Automatic Reconstruction of Parametric Building Models from Indoor Point Clouds. CAD/Graphics 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Automatic Reconstruction of Parametric Building Models from Indoor Point Clouds. CAD/Graphics 2015"

Transcription

1 Automatic Reconstruction of Parametric Building Models from Indoor Point Clouds Sebastian Ochmann Richard Vock Raoul Wessel Reinhard Klein University of Bonn, Germany CAD/Graphics 2015

2 Motivation Digital 3D building models increasingly used for e.g.: Construction planning, renovation, retrofitting (Automatic) taking of measurements Acoustic or thermal simulations Long-term facility management Image from 2

3 Motivation Requirements on the models, applications: Analysis and editing on a high level, e.g. moving walls Parameterization of elements, e.g. size of a wall or room Relations between elements, e.g. wall/room adjacency 3

4 Motivation Suitable models often not available Especially for legacy building stock Use 3D point clouds as starting point for modeling Modeling still largely manual & time-consuming Automated reconstruction methods highly desirable 4

5 Related Work Active field of research, many recent reconstruction approaches Focus on reconstruction of separate surfaces or room volumes Lack of decomposition into building elements ( What is a wall? ) Our approach 5

6 Related Work Some methods employ a spatial partitioning and region labeling for finding a plausible room layout, e.g.: Oesau et al. 2014: Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut Turner et al. 2014: Fast, automated, scalable generation of textured 3D models of indoor environments Mura et al. 2014*: Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts * Image from Mura et al

7 Related Work Shortcomings of previous approaches: Only separated rooms or paper thin walls possible No notion of volumetric walls representing the building s structure, especially shared walls between adjacent rooms Projected planes Partitioning Possible labelings 7

8 Our Approach Starting point: Registered 3D indoor point cloud scans Labels: Ideally one per room (plus an outside label) Rooms unknown instead: One label for each scan 8

9 Our Approach Refinement of initial segmentation given by separate scans Diffusion process based on mutual visibility between point pairs Also automatically filters out clutter outside of the building 9

10 Our Approach Detection of vertical planes (RANSAC) Transfer into horizontal plane Generation of piecewise-linear partitioning? 10

11 Our Approach Generate candidates for walls (incl. estimated thickness) from detected vertical planes Edges of partitioning are centerlines of (potential) walls Projected planes Potential wall structures 11

12 Our Approach Generate edges for each single surface and pairs of parallel surfaces Edges are wall centerlines instead of wall surfaces Each edge attributed with (scalar-valued) wall thickness 12

13 Our Approach After suitable labeling: Connected graph of volumetric wall elements representing the building s structure Potential wall structures Region labeling Resulting wall graph 13

14 Our Approach We now have point labels and the partitioning: How to determine a suitable labeling of the partitioning cells? 14

15 Our Approach Labeling optimization as cost minimization problem: Σ (Unary costs for assigning each room label to a region) + Σ (Binary costs for assigning a pair of labels to adjacent regions) min. 15

16 Our Approach Minimizing the sum of labeling costs yields the desired labeling Graph multi-labeling problem solved using algorithm by Boykov et al. Edges between differently labeled regions are walls Room heights estimated from horizontal planes in the data 16

17 Opening detection & classification Further enrichment the resulting model Detect openings, i.e. doors and windows Classification by means of supervised learning 17

18 Multiple scans within a room In case of multiple scans within a room, implausible walls are removed in a post-processing step 18

19 Results Experiments on a variety of real-world point cloud datasets 19

20 Results Tested with up to 67 scans, 22.7m points, about 8.5 minutes 20

21 Results Regularization and hole filling in cluttered regions Controllable via smoothness property of graph cut based opt. 21

22 Results Comparison with a professional, manually generated model Good wall and opening localization 22

23 Conclusion The first method for reconstructing parameterized building models based on volumetric, interrelated building elements Direct export to industry-standard format (IFC) Enables automatic or semi-automatic further processing (editing, measurements, simulations, ) in industry-standard software 23

24 Thank you 24

Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans

Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans Sebastian Ochmann 1, Richard Vock 1, Raoul Wessel 1, Martin Tamke 2, Reinhard Klein 1 1 Institute of Computer Science

