Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas

Size: px
Start display at page:

Download "Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas"

Transcription

1 Adjustment of Anemometer Readings for Energy Production Estimates WINDPOWER June 2008 Houston, Texas Matthew Filippelli, Julien Bouget, Michael Brower, and Dan Bernadett AWS Truewind, LLC 463 New Karner Road Albany, NY Kathleen Moore Integrated Environmental Data, LLC 255 Fuller Road, Suite 289 Albany, NY

2 Headquarters: Albany, NY Mapping Energy Assessment Project Engineering Performance Evaluation Forecasting Industry Leader & Consultant for ~20,000 MW in 60 countries Full spectrum of wind plant design, development & evaluation services Consultant to several NY and US agencies & utilities for wind & PV systems Established in 1983; 65 employees

3 Introduction There is growing evidence that the energy production of many wind projects has been overestimated. No single cause is likely to blame; rather a number of factors probably contributed. One plausible source of trouble is dissimilarity between wind resource assessment methodology and wind turbine power performance verification.

4 Objective & Scope The following parameters were studied to characterize potential sources of measurement error and/or energy production overestimation. 1. Effect of Turbulence Intensity 2. Effect of Off-horizontal flow 3. Effect of unusual shear and other weather anomalies The usefulness of new and existing models in improving wind resource assessment and energy production was also explored. These results and related literature were examined to assess the feasibility of wind speed measurement correction and to identify potential improvements in wind resource assessment methodology.

5 Power Curve Measurement Procedure for power curve measurement and certification has been standardized IEC No standard for wind resource assessment procedure Best practices are generally followed, but discrepancies still exist in execution These differences can potentially lead to measurement errors and/or energy over-estimation

6 Wind Measurement Equipment Risoe P2546A NRG #40 Resource assessment practice generally attempts to follow IEC recommendations on several factors to lower uncertainty in measured data Separation from tower Boom orientation One of the biggest differences is choice in anemometer IEC standards call for a Class 1 Anemometer (or currently: 1.7A or 2.5B) NRG #40 Anemometer has been North American standard for several years

7 Anemometer Choice Both instruments were chosen as they represent the majority of devices deployed for their intended use As the Max 40 is the current standard for wind resource assessment in North America, its sensitivity to turbulence and offhorizontal flow will be examined The Risoe will be used as a reference for this work. While it is not believed be free from all error, its performance properties are well documented and it meets the IEC criteria for power performance verification

8 Turbulence Assessment Database Archived and current data from 5 resource assessment towers across eastern North America were analyzed for this component. Each station equipped a Risoe P2546A / NRG Max 40 pair at one monitoring height Table 1: Turbulence Analysis Case Database Tower Monitoring Height (AGL) Tower / Mount type Risoe Orientation NRG Orientation POR (months) A 40 m Lattice/ Side 180 T 300 T 5 B 40 m Lattice/ Side 285 T 165 T 30 C 40 m Lattice/ Side 32 T 212 T 12 D 40 m Lattice/ Side 22 T 202 T 3 E 140 m Lattice/ Top 180 T 0 T 9

9 Data Filtering The following filtering criteria were used for each station: Only valid data: remove icing, obvious malfunction, etc. For side mount booms, use 20 direction sector bisecting sensors For top mount booms, use 40 direction sector bisecting sensors from prevailing orientation Only speeds above 4 m/s Table 2: Turbulence Analysis Filter Criteria and Summary Statistics Tower Direction Sector Wind Speeds NRG TI Risoe TI Mean of Ratio NRG/Risoe Data Points A T 4 m/s 6.6% 6.9% B T 4 m/s 9.8% 10.0% C T 4 m/s 19.6% 21.4% D T 4 m/s 23.5% 25.3% E T 4 m/s 11.7% 12.1%

10 Methodology The following parameters were calculated or used in the analysis. P 40 m wind speed from NRG anemometer. Designated Primary (m/s) R 40 m wind speed from Risoe Anemometer. Designated Redundant (m/s) TI Turbulence Intensity as defined 40 m NRG anemometer σp/p (%) The following procedure was used to assess the impact of horizontal turbulence intensity on wind speed measurements. The Risoe sensor was used as the reference anemometer, as it has been shown to have little sensitivity to turbulence intensity P/R and TI were calculated for each valid 10-minute data record The P/R values were binned and averaged in 1% TI segments for the total data set (P 4.0 m/s), and for three separate speeds (P= 5, 8, and 12 m/s) Frequency distributions of TI were calculated for each data set identified above Linear regressions were fit for each set of data at each tower Following are the graphical representations of the results for each station

