characterization derived using a fresh cord blood unit: (a) Images of established ips cells before and after AP staining, (b) Images of immunocytochemistry for pluripotency markers such as OCT4, SOX2, NANOG, TRA-1-81, TRA 1-60, SSEA-3 and SSEA-4. Blue indicates nuclei stained with Dapi (scale bar, 250 lm), (c) Generation of EBs using a fire finely bore glass pasteur pipette, (d) in vitro differentiation of ips cells into the three primary germ layers [Ectoderm TUJ1 (green), Endoderm-AFP (green) and FOXA2 (red), and Mesoderm-ASA (green) and SMA (red)], (e) Immunofluorescence analysis of teratoma sections after 60 days after intratesticular injection in SCID mice showing ectoderm [TUJ-1 and GFAP positive], endoderm [AFP and FOXA2 positive] and mesoderm [ASA and SMA positive] structures. over the patient s lifetime. These mutations are passed onto the ipscs during reprogramming and therefore promote the progressive loss of cellular function and cancer formation. In this contest, CB cells could minimize this problem since they are young carrying less somatic mutations. All these characteristics fortify CB as a very powerful and readily accessible cell source for the generation of healthy allogenic ipscs lines.

4 110 A. Giorgetti et al. The first report of ipscs induction from human blood cells utilized CD34+ mpb [23]. However, compared to newborn CB stem cells, adult mpb cells will have the potential disadvantages that they may have accumulated genomic alterations as a result of ageing or disease, and that the pharmacological treatment used to mobilize the adult haematopoietic stem cell compartment represents a health risk for the donor [24]. We have demonstrated that CB CD133+ cells, enriched in HSC and HPC, can be reprogrammed using 4 (OCT4, SOX2, KLf4 and c-myc, OSKM), 3 (OCT4, SOX2 and KLf4, OSK) as well as 2 (OCT4 and SOX2, OS) transcription factors. CB CD133+ cells were isolated using standard CD133 immuno-magnetic selection and infected by retroviral vectors. 15 days p.i. colonies, exhibiting typical hes cell morphology, appeared and we named them CB-iPSC. On average, infected CD133+ cells gave rise to 5 6 hes-like colonies and using independent CB units we could generate a total of 27 CB-iPSC lines. In addition, in order to exclude the possibility that the standard cryopreservation protocol did not affect the reprogramming ability, we have generated CB-iPSC lines from thawed CB units that had been stored frozen for more than 5 years. All the CB-iPSC lines were characterized for expression of pluripotency associated transcription factors and surface markers, and pluripotent differentiation ability in vitro and in vivo. CB-iPSC lines showed strong alkaline phosphatase and revealed expression of pluripotency markers such as OCT4, SOX2, TRA-1-81, TRA-1-60, SSEA3, SSEA4, and NANOG (Fig. 1a, b). All the CB-iPSCs tested could differentiate in vitro into derivatives of the three embryonic germ layers (Fig. 1c, d) and generate in vivo, upon injection into immuno-compromised SCID beige mice, complex intra-testicular teratomas (Fig. 1e). Additionally, following specific in vitro differentiation protocols, CB-iPSC gave rise also to specialized mesoderm-derived cell types such as rhythmically beating cardiomyocytes and ectodermal cells such as dopaminergic neurons. Finally, by global transcription profile and DNA promoter methylation analysis, we could demonstrate that CB cells are properly reprogrammed into pluripotent stem cells from both the expression and the epigenetic point of view. In addition, cytogenetic analysis showed that the CB-iPSC lines maintained a normal 46XY or 46 SPACC XX karyotype after more than 10 passages in culture. Moreover, the presence of male chromosomal excluded the possibility that the reprogrammed cells arise from a small fraction of contaminating mother cells known to be present in the initial CB sample. Our results confirmed that CB-iPSCs are transcriptionally reprogrammed to a state similar to hips and hes cells, are karyotypically stable, and show a differentiation potential consistent with pluripotency [11]. Conclusion The possibility to generate ipscs from CB stem cells offer evident logistic advantages over the use of adult somatic cell types or adult stem cells for the purpose of creating ipsc cell banks. To date, more than CB units immunologically characterized are currently available worldwide through a network of CB banks [22,25]. This is the most comprehensive collection of potential source cells with diverse (and characterized) HLA types available, which could enable the generation of ipscs with perfect HLA match for any given patient. Moreover, selection of donors homozygous for common HLA haplotypes could be easily accomplished using banked CB units and would significantly reduce the number of CB-iPSC lines needed to provide a perfect HLA match for a large percentage of the population [26]. However, although ipsc technology has advanced rapidly, it remains still unclear whether any ipscs will be therapeutically useful. Several technical issues, such as high efficiency, good differentiation protocol, functional engraftment and safety, have still to be improved and resolved before the full potential of ipscs can be realized. For example, recently it has been suggested that beyond the issue of whether the ipscs are derived with or without genomic integrations, the reprogramming process itself can produce mutations[27]. Therefore, in order to have a realistic impact on a clinical level it would be useful set up protocols to generate better ipscs, as well as develop safety mechanisms to control those cells once they are transplanted. Disclosures The authors declare that there are no potential conflicts of interest. References 1 Thomson JA, Itskovitz-Eloor J, Smapiros S, et al.: Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: Reubinoff BE, Pera MF, Fong CY, et al.: Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18: Nakajima F, Tokunaga K, Nakatsuji N: Human leukocyte antigen matching estimations in a hypothetical bank of human embryonic stem cell lines in the Japanese population for use in