More information

Segmentation of building models from dense 3D point-clouds

Segmentation of building models from dense 3D point-clouds Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute

More information

Automatic Building Facade Detection in Mobile Laser Scanner point Clouds

Automatic Building Facade Detection in Mobile Laser Scanner point Clouds Automatic Building Facade Detection in Mobile Laser Scanner point Clouds NALANI HETTI ARACHCHIGE 1 & HANS-GERD MAAS 1 Abstract: Mobile Laser Scanner (MLS) has been increasingly used in the modeling of

More information

Indoor Scene Reconstruction using Primitive-driven Space Partitioning and Graph-cut

Indoor Scene Reconstruction using Primitive-driven Space Partitioning and Graph-cut Indoor Scene Reconstruction using Primitive-driven Space Partitioning and Graph-cut Sven Oesau, Florent Lafarge, Pierre Alliez To cite this version: Sven Oesau, Florent Lafarge, Pierre Alliez. Indoor Scene

More information

Part-Based Recognition

Part-Based Recognition Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

More information

Lecture 10: Regression Trees

Lecture 10: Regression Trees Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension 3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, suraa12@gmail.com

More information

GSA Automation of Court Design Guide

GSA Automation of Court Design Guide GSA Automation of Early Concept Design Chuck Eastman, Yeon-Suk Jeong, Jae min Lee, Jin Kook Lee, Sherif Abdelmohsen, Hugo Sheward, Paola Sanguinetti GEORGIA TECH Early Concept Design Review - Project Purpose

More information

Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling

Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling 81 Robust NURBS Surface Fitting from Unorganized 3D Point Clouds for Infrastructure As-Built Modeling Andrey Dimitrov 1 and Mani Golparvar-Fard 2 1 Graduate Student, Depts of Civil Eng and Engineering

More information

A New Robust Algorithm for Video Text Extraction

A New Robust Algorithm for Video Text Extraction A New Robust Algorithm for Video Text Extraction Pattern Recognition, vol. 36, no. 6, June 2003 Edward K. Wong and Minya Chen School of Electrical Engineering and Computer Science Kyungpook National Univ.

More information

Advantages of CT in 3D Scanning of Industrial Parts

Advantages of CT in 3D Scanning of Industrial Parts Advantages of CT in 3D Scanning of Industrial Parts Julien Noel, North Star Imaging Inc C omputed tomography (CT) has come along way since its public inception in 1972. The rapid improvement of computer

More information

Visualization methods for patent data

Visualization methods for patent data Visualization methods for patent data Treparel 2013 Dr. Anton Heijs (CTO & Founder) Delft, The Netherlands Introduction Treparel can provide advanced visualizations for patent data. This document describes

More information

Parallel Simplification of Large Meshes on PC Clusters

Parallel Simplification of Large Meshes on PC Clusters Parallel Simplification of Large Meshes on PC Clusters Hua Xiong, Xiaohong Jiang, Yaping Zhang, Jiaoying Shi State Key Lab of CAD&CG, College of Computer Science Zhejiang University Hangzhou, China April

More information

technical notes trimble realworks software

technical notes trimble realworks software technical notes trimble realworks software A POWERFUL 3D LASER SCANNING OFFICE SOFTWARE SUITE Designed for today s multifaceted scanning professional, Trimble RealWorks is a powerful office software that

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Toward Automated Modeling of Floor Plans

Toward Automated Modeling of Floor Plans Toward Automated Modeling of Floor Plans Brian Okorn Vanderbilt University 2301 Vanderbilt Pl., Nashville, TN 37235 brian.e.okorn@vanderbilt.edu Xuehan Xiong, Burcu Akinci, and Daniel Huber Carnegie Mellon

More information

Trimble Realworks Software

Trimble Realworks Software TECHNICAL NOTES Trimble Realworks Software A Powerful 3D Laser Scanning Office Software Suite DESIGNED FOR TODAY S MULTIFACETED SCANNING PROFESSIONAL, TRIMBLE REALWORKS IS A POWERFUL OFFICE SOFTWARE THAT

More information

MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH

MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH MetropoGIS: A City Modeling System DI Dr. Konrad KARNER, DI Andreas KLAUS, DI Joachim BAUER, DI Christopher ZACH VRVis Research Center for Virtual Reality and Visualization, Virtual Habitat, Inffeldgasse