11 Tower A Results

12 Tower B Results

13 Tower C Results

14 Tower D Results

15 Tower E Results

16 Database Comparison with Reference Reference curve is NRG data from [1]

17 Turbulence Intensity Results All towers, with the exception of Tower D, showed a strong correlation between horizontal turbulence intensity and the NRG/Risoe (P/R) speed ratio. The positive slopes of the regression lines show that the NRG anemometers indicate progressively higher relative speeds under more turbulent conditions. This is evidence of turbulent over-speeding. Based on these field results and the previous work, the NRG varies from reference speed at an average rate of % per 1% TI. There appear to be a site-specific variations in this relationship with wind speed. The field and reference data indicate that this response by the NRG anemometer to turbulent flow could induce over-estimates of wind speed on the order of 1% to 2%+, which can translate into overestimations of 1.8% to 3.6%+ in energy estimates.

18 Turbulence Intensity Discussion There appears good agreement between the field-measured slopes and previously published research results; the differences in offsets may be partially attributable to individual sensor pair characteristics and/or other environmental factors. Tower C s slope is steeper than the other three towers and the research data. This higher sensitivity to turbulence may be attributable to the terrain at this site. The area is rugged, heavily forested and has with a high incidence of off-horizontal flow, the implications of which are discussed in the next section. Given the strong correlation between increasing relative speed output and TI measured by the NRG anemometer, it is envisioned that a linear correction could be implemented as a partial treatment for these conditions.

19 Off-Horizontal Flow In sloped terrain and complex flow regimes, a turbine s output will be driven by the horizontal component of the wind As such, the potential for errors in energy production estimates grows when the resource assessment anemometer does not respond to off-horizontal flows as a turbine does. Numerous field and wind tunnel studies have produced a body of data on t he inclined flow response of both the NRG and Risoe anemometers Risoe P2456A manufacturer specifications

20 Off-Horizontal Flow Database Archived and current data from 3 resource assessment stations across eastern North America were analyzed for this component. Each station is equipped with an NRG Max 40 anemometer pair at one monitoring height supplemented with an RM Young model 27107T vertical propeller anemometer. One of the stations, Tower E from the previous section, also has a Risoe P2546A anemometer installed. Table 3: Off-Horizontal Flow Data Base Tower Tower Type RM Young Height/Bearing Risoe Height/Bearing NRG Height/Bearing POR (months) E Lat. 132 m / 0 T 140 m /180 T 140 m / 0 T 9 F Lat. 74 m / 208 T N/A 76 m / 88 T 3 76 m / 208 T G Lat. 47 m / 240 T N/A 49 m / 173 T 49 m / 241 T 3

21 Tower F Overview Tower F 80m

22 Tower G Overview Tower G 50m

23 Approximation Off-Horizontal Flow Angle V out ,5 Angular response characteristics of NRG anemometer with vector scalar wind speed definition [2] V radians 3.6 Vtrue /180 Vtrue 5 Vvert Vvert Vvert 3.6 sin( ) 1 Vtrue Vtrue 5 V output output V sin V vert true V A V vert A 3.6A true

24 Calculation of Over-Speeding V horizontal V V output true V true 1 cos( ) V output V Over / underspeeding output cos( ) V V horizontal horizontal Procedure: The formulae presented were applied to each 10-minute valid data record from Towers F and G Data were averaged in 10 bins and plotted

25 Tower F Results

26 Tower G Results

27 Off-Horizontal Flow Discussion This process illustrates that with onsite vertical speed measurement and wind tunnel results, off-horizontal flows can be assessed with standard wind resource assessment sensors. The resulting upslope angle calculations are consistent with the expected terrain-induced flow distortion, and will be useful for other aspects of project development (e.g. turbine suitability). The calculated speed deviations exhibit sizeable range for both towers Tower F deviations range from -1.19% to 2.71%. Several direction sectors have calculated over-speeding of greater than 2.5%, which could yield energy over-estimation on the order of 4.5% Tower G deviations range from -1.51% to 3.7%. Several direction sectors have calculated over-speeding of greater than 3%, which could yield energy over-estimation on the order of 5.4% These effects can be further compounded by turbulent over speeding of the anemometry, particularly in rugged terrain.