5 Human cord blood reprogrammed 111 cell transplantation therapy. Stem cells (Dayton, Ohio) 2007; 25: Campbell KH, McWhir J, Ritchie WA, et al.: Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380: Byrne JA, et al.: Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 2007; 450: Cowan CA, Atienza J, Melton DA, et al.: Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005; 309: Yu J, Vodyanik MA, He P, et al.: Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem cells 2006; 24: Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: Takahashi K, et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: Maherali N, Hochedlinger K: Guidelines and techniques for the generation of induced pluripotent stem cells. Cell stem cell 2008; 3: Giorgetti A, et al.: Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell stem cell 2009; 5: Yu J, et al.: Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 2007; 318: Park IH, et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451: Yu J, et al.: Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 6: Aasen T, et al.: Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26: Kim JB, et al.: Direct reprogramming of human neural stem cells by OCT4. Nature 2009; 461: Dimos JT, et al.: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321: Park IH, et al.: Disease-specific induced pluripotent stem cells. Cell 2008; 134: Ebert AD, et al.: Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009; 457: Raya A, et al.: Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009; 460: Eminli S, et al.: Differentiation stage determines potential of haematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 2009; 41: Gluckman E, Rocha V: Cord blood transplantation: state of the art. Haematologica 2009; 94: Loh YH, et al.: Generation of induced pluripotent stem cells from human blood. Blood 2009; 113: Anderlini P: Effects and safety of granulocyte colony-stimulating factor in healthy volunteers. Curr Opin Hematol 2009; 16: Rocha V, et al.: Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Eng J Med 2004; 351: Taylor CJ, et al.: Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366: Gore A, Li Z, Fung HL, et al.: Somatic-coding mutations in human induced pluripotent stem cells. Nature 2011; 471: 63 67

outline What is a stem cell? Tissue stem cell Embryonic stem cell ips cell -production -advantages Applications Issue Conclusion

outline What is a stem cell? Tissue stem cell Embryonic stem cell ips cell -production -advantages Applications Issue Conclusion outline What is a stem cell? Tissue stem cell Embryonic stem cell ips cell -production -advantages Applications Issue Conclusion 1 What is a stem cell? Definition: Self-renew themselves a number of times

More information

An Introduction to Stem Cell Biology. Michael L. Shelanski, MD,PhD Professor of Pathology and Cell Biology Columbia University

An Introduction to Stem Cell Biology. Michael L. Shelanski, MD,PhD Professor of Pathology and Cell Biology Columbia University An Introduction to Stem Cell Biology Michael L. Shelanski, MD,PhD Professor of Pathology and Cell Biology Columbia University Figures adapted from ISSCR. Presentations of Drs. Martin Pera (Monash University),

More information

Serum- and feeder-free media

Serum- and feeder-free media Stem Cell Research Serum- and feeder-free media StemPro hesc SFM Human Embryonic Stem Cell Culture Medium Stem Cell Research StemPro hesc SFM a fully defined, serum- and feederfree medium (SFM) specially

More information

CHARACTERISTIC FEATURES OF STEM CELLS. CLONING TECHNOLOGIES

CHARACTERISTIC FEATURES OF STEM CELLS. CLONING TECHNOLOGIES CHARACTERISTIC FEATURES OF STEM CELLS. CLONING TECHNOLOGIES 1 Science is discovering the unknown Stem cell field is still in its infancy Human embryonic stem cell research is a decade old, adult stem cell

More information

International Stem Cell Registry

International Stem Cell Registry International Stem Cell Registry Importance of Stem Cells Stem cells are model systems for the study of development and disease. Pluripotent stem cells offer new tools for drug design and discovery. Pluripotent

More information

Roche Position on Human Stem Cells

Roche Position on Human Stem Cells Roche Position on Human Stem Cells Background Stem cells and treating diseases. Stem cells and their applications offer an enormous potential for the treatment and even the cure of diseases, along with

More information

Stem Cell Quick Guide: Stem Cell Basics

Stem Cell Quick Guide: Stem Cell Basics Stem Cell Quick Guide: Stem Cell Basics What is a Stem Cell? Stem cells are the starting point from which the rest of the body grows. The adult human body is made up of hundreds of millions of different

More information

GM23226*A. Certificate of Analysis

GM23226*A. Certificate of Analysis GM23226*A Certificate of Analysis Product Description Human fibroblast line reprogrammed with four factors (Oct 4, Sox 2, c-myc and Klf-4) using retroviral vector Publication(s) describing ipsc establishment

More information

The ethics of stem cell research and treatment

The ethics of stem cell research and treatment The ethics of stem cell research and treatment Bernard Lo, M.D. March 12, 2009 1 hesc: ethical controversies Moral status of embryo? Clearly a potential person Some believe a person with rights Is hesc

More information

Guidance For Research Involving Human Embryonic Stem Cells, Germ Cells, And Cells Obtained From Cord Blood

Guidance For Research Involving Human Embryonic Stem Cells, Germ Cells, And Cells Obtained From Cord Blood Guidance For Research Involving Human Embryonic Stem Cells, Germ Cells, And Cells Obtained From Cord Blood Supreme Council of Health Department of Research Guidance Regarding Research Involving Human Embryonic

More information

guides BIOLOGY OF AGING STEM CELLS An introduction to aging science brought to you by the American Federation for Aging Research

guides BIOLOGY OF AGING STEM CELLS An introduction to aging science brought to you by the American Federation for Aging Research infoaging guides BIOLOGY OF AGING STEM CELLS An introduction to aging science brought to you by the American Federation for Aging Research WHAT ARE STEM CELLS? Stem cells are cells that, in cell cultures