More information

Max Flow. Lecture 4. Optimization on graphs. C25 Optimization Hilary 2013 A. Zisserman. Max-flow & min-cut. The augmented path algorithm

Max Flow. Lecture 4. Optimization on graphs. C25 Optimization Hilary 2013 A. Zisserman. Max-flow & min-cut. The augmented path algorithm Lecture 4 C5 Optimization Hilary 03 A. Zisserman Optimization on graphs Max-flow & min-cut The augmented path algorithm Optimization for binary image graphs Applications Max Flow Given: a weighted directed

More information

Signature Segmentation from Machine Printed Documents using Conditional Random Field

Signature Segmentation from Machine Printed Documents using Conditional Random Field 2011 International Conference on Document Analysis and Recognition Signature Segmentation from Machine Printed Documents using Conditional Random Field Ranju Mandal Computer Vision and Pattern Recognition

More information

IMPLICIT SHAPE MODELS FOR OBJECT DETECTION IN 3D POINT CLOUDS

IMPLICIT SHAPE MODELS FOR OBJECT DETECTION IN 3D POINT CLOUDS IMPLICIT SHAPE MODELS FOR OBJECT DETECTION IN 3D POINT CLOUDS Alexander Velizhev 1 (presenter) Roman Shapovalov 2 Konrad Schindler 3 1 Hexagon Technology Center, Heerbrugg, Switzerland 2 Graphics & Media

More information

Big Data: Rethinking Text Visualization

Big Data: Rethinking Text Visualization Big Data: Rethinking Text Visualization Dr. Anton Heijs anton.heijs@treparel.com Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important

More information

Handwritten Character Recognition from Bank Cheque

Handwritten Character Recognition from Bank Cheque International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 Handwritten Character Recognition from Bank Cheque Siddhartha Banerjee*

More information

The process components and related data characteristics addressed in this document are:

The process components and related data characteristics addressed in this document are: TM Tech Notes Certainty 3D November 1, 2012 To: General Release From: Ted Knaak Certainty 3D, LLC Re: Structural Wall Monitoring (#1017) rev: A Introduction TopoDOT offers several tools designed specifically

More information

2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013

2013 Code_Saturne User Group Meeting. EDF R&D Chatou, France. 9 th April 2013 2013 Code_Saturne User Group Meeting EDF R&D Chatou, France 9 th April 2013 Thermal Comfort in Train Passenger Cars Contact For further information please contact: Brian ANGEL Director RENUDA France brian.angel@renuda.com

More information

SECTION XI OPINION OF PROBABLE COST

SECTION XI OPINION OF PROBABLE COST SECTION XI OPINION OF PROBABLE COST OPINION OF PROPABLE COSTS HARBOR ISLAND THE PAVILION 1) Provide a sprinkler system for the entire building. 8000 SF X $15/SF $120,000 2) Remove and replace existing

More information

3D Building Roof Extraction From LiDAR Data

3D Building Roof Extraction From LiDAR Data 3D Building Roof Extraction From LiDAR Data Amit A. Kokje Susan Jones NSG- NZ Outline LiDAR: Basics LiDAR Feature Extraction (Features and Limitations) LiDAR Roof extraction (Workflow, parameters, results)

More information

Geometrical Segmentation of Point Cloud Data using Spectral Clustering

Geometrical Segmentation of Point Cloud Data using Spectral Clustering Geometrical Segmentation of Point Cloud Data using Spectral Clustering Sergey Alexandrov and Rainer Herpers University of Applied Sciences Bonn-Rhein-Sieg 15th July 2014 1/29 Addressed Problem Given: a

More information

Binary Image Analysis

Binary Image Analysis Binary Image Analysis Segmentation produces homogenous regions each region has uniform gray-level each region is a binary image (0: background, 1: object or the reverse) more intensity values for overlapping

More information

Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study

Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study EVS28 KINTEX, Korea, May 3-6, 2015 Thermal Simulation of a Power Electronics Cold Plate with a Parametric Design Study Boris Marovic Mentor Graphics (Deutschland) GmbH, Germany, boris_marovic@mentor.com