28 Vertical Turbulence Intensity Previous field tests evaluating the performance of cup anemometry indicated that the vertical turbulence intensity had a large influence in the differences between cup anemometer measurements. It was also shown that corrections to anemometer measurements using this relationship could reduce variation of the wind speed ratios [3]. Tower E s equipment configuration facilitated investigation into the significance of this parameter on the ratio between the NRG and Risoe anemometers. The following procedure was employed to assess the influence of vertical turbulence intensity on wind speed measurements. The vertical turbulence intensity is defined as such: σw/p (also σw/u) The Risoe sensor was again used as the reference anemometer P/R and σw/p were calculated for each valid 10-minute data record The P/R values were binned and averaged in 1% σw/p segments for the total data set (P 4.0 m/s) Frequency distributions of σw/p were also calculated A linear regression was fit to the resulting data set Following is a graphical representation of the results

29 Tower E Results

30 Vertical Turbulence Intensity Results As shown in [2], a distinct relationship is apparent between the vertical turbulence intensity and the wind speed ratio between the NRG and Risoe Anemometer. Based on these results, the NRG varies from reference speed at an average rate of 0.218% per 1% σw/p. The slope of this regression agrees with the earlier horizontal turbulence studies, suggesting that the NRG instrument indicates relatively higher wind speed values as the vertical turbulence intensity increases.

31 Unusual Shear and Other Events The effects of unusual shear and other transient weather events can be difficult to capture with single point measurements from anemometry. Appropriate equipment is atmospheric profiler Sodar Lidar Several types of events can have detrimental effects on turbine and park performance.

32 Directional Shear Strong, transient directional shear event in the mountains of western US [4] Can manifest in several different ways with different time scales. Potential turbine- and park-scale performance implications Directional shear across the rotor plane causes losses from aerodynamic inefficiency, 2% to 3% losses estimated for shears of 10 to 18 In extreme cases, can cause excessive loading and down time On a park scale, performance can degrade if optimized to the wrong wind rose (typically measured below hub height and not adjusted for increased elevation). Commonly difficult to detect on a resource assessment tower with only two vanes.

33 Other Meteorologically Driven Shear Conditions Examples include time-varying horizontal shear, low level jets, frontal passages, stability, and local circulations. Can have a potentially significant negative impact on energy production to a slight positive effect depending upon phenomena Certain conditions may be difficult to identify with standard meteorological towers, but may be more visible with high-sensitivity sensors (e.g. 3D sonics, ΔT, etc.) [4] [5]

34 Terrain and Monitoring Condition Driven Shear Conditions driven by slope steepness, complexity, land cover, exposure, etc. Here, anemometer scrutiny and potential correction may be useful Over-speeding on mast anemometers may lead to significant errors in absolute speed measurements and shear calculations Aside from complementary remotesensing campaigns, resource assessment in complex terrain would also benefit from vertical wind speed measurements on the masts

35 Usefulness of Models A High-resolution, CFD model was sought to help describe the wind regime through the complex terrain of Towers F and G s project area. Meteodyn WT was run to assess its usefulness in providing 3D flow field information, including offhorizontal wind data and turbulence. The results were checked against the measurements taken at Towers F and G.

36 Tower F Overview Tower F

37 Tower G Overview Tower G

38 Tower F Results Inclined flow output from model compared to measurement at 80 m

39 Inclined flow output from model compared at 80 m compared to measured data at 50 m. Tower G Results

40 Conclusions There are clear correlations between turbulence intensity and the wind speed ratios of equally exposed NRG and Risoe anemometers. The evidence resembles turbulent overspeeding, and appears to be treatable through linear corrections. Off-horizontal flow angles and the resulting speed deviations can be calculated and treated through the analysis of standard resource assessment anemometry and vertical speed measurements. Anemometer adjustments and careful resource assessment practices may help mitigate errors in shear estimates due to speed measurement inaccuracy. The use of high-resolution, CFD-based wind models show promise for assisting with the characterization of flow through project sites, particularly in complex terrain.

41 References [1] Papadopoulos, K. H. Effects of Turbulence and Flow inclination on the Performance of Cup anemometers in the Field, Boundary Layer Meteorology, 101: , [2] Pedersen, T. F., Power Curve Measurements under Influence of Skew Airflow and Turbulence, [3] Albers, A., Open Field Cup Anemometry, DEWI Magazine, No. 19, August [4] Moore, K. and B. Bailey, Classifying Rotor Span Shear Profile Variability and Improving Wind Turbine Production Prediction, [5] Banta, R. M., et al., Nocturnal Low-level Jet Characteristics observed during CASES-99,

USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS

USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS RECOMMENDED PRACTICE DNV-RP-J101 USE OF REMOTE SENSING FOR WIND ENERGY ASSESSMENTS APRIL 2011 FOREWORD (DNV) is an autonomous and independent foundation with the objectives of safeguarding life, property

More information

EFFECTS OF COMPLEX WIND REGIMES ON TURBINE PERFORMANCE

EFFECTS OF COMPLEX WIND REGIMES ON TURBINE PERFORMANCE EFFECTS OF COMPLEX WIND REGIMES ON TURBINE PERFORMANCE Elisabeth Rareshide, Andrew Tindal 1, Clint Johnson, AnneMarie Graves, Erin Simpson, James Bleeg, Tracey Harris, Danny Schoborg Garrad Hassan America,