More information

STEM CELL FELLOWSHIP

STEM CELL FELLOWSHIP Module I: The Basic Principles of Stem Cells 1. Basics of Stem Cells a. Understanding the development of embryonic stem cells i. Embryonic stem cells ii. Embryonic germ cells iii. Differentiated stem cell

More information

Stem Cells and Inner Ear Cell Regeneration. Stefan Heller Stanford University School of Medicine

Stem Cells and Inner Ear Cell Regeneration. Stefan Heller Stanford University School of Medicine Stem Cells and Inner Ear Cell Regeneration Stefan Heller Stanford University School of Medicine Embryonic stem cells Induced pluripotent stem cells Somatic stem cells 50 µm Derived from the inner cell

More information

Chapter 16 Reproductive Technology, Gene Therapy, and Stem Cells (modified)

Chapter 16 Reproductive Technology, Gene Therapy, and Stem Cells (modified) Chapter 16 Reproductive Technology, Gene Therapy, and Stem Cells (modified) Assisted Reproductive Technologies (ART) Artificial insemination (AI) In vitro fertilization (IVF) Gamete intrafallopian transfer

More information

Should Stem Cells Be Used To Treat Human Diseases?

Should Stem Cells Be Used To Treat Human Diseases? SAMPLE ESSAY C Should Stem Cells Be Used To Treat Human Diseases? Stem cells can be defined as undifferentiated cells that are generated during the development of the embryo. There are two functions ascribed

More information

Embryonic & and induced pluripotent Stem Cells. May 2010 Dipl. Biol. Dr. Kurt Pfannkuche

Embryonic & and induced pluripotent Stem Cells. May 2010 Dipl. Biol. Dr. Kurt Pfannkuche Embryonic & and induced pluripotent Stem Cells May 2010 Dipl. Biol. Dr. Kurt Pfannkuche Seite 2 What makes a stem cell? open chromatin structure plasticity! Seite 3 self-renewal Plasticity Seite 4 Culture

More information

Regulatory and Legal Frameworks for Offering Stem Cell Therapies in China. Qi ZHOU, Ph.D. Institute of Zoology Chinese Academy of Sciences

Regulatory and Legal Frameworks for Offering Stem Cell Therapies in China. Qi ZHOU, Ph.D. Institute of Zoology Chinese Academy of Sciences Regulatory and Legal Frameworks for Offering Stem Cell Therapies in China Qi ZHOU, Ph.D. Institute of Zoology Chinese Academy of Sciences Stem Cell Clinical Trials in The World Cited from World Stem Cell

More information

STEM CELLS FROM THE UMBLICAL CORD BLOOD AND UMBLICAL CORD TISSUE

STEM CELLS FROM THE UMBLICAL CORD BLOOD AND UMBLICAL CORD TISSUE STEM CELLS FROM THE UMBLICAL CORD BLOOD AND UMBLICAL CORD TISSUE What are Stem Cells? Stem cells are the basic building blocks of all the cells, tissues and organs in the human body. The role of the stem

More information

Stem cells and motor neurone disease

Stem cells and motor neurone disease Stem cells and motor neurone disease F Stem cell research has fuelled hope of a treatment for a variety of conditions. This information sheet explains what these cells are and includes details of the current

More information

Stem cells possess 2 main characteristics: Sources of pluripotent stem cells: -Long-term self renewal. -The inner cell mass of the blastocyst.

Stem cells possess 2 main characteristics: Sources of pluripotent stem cells: -Long-term self renewal. -The inner cell mass of the blastocyst. Stem cells possess 2 main characteristics: -Long-term self renewal. - They give rise to all types of differentiate cells. Sources of pluripotent stem cells: -The inner cell mass of the blastocyst. - Fetal

More information

Biotechnology. Srivatsan Kidambi, Ph.D.

Biotechnology. Srivatsan Kidambi, Ph.D. Stem Stem Cell Cell Engineering-What, Biology and it Application Why, How?? to Biotechnology Srivatsan Kidambi, Ph.D. Assistant Professor Department of Chemical & Biomolecular Engineering University of

More information

Stem Cells and Hope for Patients

Stem Cells and Hope for Patients Stem Cells and Hope for Patients by Maureen Condic, Ph.D. Most Americans know someone afflicted with an incurable medical condition. The possibility of stem cell cures has given hope to many who face such

More information

STEM CELL FACTS. The ISSCR is an independent, nonproft organization providing a global forum for stem cell research and regenerative medicine.

STEM CELL FACTS. The ISSCR is an independent, nonproft organization providing a global forum for stem cell research and regenerative medicine. STEM CELL FACTS The ISSCR is an independent, nonproft organization providing a global forum for stem cell research and regenerative medicine. WHAT ARE STEM CELLS? Stem cells are the foundation cells for

More information

5 Frequently Asked Questions About Adult Stem Cell Research

5 Frequently Asked Questions About Adult Stem Cell Research 5 Frequently Asked Questions About Adult Stem Cell Research Stem cells are often referred to in the sociopolitical realm with some level of controversy and beyond that, some level of confusion. Many researchers

More information

4. All cord blood banks should be subject to the same standards, regulations and accreditation requirements.

4. All cord blood banks should be subject to the same standards, regulations and accreditation requirements. WMDA Policy Statement on the Utility of Autologous or Family Cord Blood Unit Storage The WMDA Board adopted this policy on 25 th of May 2006. Policy updated _April 2011 The Cord Blood Working Group and

More information

tem ells /background /information Stem cell research Copyright 2007 MRC Centre for Regenerative Medicine, Institute for Stem Cell Research

tem ells /background /information Stem cell research Copyright 2007 MRC Centre for Regenerative Medicine, Institute for Stem Cell Research tem ells /background /information Stem cell research Copyright 2007 MRC Centre for Regenerative Medicine, Institute for Stem Cell Research /02 /information Table of contents Page 01. What are stem cells?