More information

Enhanced LIC Pencil Filter

Enhanced LIC Pencil Filter Enhanced LIC Pencil Filter Shigefumi Yamamoto, Xiaoyang Mao, Kenji Tanii, Atsumi Imamiya University of Yamanashi {daisy@media.yamanashi.ac.jp, mao@media.yamanashi.ac.jp, imamiya@media.yamanashi.ac.jp}

More information

A NOTE ON EDGE GUARDS IN ART GALLERIES

A NOTE ON EDGE GUARDS IN ART GALLERIES A NOTE ON EDGE GUARDS IN ART GALLERIES R. Nandakumar (nandacumar@gmail.com) Abstract: We study the Art Gallery Problem with Edge Guards. We give an algorithm to arrange edge guards to guard only the inward

More information

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

More information

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list Scan-Line Fill Can also fill by maintaining a data structure of all intersections of polygons with scan lines Sort by scan line Fill each span vertex order generated by vertex list desired order Scan-Line

More information

Surface Reconstruction from a Point Cloud with Normals

Surface Reconstruction from a Point Cloud with Normals Surface Reconstruction from a Point Cloud with Normals Landon Boyd and Massih Khorvash Department of Computer Science University of British Columbia,2366 Main Mall Vancouver, BC, V6T1Z4, Canada {blandon,khorvash}@cs.ubc.ca

More information

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will

More information

Current status of image matching for Earth observation

Current status of image matching for Earth observation Current status of image matching for Earth observation Christian Heipke IPI - Institute for Photogrammetry and GeoInformation Leibniz Universität Hannover Secretary General, ISPRS Content Introduction

More information

The World s Leading Duct board Solution Package

The World s Leading Duct board Solution Package Building Software Solutions F o r t h e G l ob a l B u i l d i n g S er v i c es I nd u s t r y Manufacturing Software Total Production Solution for Pre-insulated Duct Manufacturing The World s Leading

More information

Automatic Labeling of Lane Markings for Autonomous Vehicles

Automatic Labeling of Lane Markings for Autonomous Vehicles Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 jkiske@stanford.edu 1. Introduction As autonomous vehicles become more popular,

More information

Automatic Room Detection and Room Labeling from Architectural Floor Plans

Automatic Room Detection and Room Labeling from Architectural Floor Plans 2012 10th IAPR International Workshop on Document Analysis Systems Automatic Room Detection and Room Labeling from Architectural Floor Plans Sheraz Ahmed, Marcus Liwicki, Markus Weber, Andreas Dengel German

More information

DEVELOPMENT OF AN IMAGING SYSTEM FOR THE CHARACTERIZATION OF THE THORACIC AORTA.

DEVELOPMENT OF AN IMAGING SYSTEM FOR THE CHARACTERIZATION OF THE THORACIC AORTA. DEVELOPMENT OF AN IMAGING SYSTEM FOR THE CHARACTERIZATION OF THE THORACIC AORTA. Juan Antonio Martínez Mera Centro Singular de Investigación en Tecnoloxías da Información Universidade de Santiago de Compostela

More information

Mapping Solar Energy Potential Through LiDAR Feature Extraction

Mapping Solar Energy Potential Through LiDAR Feature Extraction Mapping Solar Energy Potential Through LiDAR Feature Extraction WOOLPERT WHITE PAPER By Brad Adams brad.adams@woolpert.com DESIGN GEOSPATIAL INFRASTRUCTURE November 2012 Solar Energy Potential Is Largely

More information

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl)

Visualisatie BMT. Introduction, visualization, visualization pipeline. Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) Visualisatie BMT Introduction, visualization, visualization pipeline Arjan Kok Huub van de Wetering (h.v.d.wetering@tue.nl) 1 Lecture overview Goal Summary Study material What is visualization Examples

More information

Microsoft Excel 2010 Charts and Graphs

Microsoft Excel 2010 Charts and Graphs Microsoft Excel 2010 Charts and Graphs Email: training@health.ufl.edu Web Page: http://training.health.ufl.edu Microsoft Excel 2010: Charts and Graphs 2.0 hours Topics include data groupings; creating

More information

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su (sarasu@cs.tufts.edu) TA: Matt Menke