More information

German Test Station for Remote Wind Sensing Devices

German Test Station for Remote Wind Sensing Devices German Test Station for Remote Wind Sensing Devices A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: a.albers@windguard.de, Tel: (++9)

More information

COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES

COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES COMPARISON OF LIDARS, GERMAN TEST STATION FOR REMOTE WIND SENSING DEVICES A. Albers, A.W. Janssen, J. Mander Deutsche WindGuard Consulting GmbH, Oldenburger Straße, D-31 Varel, Germany E-mail: a.albers@windguard.de,

More information

EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS

EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS Author Marie Schnitzer Director of Solar Services Published for AWS Truewind October 2009 Republished for AWS Truepower: AWS Truepower, LLC

More information

Virtual Met Mast verification report:

Virtual Met Mast verification report: Virtual Met Mast verification report: June 2013 1 Authors: Alasdair Skea Karen Walter Dr Clive Wilson Leo Hume-Wright 2 Table of contents Executive summary... 4 1. Introduction... 6 2. Verification process...

More information

Financing Community Wind

Financing Community Wind Financing Community Wind Wind Data and Due Diligence What is the Project's Capacity Factor? Community Wind Energy 2006 March 8, 2006 Mark Ahlstrom mark@windlogics.com Slide 1 The Need for Wind Assessment

More information

DATA VALIDATION, PROCESSING, AND REPORTING

DATA VALIDATION, PROCESSING, AND REPORTING DATA VALIDATION, PROCESSING, AND REPORTING After the field data are collected and transferred to your office computing environment, the next steps are to validate and process data, and generate reports.

More information

EVALUATION OF ZEPHIR

EVALUATION OF ZEPHIR EVALUATION OF ZEPHIR A. Albers Deutsche WindGuard Consulting GmbH, Oldenburger Straße 5, D-31 Varel, Germany E-mail: a.albers@windguard.de, Tel: (++9) ()51/9515-15, Fax: : (++9) ()51/9515-9 Summary Since

More information

Testing the Performance of a Ground-based Wind LiDAR System One Year Intercomparison at the Offshore Platform FINO1

Testing the Performance of a Ground-based Wind LiDAR System One Year Intercomparison at the Offshore Platform FINO1 Testing the Performance of a Ground-based Wind LiDAR System One Year Intercomparison at the Offshore Platform FINO1 B. Cañadillas, A. Westerhellweg, T. Neumann; DEWI GmbH, Wilhelmshaven B. Canadillas English

More information

Guidelines for Detailed Wind Resource Measurements on Islands

Guidelines for Detailed Wind Resource Measurements on Islands Guidelines for Detailed Wind Resource Measurements on Islands Matthew V. Filippelli Principal Engineer IRENA Island Energy Transitions: Pathways for Accelerated Uptake of Renewables Martinique 22-24 June

More information

(1) 2 TEST SETUP. Table 1 Summary of models used for calculating roughness parameters Model Published z 0 / H d/h

(1) 2 TEST SETUP. Table 1 Summary of models used for calculating roughness parameters Model Published z 0 / H d/h Estimation of Surface Roughness using CFD Simulation Daniel Abdi a, Girma T. Bitsuamlak b a Research Assistant, Department of Civil and Environmental Engineering, FIU, Miami, FL, USA, dabdi001@fiu.edu

More information

Solar Input Data for PV Energy Modeling

Solar Input Data for PV Energy Modeling June 2012 Solar Input Data for PV Energy Modeling Marie Schnitzer, Christopher Thuman, Peter Johnson Albany New York, USA Barcelona Spain Bangalore India Company Snapshot Established in 1983; nearly 30

More information

Improved Bankability. The Ecofys position on LiDAR use. Summary

Improved Bankability. The Ecofys position on LiDAR use. Summary Improved Bankability The Ecofys position on LiDAR use Summary A key goal of a wind measurement campaign is to reduce project uncertainty, as this will improve bankability in terms of better financing terms

More information

USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower

USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP. M. Taylor J. Freedman K. Waight M. Brower USING SIMULATED WIND DATA FROM A MESOSCALE MODEL IN MCP M. Taylor J. Freedman K. Waight M. Brower Page 2 ABSTRACT Since field measurement campaigns for proposed wind projects typically last no more than

More information

POWER CURVE MEASUREMENT EXPERIENCES, AND NEW APPROACHES

POWER CURVE MEASUREMENT EXPERIENCES, AND NEW APPROACHES POWER CURVE MEASUREMENT EXPERIENCES, AND NEW APPROACHES EWEA Resource Assessment Workshop 2013 - Dublin Mark Young - Head of Department, Renewables Objectives Overview of reasons for power performance