More information

5. All cord blood banks should be subject to the same standards, regulations and accreditation requirements.

5. All cord blood banks should be subject to the same standards, regulations and accreditation requirements. WMDA Policy Statement for the Utility of Autologous or Family Cord Blood Unit Storage (This policy statement has been approved and adopted by the WMDA board on the 25 th of May 2006) The Cord Blood Registries

More information

Stem Cell Research: Adult or Somatic Stem Cells

Stem Cell Research: Adult or Somatic Stem Cells Chiang 1 Stem Cell Research: Adult or Somatic Stem Cells Abstract Kelly Chiang Cluster 7 Dr. LeFebvre 07/26/10 Over the past few decades, stem cells have been a controversial topic in the scientific field.

More information

Reprogramming, Screening and Validation of ipscs and Terminally Differentiated Cells using the qbiomarker PCR Array System

Reprogramming, Screening and Validation of ipscs and Terminally Differentiated Cells using the qbiomarker PCR Array System Reprogramming, Screening and Validation of ipscs and Terminally Differentiated Cells using the qbiomarker PCR Array System Outline of Webinar What are induced pluripotent Stem Cells (ips Cells or ipscs)?

More information

56 MaxPlanckForschung 3 09

56 MaxPlanckForschung 3 09 56 MaxPlanckForschung 3 09 One factor is enough for neural stem cells to become pluripotent. They can then be differentiated into smooth muscular cells that are found, for example, in blood and lymph vessels.

More information

A Public Cord Blood Bank for South Africa? i

A Public Cord Blood Bank for South Africa? i No. 42/2007 A Public Cord Blood Bank for South Africa? i By Dr Robert Crookes MBChB (Wits), Dip. Internal Medicine (American Board of Internal Medicine, USA) Transfusion Medicine Consultant. South African

More information

Stem cells and motor neurone disease

Stem cells and motor neurone disease Stem cells and motor neurone disease F Stem cell research has fuelled hope of a treatment for a variety of conditions. This information sheet explains what these cells are and how they may be used to create

More information

PART I. SECTION 1. The legislature finds that an estimated. 128,000,000 Americans suffer from the crippling economic and

PART I. SECTION 1. The legislature finds that an estimated. 128,000,000 Americans suffer from the crippling economic and HOUSE OF REPRESENTATIVES TWENTY-FOURTH LEGISLATURE, 2007 STATE OF HAWAII A BILL FOR AN ACT RELATING TO MEDICAL RESEARCH. BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF HAWAII: PART I SECTION 1. The legislature

More information

UMBILICAL CORD BLOOD TRANSPLANTATION: KFSH EXPERIENCE

UMBILICAL CORD BLOOD TRANSPLANTATION: KFSH EXPERIENCE UMBILICAL CORD BLOOD TRANSPLANTATION: KFSH EXPERIENCE HIND AL HUMAIDAN, MD,FRCPA Director, Blood Bank (Donor & Transfusion Services) and Stem Cell Cord Blood Bank Consultant Hematopathologist INTRODUCTION

More information

Stem Cell Information

Stem Cell Information Stem Cell Information The official National Institutes of Health resource for stem cell research Stem Cell Basics Stem cells have the remarkable potential to develop into many different cell types in the

More information

Stem Cells Market Trends based on Primary Industry Analysis

Stem Cells Market Trends based on Primary Industry Analysis GENReports: Market & Tech Analysis Stem Cells Market Trends based on Primary Industry Analysis > Enal Razvi, Ph.D. Biotechnology Analyst, Managing Director SELECTBIO US enal@selectbio.us > Gary Oosta,

More information

Not All Stem Cells are the Same

Not All Stem Cells are the Same Cord Blood Banking and Transplantation Jennifer Willert, M.D. Hematology/Oncology Blood and Marrow Transplant Rady Children s Hospital San Diego Clinical Professor UCSD Not All Stem Cells are the Same

More information

Thank you very much Professor Kadowaki for your kind introduction and invitation. It is a great honor to be here today.

Thank you very much Professor Kadowaki for your kind introduction and invitation. It is a great honor to be here today. Prof. Shinya Yamanaka: Thank you very much Professor Kadowaki for your kind introduction and invitation. It is a great honor to be here today. I think many of you know that I am now working on stem cells,

More information

Stem Cells: Scientific Progress and Future Research Directions

Stem Cells: Scientific Progress and Future Research Directions 2001 Terese Winslow Stem Cells: Scientific Progress and Future Research Directions STEM CELLS: SCIENTIFIC PROGRESS AND FUTURE RESEARCH DIRECTIONS June 2001 This page intentionally left blank TABLE OF CONTENTS

More information

Background Information

Background Information Background Information 1. What are stem cells? 2. What might stem cell research achieve? 3. Why we need to continue research using embryonic stem cells? 4. Time taken for discoveries 5. Examples of stem

More information

Human stem cell research: a novel technology that will benefit patients Information and Position Paper

Human stem cell research: a novel technology that will benefit patients Information and Position Paper October 2003 Human stem cell research: a novel technology that will benefit patients Information and Position Paper EuropaBio, the European Association for Bio-industries, has 35 corporate members operating

More information

UMBILICAL CORD BANKING. (formerly Unistem Biosciences Pvt.Ltd.)