More information

CHAPTER 1: TOLERANCES

CHAPTER 1: TOLERANCES CHAPTER 1: TOLERANCES Technical Manual V7: TS-011a-7.00-180814 CHAPTER 1: TOLERANCES CONTENTS 1.1 MASONRY 1.2 INTERNAL WALLS AND CEILINGS 1.3 JUNCTIONS 1.4 FLOORS 1.5 DOORS AND WINDOWS 1.6 SKIRTINGS 1.7

More information

Cray: Enabling Real-Time Discovery in Big Data

Cray: Enabling Real-Time Discovery in Big Data Cray: Enabling Real-Time Discovery in Big Data Discovery is the process of gaining valuable insights into the world around us by recognizing previously unknown relationships between occurrences, objects

More information

NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect

NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect SIGGRAPH 2013 Shaping the Future of Visual Computing NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect NVIDIA

More information

New Features in TerraScan. Arttu Soininen Software developer Terrasolid Ltd

New Features in TerraScan. Arttu Soininen Software developer Terrasolid Ltd New Features in TerraScan Arttu Soininen Software developer Terrasolid Ltd Version 013.xxx Computer ID changes in licenses Send new computer ID to Terrasolid if using: Server pool licenses (server ID and

More information

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based

More information

Visualization Plugin for ParaView

Visualization Plugin for ParaView Alexey I. Baranov Visualization Plugin for ParaView version 1.3 Springer Contents 1 Visualization with ParaView..................................... 1 1.1 ParaView plugin installation.................................

More information

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering

Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Using Photorealistic RenderMan for High-Quality Direct Volume Rendering Cyrus Jam cjam@sdsc.edu Mike Bailey mjb@sdsc.edu San Diego Supercomputer Center University of California San Diego Abstract With

More information

EXPLORING SPATIAL PATTERNS IN YOUR DATA

EXPLORING SPATIAL PATTERNS IN YOUR DATA EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze

More information

Lecture 14: Convolutional neural networks for computer vision

Lecture 14: Convolutional neural networks for computer vision Lecture 14: Convolutional neural networks for computer vision Dr. Richard E. Turner (ret26@cam.ac.uk) November 20, 2014 Big picture Goal: how to produce good internal representations of the visual world

More information

Object Recognition. Selim Aksoy. Bilkent University saksoy@cs.bilkent.edu.tr

Object Recognition. Selim Aksoy. Bilkent University saksoy@cs.bilkent.edu.tr Image Classification and Object Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Image classification Image (scene) classification is a fundamental

More information

Removing Moving Objects from Point Cloud Scenes

Removing Moving Objects from Point Cloud Scenes 1 Removing Moving Objects from Point Cloud Scenes Krystof Litomisky klitomis@cs.ucr.edu Abstract. Three-dimensional simultaneous localization and mapping is a topic of significant interest in the research

More information

Sliding Door Hardware Installation Instructions

Sliding Door Hardware Installation Instructions Sliding Door Hardware Installation Instructions Installation Instructions Structural Information For standard systems and most custom single door opening systems. General Overview ff All Krown Lab sliding

More information

Clinical Training for Visage 7 Cardiac. Visage 7

Clinical Training for Visage 7 Cardiac. Visage 7 Clinical Training for Visage 7 Cardiac Visage 7 Overview Example Usage 3 Cardiac Workflow Examples 4 Remove Chest Wall 5 Edit Chest Wall Removal 6 Object Display Popup 7 Selecting Optimal Phase 8 Thick

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Extracting contour lines from topographic maps based on cartography and graphics knowledge

Extracting contour lines from topographic maps based on cartography and graphics knowledge JCS&T Vol. 9 No. October 009 Extracting contour lines from topographic maps based on cartography and graphics knowledge Rui-Qing WU School of Electronic Engineering, University of Electronic Science &

More information

3D Building Roof Reconstruction from Point Clouds via Generative Models

3D Building Roof Reconstruction from Point Clouds via Generative Models 3D Building Roof Reconstruction from Point Clouds via Generative Models Hai Huang, Claus Brenner, Monika Sester Institute of Cartography and Geoinformatics, Leibniz University Hannover Appelstr. 9a, D-30167