More information

INFLUENCES OF VERTICAL WIND PROFILES ON POWER PERFORMANCE MEASUREMENTS

INFLUENCES OF VERTICAL WIND PROFILES ON POWER PERFORMANCE MEASUREMENTS Abstract INFLUENCES OF VERTICAL WIND PROFILES ON POWER PERFORMANCE MEASUREMENTS U. Bunse, H. Mellinghoff DEWI GmbH, Ebertstr. 96, D 26382 Wilhelmshaven e mail: u.bunse@dewi.de The IEC 61400 12 1 [1] and

More information

Power Performance Testing: Truly Useful of Just Box Ticking. Mark Young 2 July 2012

Power Performance Testing: Truly Useful of Just Box Ticking. Mark Young 2 July 2012 Power Performance Testing: Truly Useful of Just Box Ticking Mark Young DNV KEMA Energy & Sustainability Part of DNV Group an independent foundation with HQ in Norway founded in 1864 with 11,000 employees

More information

Forecaster comments to the ORTECH Report

Forecaster comments to the ORTECH Report Forecaster comments to the ORTECH Report The Alberta Forecasting Pilot Project was truly a pioneering and landmark effort in the assessment of wind power production forecast performance in North America.

More information

User manual data files meteorological mast NoordzeeWind

User manual data files meteorological mast NoordzeeWind User manual data files meteorological mast NoordzeeWind Document code: NZW-16-S-4-R03 Version: 2.0 Date: 1 October 2007 Author: ing. HJ Kouwenhoven User manual data files meteorological mast NoordzeeWind

More information

Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch

Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch Sandia National Laboratories New Mexico Wind Resource Assessment Lee Ranch Data Summary and Transmittal for September December 2002 & Annual Analysis for January December 2002 Prepared for: Sandia National

More information

Critical Limitations of Wind Turbine Power Curve Warranties

Critical Limitations of Wind Turbine Power Curve Warranties Critical Limitations of Wind Turbine Power Curve Warranties A. Albers Deutsche WindGuard Consulting GmbH, Oldenburger Straße 65, D-26316 Varel, Germany E-mail: a.albers@windguard.de, Tel: (++49) (0)4451/9515-15,

More information

Turbulence assessment with ground based LiDARs

Turbulence assessment with ground based LiDARs Turbulence assessment with ground based LiDARs E.T.G. Bot June 214 ECN-E--14-43 Acknowledgement The LAWINE project is partially funded by the Dutch government in the framework of TKI Wind op Zee. Abstract

More information

Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine

Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia Devine 813 W. Northern Lights Blvd. Anchorage, AK 99503 Phone: 907-269-3000 Fax: 907-269-3044 www.akenergyauthority.org Wind Resource Assessment for BETHEL, ALASKA Date last modified: 2/21/2006 Compiled by: Mia

More information

Power Performance Measured Using a Nacelle-mounted LiDAR

Power Performance Measured Using a Nacelle-mounted LiDAR Power Performance Measured Using a Nacelle-mounted LiDAR R. Wagner, M. Courtney, T. F. Pedersen; DTU Wind Energy, Risø Campus, Roskilde, Denmark R. Wagner External Article English Introduction Wind turbine

More information

Letter Report No. 100413407CRT-004 Project No. G100413407

Letter Report No. 100413407CRT-004 Project No. G100413407 3933 US Route 11 Cortland, NY 13045 Telephone: (607) 753-6711 Facsimile: (607) 753-1045 www.intertek.com Letter Report No. 100413407CRT-004 Project No. G100413407 Mr. Steve Turek Phone: 952-447-6064 Wind

More information

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley

Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners

More information

WindScanner Research Infrastructure to measure 3D wind with scanning Lidars

WindScanner Research Infrastructure to measure 3D wind with scanning Lidars WindScanner Research Infrastructure to measure 3D wind with scanning Lidars Poul Hummelshøj Head of Section Test & Measurements With contributions from a lot of my colleges in the Department! Ground-based

More information

CFD SIMULATIONS OF WAKE EFFECTS AT THE ALPHA VENTUS OFFSHORE WIND FARM

CFD SIMULATIONS OF WAKE EFFECTS AT THE ALPHA VENTUS OFFSHORE WIND FARM CFD SIMULATIONS OF WAKE EFFECTS AT THE ALPHA VENTUS OFFSHORE WIND FARM Annette Westerhellweg, Thomas Neumann DEWI GmbH, Ebertstr. 96, 26382 Wilhelmshaven, Germany Phone: +49 (0)4421 4808-828 Fax: +49 (0)4421