UMBILICAL CORD BANKING. (formerly Unistem Biosciences Pvt.Ltd.) UMBILICAL CORD BANKING (formerly Unistem Biosciences Pvt.Ltd.) INITIATIVES OF CELLUGEN BIOTECH PVT.LTD. (formerly Unistem Biosciences Pvt.Ltd.) UMBILICAL CORD BANKING UMBILICAL CORD STEM CELL THERAPY Stem

More information

Support structure for genetic material

Support structure for genetic material Support structure for genetic material 1 Making proteins in the RER Making copies of humans 2 Making copies of cells Making copies of genetic material 3 Making copies of genetic material Making copies

More information

Unit 1 Higher Human Biology Summary Notes

Unit 1 Higher Human Biology Summary Notes Unit 1 Higher Human Biology Summary Notes a. Cells tissues organs body systems Division of labour occurs in multicellular organisms (rather than each cell carrying out every function) Most cells become

More information

San Diego Stem Cell Treatment Center Frequently Asked Questions

San Diego Stem Cell Treatment Center Frequently Asked Questions San Diego Stem Cell Treatment Center Frequently Asked Questions What is a Stem Cell? A stem cell is basically any cell that can replicate and differentiate. This means the cell can not only multiply, but

More information

Fee-for-service cores for Investigational New Drug enabling studies

Fee-for-service cores for Investigational New Drug enabling studies UC DAVIS INSTITUTE FOR REGENERATIVE CURES Fee-for-service cores for Investigational New Drug enabling studies Pipeline pathway at UC Davis Institute for Regenerative Cures Basic Research Proof of Concept

More information

Stem Cell Background Paper

Stem Cell Background Paper Stem Cell Background Paper Introduction...2 Stem Cell Basics...3 Stem Cell Process Flow...9 Comparison of Blood, Stem Cells, Tissues and Organs Processes...10 Responsibilities for the Blood, Stem Cells,

More information

CIGNA HEALTHCARE COVERAGE POSITION

CIGNA HEALTHCARE COVERAGE POSITION CIGNA HEALTHCARE COVERAGE POSITION Subject Umbilical Cord Blood Banking Table of Contents Coverage Position... 1 General Background... 1 Coding/Billing Information... 3 References... 3 Revised Date...

More information

An Introduction to Stem Cells

An Introduction to Stem Cells By Kirstin Matthews, Ph.D. An Introduction to Stem Cells Overview Stem cells are cells that have the potential to replicate themselves for indefinite periods and to divide, producing one of themselves

More information

The Types of stem cells: Totipotent Pluripotent Multipotent

The Types of stem cells: Totipotent Pluripotent Multipotent Stem Cells is the main material for building and regeneration of the body Stem cells are not differentiated and can transform to any cell of organism Stem cells are capable of indefinite renewal through

More information

15 Stem Cell Research

15 Stem Cell Research 15 Stem Cell Research t a l k it o v e r 1 c l a s s se s s i o n Overview Students read about current scientific research on and the social controversy over embryonic stem cells. On a KWL literacy strategy

More information

Human Cloning The Science and Ethics of Nuclear Transplantation

Human Cloning The Science and Ethics of Nuclear Transplantation Human Cloning The Science and Ethics of Transplantation Rudolf Jaenisch, M.D. In addition to the moral argument against the use of somatic-cell nuclear for the creation of a child ( reproductive cloning

More information

Public Cord Blood Tissue Bank Committee on Health Care Services and Representative Peaden

Public Cord Blood Tissue Bank Committee on Health Care Services and Representative Peaden HOUSE OF REPRESENTATIVES COMMITTEE ON HEALTH CARE SERVICES ANALYSIS BILL #: HB 2337 (PCB HCS 00-07) RELATING TO: SPONSOR(S): TIED BILL(S): Public Cord Blood Tissue Bank Committee on Health Care Services

More information

Stem cell research ACADEMY STATEMENT. progress, hopes and concerns ACADEMY STATEMENT 16 JANUARY 2013

Stem cell research ACADEMY STATEMENT. progress, hopes and concerns ACADEMY STATEMENT 16 JANUARY 2013 ACADEMY STATEMENT 16 JANUARY 2013 ACADEMY STATEMENT Stem cell research progress, hopes and concerns KUNGL. VETENSKAPSAKADEMIEN, BOX 50005, SE-104 05 STOCKHOLM, SWEDEN TEL +46 8 673 95 00, FAX +46 8 15

More information

Cord derived MSC-Like Placenta derived Membranes- Matrix- Cells- MSC-like,

Cord derived MSC-Like Placenta derived Membranes- Matrix- Cells- MSC-like, Bank Public/Pvt Bank other cells Ship and distribute Collect and process other samples Support development of novel uses One cord Blood Unit Non stem cells RBC s Plateletes T B Monocytes NK cells Stem

More information

Stem Cell Basics. About this document. I. Introduction: What are stem cells, and why are they important?

Stem Cell Basics. About this document. I. Introduction: What are stem cells, and why are they important? Stem Cell Basics Last modified on April 08, 2015 About this document This primer on stem cells is intended for anyone who wishes to learn more about the biological properties of stem cells, the important

More information

UMBILICAL CORD BLOOD BANKING. A guide for parents

UMBILICAL CORD BLOOD BANKING. A guide for parents UMBILICAL CORD BLOOD BANKING A guide for parents This guide has been elaborated by the Council of Europe European Committee on Organ Transplantation (CD-P-TO). For more information, please visit https://go.edqm.eu/transplantation.