More information

AUTOMATIC CO-REGISTRATION OF TERRESTRIAL LASER SCANNING DATA AND 2D FLOOR PLAN

AUTOMATIC CO-REGISTRATION OF TERRESTRIAL LASER SCANNING DATA AND 2D FLOOR PLAN AUTOMATIC CO-REGISTRATION OF TERRESTRIAL LASER SCANNING DATA AND 2D FLOOR PLAN L. Wang a, *, G. Sohn a a GeoICT Lab, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada - (wangly, gsohn)@yorku.ca

More information

A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications

A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications Konrad-Zuse-Zentrum fu r Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany HANS-CHRISTIAN HEGE DETLEV STALLING MARTIN SEEBASS MALTE ZOCKLER A Generalized Marching Cubes Algorithm Based

More information

Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca

Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?

More information

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin

More information

BIM Extension into Later Stages of Project Life Cycle

BIM Extension into Later Stages of Project Life Cycle BIM Extension into Later Stages of Project Life Cycle Pavan Meadati, Ph.D. Southern Polytechnic State University Marietta, Georgia This paper discusses the process for extending the implementation of the

More information

Closest Pair Problem

Closest Pair Problem Closest Pair Problem Given n points in d-dimensions, find two whose mutual distance is smallest. Fundamental problem in many applications as well as a key step in many algorithms. p q A naive algorithm

More information

Sliding Barn Door Hardware Installation Instructions BALDUR and ODEN

Sliding Barn Door Hardware Installation Instructions BALDUR and ODEN Sliding Barn Door Hardware Installation Instructions BALDUR and ODEN Installation Instructions Structural Information For standard systems and most custom single door opening systems. General Overview

More information

SCALABILITY OF CONTEXTUAL GENERALIZATION PROCESSING USING PARTITIONING AND PARALLELIZATION. Marc-Olivier Briat, Jean-Luc Monnot, Edith M.

SCALABILITY OF CONTEXTUAL GENERALIZATION PROCESSING USING PARTITIONING AND PARALLELIZATION. Marc-Olivier Briat, Jean-Luc Monnot, Edith M. SCALABILITY OF CONTEXTUAL GENERALIZATION PROCESSING USING PARTITIONING AND PARALLELIZATION Abstract Marc-Olivier Briat, Jean-Luc Monnot, Edith M. Punt Esri, Redlands, California, USA mbriat@esri.com, jmonnot@esri.com,

More information

F. Aiolli - Sistemi Informativi 2007/2008

F. Aiolli - Sistemi Informativi 2007/2008 Text Categorization Text categorization (TC - aka text classification) is the task of buiding text classifiers, i.e. sofware systems that classify documents from a domain D into a given, fixed set C =

More information

Alphacam Art combines Vectric s Aspire artistic design software with the market leading Alphacam manufacturing software.

Alphacam Art combines Vectric s Aspire artistic design software with the market leading Alphacam manufacturing software. Alphacam Art Alphacam Art - CNC Routing For Artists & Ideal Jewellery Cad Cam Software Alphacam Art combines Vectric s Aspire artistic design software with the market leading Alphacam manufacturing software.

More information

An Optical Sudoku Solver

An Optical Sudoku Solver An Optical Sudoku Solver Martin Byröd February 12, 07 Abstract In this report, a vision-based sudoku solver is described. The solver is capable of solving a sudoku directly from a photograph taken with

More information

PARAMETRIC MODELING. David Rosen. December 1997. By carefully laying-out datums and geometry, then constraining them with dimensions and constraints,

PARAMETRIC MODELING. David Rosen. December 1997. By carefully laying-out datums and geometry, then constraining them with dimensions and constraints, 1 of 5 11/18/2004 6:24 PM PARAMETRIC MODELING David Rosen December 1997 The term parametric modeling denotes the use of parameters to control the dimensions and shape of CAD models. Think of a rubber CAD

More information

White Paper. Cloth Simulation. February 2007 WP-03018-001_v01

White Paper. Cloth Simulation. February 2007 WP-03018-001_v01 White Paper Cloth Simulation February 2007 WP-03018-001_v01 White Paper Document Change History Version Date Responsible Reason for Change _v01 CZ, TS Initial release Go to sdkfeedback@nvidia.com to provide