More information

ENERGY YIELD ASSESSMENT

ENERGY YIELD ASSESSMENT Module 2.4-2 ENERGY YIELD ASSESSMENT Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 25 Nadi, Republic of the Fiji Islands Contents power curve of wind turbine and international regulations

More information

Successful Implementation of an Alternative Co-located Transfer Standard Audit Approach: Continuous Deployment of CTS Wind Sensors on a Tall Tower

Successful Implementation of an Alternative Co-located Transfer Standard Audit Approach: Continuous Deployment of CTS Wind Sensors on a Tall Tower Successful Implementation of an Alternative Co-located Transfer Standard Audit Approach: Continuous Deployment of CTS Wind Sensors on a Tall Tower Kirk Stopenhagen Vorticity Consulting LLC Redmond, WA

More information

Excerpts from: Performance, Duration and Acoustic test reports for the Skystream 3.7 wind generator

Excerpts from: Performance, Duration and Acoustic test reports for the Skystream 3.7 wind generator Excerpts from: Performance, Duration and Acoustic test reports for the Skystream 3.7 wind generator Report One: Power performance measurement on the Skystream 3.7 according to IEC 61400-12-1 and BWEA Report

More information

11.6 EVALUATING SODAR PERFORMANCE AND DATA QUALITY IN SUBARCTIC WESTERN ALASKA. Cyrena-Marie Druse * McVehil-Monnett Associates

11.6 EVALUATING SODAR PERFORMANCE AND DATA QUALITY IN SUBARCTIC WESTERN ALASKA. Cyrena-Marie Druse * McVehil-Monnett Associates 11.6 EVALUATING PERFORMANCE AND DATA QUALITY IN SUBARCTIC WESTERN ALASKA Cyrena-Marie Druse * McVehil-Monnett Associates 1. INTRODUCTION In September 28, a Sonic Detection and Ranging () antenna and two

More information

The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility for any

The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility for any Virtual Met Mast Version 1 Methodology and Verification January 2010 The information in this report is provided in good faith and is believed to be correct, but the Met. Office can accept no responsibility

More information

Ewiiaapaayp Wind Project

Ewiiaapaayp Wind Project Ewiiaapaayp Wind Project Tony Pinto Ewiiaapaayp Members Tlingit Tantakwaan Teikweidi Yaan Yaan Eesh Development Process Site Selection topologically site specific Land Agreements federal approval uncertainties

More information

Comparison of Resource and Energy Yield Assessment Procedures

Comparison of Resource and Energy Yield Assessment Procedures Comparison of Resource and Energy Yield Assessment Procedures Niels G. Mortensen and Hans E. Jørgensen Wind Energy Division, Risø DTU EWEA Wind Resource Assessment Technology Workshop 2011 F Acknowledgements

More information

Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application M. Raciti Castelli, S. Mogno, S. Giacometti, and E. Benini Abstract A boundary layer wind tunnel

More information

Wind resources map of Spain at mesoscale. Methodology and validation

Wind resources map of Spain at mesoscale. Methodology and validation Wind resources map of Spain at mesoscale. Methodology and validation Martín Gastón Edurne Pascal Laura Frías Ignacio Martí Uxue Irigoyen Elena Cantero Sergio Lozano Yolanda Loureiro e-mail:mgaston@cener.com

More information

INDIA S NATIONAL INITIATIVES AND EXPERIENCES RELATED TO WIND RESOURCE ASSESSMENT

INDIA S NATIONAL INITIATIVES AND EXPERIENCES RELATED TO WIND RESOURCE ASSESSMENT INDIA S NATIONAL INITIATIVES AND EXPERIENCES RELATED TO WIND RESOURCE ASSESSMENT Dr.S.Gomathinayagam ED/CWET & K.Boopathi Scientist & Unit Chief i/c Wind Resource Assessment Unit Centre for Wind Energy

More information

Onshore Services for. Wind Farms. Developers, Operators, Owners, Lenders & Investors

Onshore Services for. Wind Farms. Developers, Operators, Owners, Lenders & Investors Onshore Services for Wind Farms Developers, Operators, Owners, Lenders & Investors Research & Studies Customers benefit from our in-depth knowledge based on UL participation in a number of state-ofthe-art

More information

Relative Power Curve Measurements Using Turbine Mounted, Continuous-Wave Lidar

Relative Power Curve Measurements Using Turbine Mounted, Continuous-Wave Lidar Relative Power Curve Measurements Using Turbine Mounted, Continuous-Wave Lidar Chris Slinger, Matthew Leak, Mark Pitter, Michael Harris ZephIR Ltd., The Old Barns, Fairoaks Farm, Hollybush, Ledbury, Herefordshire,