More information

CORD BLOOD BANKING FAQ

CORD BLOOD BANKING FAQ CORD BLOOD BANKING FAQ Cord Blood & Stem Cells Q: What is umbilical cord blood (UCB)? A: Bone marrow, peripheral blood and UCB constitute the three primary sources of stem cells. Cord blood, which, until

More information

Briefing on the second reading of the Human Fertilisation and Embryology Bill, Monday 19 November 2007.

Briefing on the second reading of the Human Fertilisation and Embryology Bill, Monday 19 November 2007. Briefing on the second reading of the Human Fertilisation and Embryology Bill, Monday 19 November 2007. Prepared by the Medical Research Council, Royal Society and Wellcome Trust The Medical Research Council,

More information

your complete stem cell bank

your complete stem cell bank your complete stem cell bank HYDERABAD - 88985 000 888, WARANGAL - 8297 256 777 VISAKHAPATNAM - 7799 990 774 VIJAYAWADA AND GUNTUR - 7799 990 771 NELLORE - 7799 990 772, KADAPA - 8297 256 700 RAJAHMUNDRY

More information

Umbilical Cord Blood Stem Cells Current Status & Future Potential

Umbilical Cord Blood Stem Cells Current Status & Future Potential Umbilical Cord Blood Stem Cells Current Status & Future Potential Natasha Ali Assistant Professor Haematology Department of Pathology & Laboratory Medicine/Oncology The Aga Khan University Email: natasha.ali@aku.edu

More information

There is no doubt that this scientific

There is no doubt that this scientific articolo From Stem Cells to IPS Cells. A Passionate Journey Justo Aznar Director of the Institute of Life Sciences. Catholic University of Valencia. Spain Studia Bioethica - vol. 2 (2009) n. 1, pp. 86-94

More information

STEM CELLS : A THERAPEUTIC REVOLUTION JACQUES KADOCH ROBERT HEMMINGS MARINELA MANDRA

STEM CELLS : A THERAPEUTIC REVOLUTION JACQUES KADOCH ROBERT HEMMINGS MARINELA MANDRA STEM CELLS : A THERAPEUTIC REVOLUTION JACQUES KADOCH ROBERT HEMMINGS MARINELA MANDRA OVO CLINIC I 8000 BLVD DECARIE, MONTREAL QC H4P 2S4 I 514.798.2000 I OVOCLINIC.COM 2 a therapeutic revolution As the

More information

PT CordLife Indonesia Premium Cordblood Bank. PT CordLife Indonesia Premium Cordblood Bank

PT CordLife Indonesia Premium Cordblood Bank. PT CordLife Indonesia Premium Cordblood Bank Cordblood Stem Cells and The Role of Cordblood Bank in Supporting Stem Cells Research Presentation Overview Company profile Haematopoietic stem cells in cordblood What we can do to help 1 2 PT CordLife

More information

RITMIR024 - STEM CELL RESEARCH IN CARDIOLOGY

RITMIR024 - STEM CELL RESEARCH IN CARDIOLOGY 1. SCOPE AND METHODOLOGY 2. REPORT SYNOPSIS 2.1 General Definitions Myoblasts Pluripotent Cells Multipotent Cells Progenitor Cells Role of Stem Cells in Repairing the Heart Stem Cell Therapy Stem Cells

More information

What are Stem Cells? How can they be used in medicine?

What are Stem Cells? How can they be used in medicine? What are Stem Cells? How can they be used in medicine? What is a stem cell????... What is a stem cell????......a cell with the ability to differentiate into specialized cells and renew to become more stem

More information

Chapter 2 The different types of stem cells

Chapter 2 The different types of stem cells Chapter 2 The different types of stem cells This chapter investigates the two main types of stem cells, each with their own subcategories: 1. Pluripotent stem cells can become any cell type in the body.

More information

Differentiation = Making specialized cells

Differentiation = Making specialized cells Differentiation = Making specialized cells What is a stem cell? Screws: JM www.logodesignweb.com/stockphoto Differentiation = Making specialized cells What is a stem cell? What the photo shows A lump of

More information

It s not something you want to think about, but it s something you want to prepare for.

It s not something you want to think about, but it s something you want to prepare for. It s not something you want to think about, but it s something you want to prepare for. StemCyte cord blood banking offers your family a new lifesaving treatment alternative Why Bank Take the once-in-alifetime

More information

Cord blood for the treatment of acute lymphoblastic leukemia in young children

Cord blood for the treatment of acute lymphoblastic leukemia in young children Cord blood for the treatment of acute lymphoblastic leukemia in young children By Caitlin McGreevy Kiara Paramjothy Pass with Merit RESEARCH PAPER BASED ON PATHOLOGY LECTURES AT MEDLINK 2011 1 Abstract:

More information

UMBILICAL CORD BLOOD, STEM CELL BANKING

UMBILICAL CORD BLOOD, STEM CELL BANKING UMBILICAL CORD BLOOD, STEM CELL BANKING Dr.Sharad Jain MD Blood Transfusion officer, & I/C Transfusion Medicine NSCB Medical College. Jabalpur.MP. Introduction: Every parent during childbirth DREAMS the

More information

Donation of Umbilical Cord Blood. A precious life offer. for everyone!