More information

Working with Imagery & LiDAR in ArcGIS 10.2

Working with Imagery & LiDAR in ArcGIS 10.2 Working with Imagery & LiDAR in ArcGIS 10.2 Today s Agenda Online content Tools for working with imagery & LiDAR Data management using mosaic dataset Data dissemination ArcGIS is a Complete Geospatial

More information

Topic: 1 - Understanding Addition and Subtraction

Topic: 1 - Understanding Addition and Subtraction 8 days / September Topic: 1 - Understanding Addition and Subtraction Represent and solve problems involving addition and subtraction. 2.OA.1. Use addition and subtraction within 100 to solve one- and two-step

More information

OMIQ srl. Advanced Post-Processing of Flow3D Calculations using Ensight. Federico Monterosso. Ingegneria di componenti e sistemi industriali

OMIQ srl. Advanced Post-Processing of Flow3D Calculations using Ensight. Federico Monterosso. Ingegneria di componenti e sistemi industriali OMIQ srl Ingegneria di componenti e sistemi industriali Advanced Post-Processing of Flow3D Calculations using Ensight Federico Monterosso Agenda A brief introduction of OMIQ A not-so-brief introduction

More information

Footprint decomposition combined with point cloud segmentation for producing valid 3D models

Footprint decomposition combined with point cloud segmentation for producing valid 3D models Master of Science Thesis Footprint decomposition combined with point cloud segmentation for producing valid 3D models T.J.F. Commandeur BICT March 2012 OTB Research Institute for the Built Environment

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

Computer Forensics Application. ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification

Computer Forensics Application. ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification Computer Forensics Application ebay-uab Collaborative Research: Product Image Analysis for Authorship Identification Project Overview A new framework that provides additional clues extracted from images

More information

EHR CURATION FOR MEDICAL MINING

EHR CURATION FOR MEDICAL MINING EHR CURATION FOR MEDICAL MINING Ernestina Menasalvas Medical Mining Tutorial@KDD 2015 Sydney, AUSTRALIA 2 Ernestina Menasalvas "EHR Curation for Medical Mining" 08/2015 Agenda Motivation the potential

More information

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy Much higher Volumes. Processed with more Velocity. With much more Variety. Is Big Data so big? Big Data Smart Data Project HAVEn: Adaptive Intelligence

More information

Bullet Graph Design Specification Last Revision: October 10, 2013

Bullet Graph Design Specification Last Revision: October 10, 2013 Bullet Graph Design Specification Last Revision: October 10, 2013 Overview The bullet graph was developed to replace the meters and gauges that are often used on dashboards. Its linear and no-frills design

More information

Pallas Ludens. We inject human intelligence precisely where automation fails. Jonas Andrulis, Daniel Kondermann

Pallas Ludens. We inject human intelligence precisely where automation fails. Jonas Andrulis, Daniel Kondermann Pallas Ludens We inject human intelligence precisely where automation fails Jonas Andrulis, Daniel Kondermann Chapter One: How it all started The Challenge of Reference and Training Data Generation Scientific

More information

Binary Image Scanning Algorithm for Cane Segmentation

Binary Image Scanning Algorithm for Cane Segmentation Binary Image Scanning Algorithm for Cane Segmentation Ricardo D. C. Marin Department of Computer Science University Of Canterbury Canterbury, Christchurch ricardo.castanedamarin@pg.canterbury.ac.nz Tom

More information

Avizo Inspect New software for industrial inspection and materials R&D

Avizo Inspect New software for industrial inspection and materials R&D Avizo Inspect New software for industrial inspection and materials R&D Reduce your design cycle, inspection times, and meet higher-level quality standards at a lower cost. Avizo Inspect software streamlines

More information

SEMI-AUTOMATIC GENERATION OF AS-BUILT BIM FAÇADE GEOMETRY FROM LASER AND IMAGE DATA

SEMI-AUTOMATIC GENERATION OF AS-BUILT BIM FAÇADE GEOMETRY FROM LASER AND IMAGE DATA www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753 SEMI-AUTOMATIC GENERATION OF AS-BUILT BIM FAÇADE GEOMETRY FROM LASER AND IMAGE DATA SUBMITTED: July 2013 REVISED: January