More information

Forest Experiments Ferhat Bingöl

Forest Experiments Ferhat Bingöl Forest Experiments Ferhat Bingöl f bi@ i dt dk febi@risoe.dtu.dk PostDoc Risø DTU 2009 Outlook Instruments Experiment Sites Models Results Conclusion Questions 2 Risø DTU, Technical University of Denmark

More information

Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France

Validation n 2 of the Wind Data Generator (WDG) software performance. Comparison with measured mast data - Flat site in Northern France Validation n 2 of the Wind Data Generator (WDG) software performance Comparison with measured mast data - Flat site in Northern France Mr. Tristan Fabre* La Compagnie du Vent, GDF-SUEZ, Montpellier, 34967,

More information

User Perspectives on Project Feasibility Data

User Perspectives on Project Feasibility Data User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia marcel.suri@geomodel.eu http://geomodelsolar.eu http://solargis.info Solar Resources

More information

National-Scale Wind Resource Assessment for Power Generation

National-Scale Wind Resource Assessment for Power Generation National-Scale Wind Resource Assessment for Power Generation Modern Approaches to Support the Development of a Nation s Wind Energy Potential E. Ian Baring-Gould Asia Clean Energy Forum 2013 June 28, 2013

More information

As a minimum, the report must include the following sections in the given sequence:

As a minimum, the report must include the following sections in the given sequence: 5.2 Limits for Wind Generators and Transformer Substations In cases where the noise impact at a Point of Reception is composed of combined contributions due to the Transformer Substation as well as the

More information

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere

GEOENGINE MSc in Geomatics Engineering (Master Thesis) Anamelechi, Falasy Ebere Master s Thesis: ANAMELECHI, FALASY EBERE Analysis of a Raster DEM Creation for a Farm Management Information System based on GNSS and Total Station Coordinates Duration of the Thesis: 6 Months Completion

More information

A wind turbine is a machine for converting the kinetic energy in wind into mechanical energy.

A wind turbine is a machine for converting the kinetic energy in wind into mechanical energy. Type of Turbines Page 1 Turbines A wind turbine is a machine for converting the kinetic energy in wind into mechanical energy. mills Turbines If the mechanical energy is used directly by machinery, such

More information

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2

6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES. William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 6.4 THE SIERRA ROTORS PROJECT, OBSERVATIONS OF MOUNTAIN WAVES William O. J. Brown 1 *, Stephen A. Cohn 1, Vanda Grubiši 2, and Brian Billings 2 1 National Center for Atmospheric Research, Boulder, Colorado.

More information

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Coupling micro-scale CFD simulations to meso-scale models

Coupling micro-scale CFD simulations to meso-scale models Coupling micro-scale CFD simulations to meso-scale models IB Fischer CFD+engineering GmbH Fabien Farella Michael Ehlen Achim Fischer Vortex Factoria de Càlculs SL Gil Lizcano Outline Introduction O.F.Wind

More information

ENERCON WIND TURBINES

ENERCON WIND TURBINES Sales ENERCON GmbH Dreekamp 5 2665 Aurich Germany Phone +49 494192 7 Fax +49 4941 92 71 9 vertrieb@enercon.de E-33 E-44 E-48 E-53 E-7 E-82 ENERCON WIND TURBINES PRODUCT OVERVIEW ENERCON GmbH Dreekamp 5

More information

Calibration of the MASS time constant by simulation

Calibration of the MASS time constant by simulation Calibration of the MASS time constant by simulation A. Tokovinin Version 1.1. July 29, 2009 file: prj/atm/mass/theory/doc/timeconstnew.tex 1 Introduction The adaptive optics atmospheric time constant τ

More information

Óbuda University Power System Department. The wind. Dr. Péter Kádár Óbuda University, Power System Department, Hungary kadar.peter@kvk.uni-obuda.

Óbuda University Power System Department. The wind. Dr. Péter Kádár Óbuda University, Power System Department, Hungary kadar.peter@kvk.uni-obuda. The wind Dr. Péter Kádár,, Hungary kadar.peter@kvk.uni-obuda.hu Draft Wind basics Drivers of the wind energy application The energy of the wind Dynamic simulation Wind forecast Wind basics - Patra, 2012

More information

Experimental Wind Turbine Aerodynamics Research @LANL

Experimental Wind Turbine Aerodynamics Research @LANL Experimental Wind Turbine Aerodynamics Research @LANL B. J. Balakumar, Los Alamos National Laboratory Acknowledgment: SuhasPol(Post-doc), John Hoffman, Mario Servin, Eduardo Granados (Summer students),

More information

Aerogeneratori eolici ad asse verticale: analisi numerica, verifica sperimentale e messa a punto di un campo di prova per prototipi full-scale