Donation of Umbilical Cord Blood. A precious life offer. for everyone! Donation of Umbilical Cord Blood A precious life offer for everyone! Donation of Umbilical Cord Blood A precious life offer for everyone! Page 3 Hellenic Cord Blood Bank Page 4 Haematopoietic Progenitor

More information

The Infinite Potential of Stem Cell Japan s Cord Blood Bank and Transplant

The Infinite Potential of Stem Cell Japan s Cord Blood Bank and Transplant The Infinite Potential of Stem Cell Japan s Cord Blood Bank and Transplant Speech by Dr. Tsuneo A. Takahashi Translated by Stella Wang Japan and the United States are the two most experienced countries

More information

Cord Blood for Cellular Therapy: A Snapshot of this Evolving Market Landscape

Cord Blood for Cellular Therapy: A Snapshot of this Evolving Market Landscape GENReports: Market & Tech Analysis Cord Blood for Cellular Therapy: A Snapshot of this Evolving Market Landscape > Enal Razvi, Ph.D. Biotechnology Analyst, Managing Director SELECTBIO US enal@selectbio.us

More information

Primary evaluation of induced pluripotent stem cells using flow cytometry

Primary evaluation of induced pluripotent stem cells using flow cytometry 3 Special Issue: Mesenchymal stem cells Original Article Primary evaluation of induced pluripotent stem cells using flow cytometry Daisuke Araki 1,2, ), Yoshimi Kawamura 2, ), Kunimichi Niibe 1,2), Sadafumi

More information

Top Ten Things to Know About Stem Cell Treatments

Top Ten Things to Know About Stem Cell Treatments Top Ten Things to Know About Stem Cell Treatments Many clinics that are offering stem cell treatments make claims about what stem cells can and cannot do that are not supported by our understanding of

More information

THE PROMISE OF STEM CELL RESEARCH

THE PROMISE OF STEM CELL RESEARCH THE PROMISE OF STEM CELL RESEARCH MALIGNANT OSTEOPETROSIS AUTOSOMAL RECESSIVE DENSE SCLEROTIC SKELETON HEMATOLOGIC ABNORMALITIES NEUROLOGIC ABNOMALITIES DEATH IN INFANCY OR EARLY CHILDHOOD SUCCESS RATE

More information

RESEARCH PAPER BASED ON PATHOLOGY LECTURES AT MEDLINK 2014

RESEARCH PAPER BASED ON PATHOLOGY LECTURES AT MEDLINK 2014 THE DEVELOPMENT OF STEM CELL RESEARCH AND TREATMENTS WITHIN MEDICINE BY JENNA BUXTON Grade awarded: Pass with Merit RESEARCH PAPER BASED ON PATHOLOGY LECTURES AT MEDLINK 2014 ABSTRACT This paper discusses

More information

Stem Cell Therapy Applications in pediatric neurology

Stem Cell Therapy Applications in pediatric neurology Stem Cell Therapy Applications in pediatric neurology Ali Fatemi, MD Director of Neurogenetics Division Kennedy Krieger Institute Johns Hopkins University Baltimore, USA The Author has nothing to disclose

More information

Patient Handbook on Stem Cell Therapies

Patient Handbook on Stem Cell Therapies Patient Handbook on Stem Cell Therapies Appendix I of the Guidelines for the Clinical Translation of Stem Cells www.isscr.org 2008, International Society for Stem Cell Research 2 Introduction We have all

More information

Please visit this site for the current GESCR procedures info: http://www.research.ucsf.edu/chr/stemcell/scprocedures.asp

Please visit this site for the current GESCR procedures info: http://www.research.ucsf.edu/chr/stemcell/scprocedures.asp GESCR PROCEDURES: REVIEW PROCESS AND LEVELS OF REVIEW Office of Origin: Human Research Protection Program Effective Date: January 2012 I. Introduction The Human Gamete, Embryo and Stem Cell Research (GESCR)

More information

A Genetic Analysis of Rheumatoid Arthritis

A Genetic Analysis of Rheumatoid Arthritis A Genetic Analysis of Rheumatoid Arthritis Introduction to Rheumatoid Arthritis: Classification and Diagnosis Rheumatoid arthritis is a chronic inflammatory disorder that affects mainly synovial joints.

More information

Differentiation = Making specialized cells. Your body needs stem cells. What is a stem cell?

Differentiation = Making specialized cells. Your body needs stem cells. What is a stem cell? Differentiation = Making specialized cells What is a stem cell? What the photo shows A lump of metal and lots of different kinds of screws. Things to think about Lumps of metal that start off the same

More information

Reflection paper on stem cell-based medicinal products

Reflection paper on stem cell-based medicinal products 14 January 2011 EMA/CAT/571134/2009 Committee for Advanced Therapies (CAT) Draft Agreed by Biologics Working Party (BWP) and Safety Working Party (SWP) March 2010 Draft Agreed by Cell Products Working

More information

AAGPs TM Anti-Aging Glyco Peptides. Enhancing Cell, Tissue and Organ Integrity Molecular and biological attributes of lead AAGP molecule

AAGPs TM Anti-Aging Glyco Peptides. Enhancing Cell, Tissue and Organ Integrity Molecular and biological attributes of lead AAGP molecule AAGPs TM Anti-Aging Glyco Peptides Enhancing Cell, Tissue and Organ Integrity Molecular and biological attributes of lead AAGP molecule 1 Acknowledgements This presentation was prepared by Dr. Samer Hussein

More information

UMBILICAL CORD BLOOD BANKING A guide for parents

UMBILICAL CORD BLOOD BANKING A guide for parents UMBILICAL CORD BLOOD BANKING A guide for parents 2 nd EDITION INTRODUCTION The cells contained in the umbilical cord blood have therapeutic value for the treatment of blood disorders and immune diseases.