More information

Conceptual Design Modeling in Autodesk Revit Architecture 2010

Conceptual Design Modeling in Autodesk Revit Architecture 2010 Autodesk Revit Architecture 2010 Conceptual Design Modeling in Autodesk Revit Architecture 2010 In building design, visualizing a form in the earliest stages enhances a designer s ability to communicate

More information

S.A. = L.A. + 2B = ph + 2B

S.A. = L.A. + 2B = ph + 2B Page 1 of 5 View Tutorial 5c Objective: Find the lateral area, total surface area, and volume of rectangular prisms. A prism is a polyhedron with two congruent & parallel bases. The other faces are the

More information

. Learn the number of classes and the structure of each class using similarity between unlabeled training patterns

. Learn the number of classes and the structure of each class using similarity between unlabeled training patterns Outline Part 1: of data clustering Non-Supervised Learning and Clustering : Problem formulation cluster analysis : Taxonomies of Clustering Techniques : Data types and Proximity Measures : Difficulties

More information

Parametric Technology Corporation. Pro/ENGINEER Wildfire 4.0 Tolerance Analysis Extension Powered by CETOL Technology Reference Guide

Parametric Technology Corporation. Pro/ENGINEER Wildfire 4.0 Tolerance Analysis Extension Powered by CETOL Technology Reference Guide Parametric Technology Corporation Pro/ENGINEER Wildfire 4.0 Tolerance Analysis Extension Powered by CETOL Technology Reference Guide Copyright 2007 Parametric Technology Corporation. All Rights Reserved.

More information

THERMAL LOSSES Thermal Losses Calculations

THERMAL LOSSES Thermal Losses Calculations Calculations -1- THERMAL LOSSES Thermal Losses Calculations Employer : 4M SA Project Location : ASHRAE Office Room : Example from ASHRAE 2013 Handbook - Fundamentals : Chapter 18, Single Room Example Peak

More information

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014 Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions

More information

AN ALGORITHM FOR CENTRELINE EXTRACTION USING NATURAL NEIGHBOUR INTERPOLATION

AN ALGORITHM FOR CENTRELINE EXTRACTION USING NATURAL NEIGHBOUR INTERPOLATION AN ALGORITHM FOR CENTRELINE EXTRACTION USING NATURAL NEIGHBOUR INTERPOLATION Darka Mioc, François Anton and Girija Dharmaraj Department of Geomatics Engineering University of Calgary 2500 University Drive

More information

Gephi Tutorial Quick Start

Gephi Tutorial Quick Start Gephi Tutorial Welcome to this introduction tutorial. It will guide you to the basic steps of network visualization and manipulation in Gephi. Gephi version 0.7alpha2 was used to do this tutorial. Get

More information

Avizo AvizoFire - The 3D visualization Software for NDT & Materials Science

Avizo AvizoFire - The 3D visualization Software for NDT & Materials Science Avizo AvizoFire - The 3D visualization Software for NDT & Materials Science Peter Westenberger Application Enginieer May 7, 2010 Avizo Visualize to Understand Avizo software is a powerful, multifaceted

More information

Simulation Techniques for Tablet and Mobile Phone Design Bill McGinn; Ansys Senior Application Engineer

Simulation Techniques for Tablet and Mobile Phone Design Bill McGinn; Ansys Senior Application Engineer Simulation Techniques for Tablet and Mobile Phone Design Bill McGinn; Ansys Senior Application Engineer 1 Tablets in our daily lives Tablets are very entertaining, stylish and powerful Shopping, reading,

More information

An Adaptive Hierarchical Next-Best-View Algorithm for 3D Reconstruction of Indoor Scenes

An Adaptive Hierarchical Next-Best-View Algorithm for 3D Reconstruction of Indoor Scenes Technical Report TR06-003, Department of Computer Science, University of North Carolina at Chapel Hill, January 2006. An Adaptive Hierarchical Next-Best-View Algorithm for 3D Reconstruction of Indoor Scenes

More information

Digital Cadastral Maps in Land Information Systems

Digital Cadastral Maps in Land Information Systems LIBER QUARTERLY, ISSN 1435-5205 LIBER 1999. All rights reserved K.G. Saur, Munich. Printed in Germany Digital Cadastral Maps in Land Information Systems by PIOTR CICHOCINSKI ABSTRACT This paper presents

More information