More information

AP BIOLOGY 2012 SCORING GUIDELINES

AP BIOLOGY 2012 SCORING GUIDELINES AP BIOLOGY 2012 SCORING GUIDELINES Question 1 Note: At least 1 point must be earned from each of parts (a), (b), (c), and (d) in order to earn a maximum score of 10. The ability to reproduce is a characteristic

More information

Running head: STEM CELL RESEARCH 1

Running head: STEM CELL RESEARCH 1 Running head: STEM CELL RESEARCH 1 NOTE: This paper is an actual senior project paper that scored highproficient or advanced in the spring of 2010. It is not a perfect paper, but it does represent high

More information

umbilical cord blood banking A guide for parents

umbilical cord blood banking A guide for parents umbilical cord blood banking A guide for parents 2 nd Edition 2016 This guide has been elaborated by the Council of Europe European Committee on Organ Transplantation (CD-P-TO). For more information, please

More information

Gene Therapy. The use of DNA as a drug. Edited by Gavin Brooks. BPharm, PhD, MRPharmS (PP) Pharmaceutical Press

Gene Therapy. The use of DNA as a drug. Edited by Gavin Brooks. BPharm, PhD, MRPharmS (PP) Pharmaceutical Press Gene Therapy The use of DNA as a drug Edited by Gavin Brooks BPharm, PhD, MRPharmS (PP) Pharmaceutical Press Contents Preface xiii Acknowledgements xv About the editor xvi Contributors xvii An introduction

More information

Discussion Workshop: STEM CELLS The Penridge Suite, 470 Bowes Road, London, N11 1NL, United Kingdom: 6th May 2011

Discussion Workshop: STEM CELLS The Penridge Suite, 470 Bowes Road, London, N11 1NL, United Kingdom: 6th May 2011 Discussion Workshop: STEM CELLS The Penridge Suite, 470 Bowes Road, London, N11 1NL, United Kingdom: 6th May 2011 This event is discussion workshop, focused on the rapidly moving area of pluripotent cells.

More information

Graft Versus Host Disease. About Graft Versus Host Disease Background. Writer: Maya Chaddah Editor: Lisa Willemse Reviewer: Armand Keating

Graft Versus Host Disease. About Graft Versus Host Disease Background. Writer: Maya Chaddah Editor: Lisa Willemse Reviewer: Armand Keating Graft Versus Host Disease About graft versus host disease Background Symptoms, Prevention and Treatment How can stem cells help? Umbilical cord blood stem cells Mesenchymal stromal/stem cells (MSCs) Research

More information

Cord Blood Re-imagined The use of cord blood stem cells for clinical applications and medical innovations

Cord Blood Re-imagined The use of cord blood stem cells for clinical applications and medical innovations GE Healthcare Proceedings of the Symposium Cord Blood Re-imagined The use of cord blood stem cells for clinical applications and medical innovations 12 th Annual Meeting of the International Society for

More information

The Prospect of Stem Cell Therapy in Multiple Sclerosis. Multiple sclerosis is a multifocal inflammatory disease of the central

The Prospect of Stem Cell Therapy in Multiple Sclerosis. Multiple sclerosis is a multifocal inflammatory disease of the central The Prospect of Stem Cell Therapy in Multiple Sclerosis Multiple sclerosis is a multifocal inflammatory disease of the central nervous system that generally affects young individuals, causing paralysis

More information

UCI ADMINISTRATIVE POLICIES & PROCEDURES

UCI ADMINISTRATIVE POLICIES & PROCEDURES UCI ADMINISTRATIVE POLICIES & PROCEDURES RESEARCH AND SPONSORED ACTIVITIES Human Stem Cell Research Oversight Program Section 484-1: Review of Human Stem Cell Activities Responsible Office: Office of Research

More information

Umbilical Cord Blood Transplantation

Umbilical Cord Blood Transplantation Umbilical Cord Blood Transplantation V Rocha MD, PhD Hopital Saint Louis, Paris University 7 CIBMTR Milwaukee Umbilical Cord blood transplantation Background History Clinical results in children and adults

More information

COLUMBIA UNIVERSITY POLICY ON THE CONDUCT OF RESEARCH WITH HUMAN EMBRYOS AND HUMAN EMBRYONIC STEM CELLS*

COLUMBIA UNIVERSITY POLICY ON THE CONDUCT OF RESEARCH WITH HUMAN EMBRYOS AND HUMAN EMBRYONIC STEM CELLS* July 7, 2014 COLUMBIA UNIVERSITY POLICY ON THE CONDUCT OF RESEARCH WITH HUMAN EMBRYOS AND HUMAN EMBRYONIC STEM CELLS* A. INTRODUCTION Columbia University believes that human embryonic and human stem cell

More information

Current Development and Ethical Issues in Stem Cell Research and Applications

Current Development and Ethical Issues in Stem Cell Research and Applications Current Development and Ethical Issues in Stem Cell Research and Applications Pang-Chui Shaw ( 邵 鵬 柱 ) Biochemistry Programme School of Life Sciences Chinese University of Hong Kong January 25, 2014 Contents

More information

DEPARTMENT OF BONE MARROW AND STEM CELL TRANSPLANT

DEPARTMENT OF BONE MARROW AND STEM CELL TRANSPLANT www.narayanahealth.org DEPARTMENT OF BONE MARROW AND STEM CELL TRANSPLANT About Narayana Health City Narayana Health, one of India's largest and the world's most economical healthcare service providers

More information