Aerogeneratori eolici ad asse verticale: analisi numerica, verifica sperimentale e messa a punto di un campo di prova per prototipi full-scale !! Doctoral School on Engineering Sciences! Università Politecnica delle Marche Extended summary Aerogeneratori eolici ad asse verticale: analisi numerica, verifica sperimentale e messa a punto di un campo

More information

WIND RESOURCE OF MICROREGIONS IN SOUTH AND NOTHEAST OF BRAZIL: AN EVALUATION OF METEROLOGICAL DATA AND COMPUTACIONAL TOOL

WIND RESOURCE OF MICROREGIONS IN SOUTH AND NOTHEAST OF BRAZIL: AN EVALUATION OF METEROLOGICAL DATA AND COMPUTACIONAL TOOL EWEA 211 - Europe s Premier Wind Energy Event 1-17 March 211, Brussels, Belgium WIN RESOURCE OF MICROREGIONS IN SOUTH AN NOTHEAST OF BRAZIL: AN EVALUATION OF METEROLOGICAL ATA AN COMPUTACIONAL TOOL Jorge

More information

Wind resources and wind turbine wakes in large wind farms. Professor R.J. Barthelmie Atmospheric Science and Sustainability

Wind resources and wind turbine wakes in large wind farms. Professor R.J. Barthelmie Atmospheric Science and Sustainability Wind resources and wind turbine wakes in large wind farms Professor R.J. Barthelmie Atmospheric Science and Sustainability Overview Wind resource of Egypt Based on Wind Atlas for Egypt Wind turbine wakes

More information

Working Group 1: Wind Energy Resource

Working Group 1: Wind Energy Resource Wind Energy Technology Platform Working Group 1: Wind Energy Resource Presented by Ignacio Martí CENER imarti@cener.com Authors: wg1 participants WG1 Participants Erik Lundtang Petersen (Chairman) Risø

More information

46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software

46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software Downloaded from orbit.dtu.dk on: Jan 30, 2016 46200 Planning and Development of Wind Farms: Wind resource assessment using the WAsP software Mortensen, Niels Gylling Publication date: 2014 Document Version

More information

LIDAR Wind Speed Measurements from a Rotating Spinner: SpinnerEx 2009 Risø-R-Report

LIDAR Wind Speed Measurements from a Rotating Spinner: SpinnerEx 2009 Risø-R-Report LIDAR Wind Speed Measurements from a Rotating Spinner: SpinnerEx 9 Risø-R-Report Nikolas Angelou, Torben Mikkelsen, Kasper H. Hansen, Mikael Sjöholm, Michael Harris Risø-R-1741(EN) August 1 Author: Nikolas

More information

The process components and related data characteristics addressed in this document are:

The process components and related data characteristics addressed in this document are: TM Tech Notes Certainty 3D November 1, 2012 To: General Release From: Ted Knaak Certainty 3D, LLC Re: Structural Wall Monitoring (#1017) rev: A Introduction TopoDOT offers several tools designed specifically

More information

Breeze Development. Wind Resource Assessment System. Modern software for wind energy site evaluation and management.

Breeze Development. Wind Resource Assessment System. Modern software for wind energy site evaluation and management. Breeze Development Wind Resource Assessment System Modern software for wind energy site evaluation and management. PRODUCT OVERVIEW Contents Contents 2 Company Overview 4 Increase Data Availability 5 Value

More information

AMS 2009 Summer Community Meeting Renewable Energy Topic

AMS 2009 Summer Community Meeting Renewable Energy Topic AMS 2009 Summer Community Meeting Renewable Energy Topic The 2009 American Meteorological Society s Summer Community Meeting addressed the roles of academia, industry and government in supporting the development

More information

MM5/COSMO-DE Model Inter-Comparison and Model Validation

MM5/COSMO-DE Model Inter-Comparison and Model Validation MM5/COSMO-DE Model Inter-Comparison and Model Validation Klaus Dengler and Christian Keil DLR, Institute of Atmospheric Physics Assessment of forecast quality using observations of the FRA airport campaign

More information

Wind Energy Assessment

Wind Energy Assessment Energy Assessment Course No: M06-002 Credit: 6 PDH Steven Liescheidt, P.E., CCS, CCPR Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877)

More information

Effective Implementation of a Small Scale Building Mounted Renewable Energy System

Effective Implementation of a Small Scale Building Mounted Renewable Energy System Effective Implementation of a Small Scale Building Mounted Renewable Energy System Project Leader Dan Barron barrondm@clarkson.edu (716) 725-4496 Team Members Dylan Broomfield Sky McDonough Adviser Dr.

More information

How To Use A Karlsruhe Doppler Lidar

How To Use A Karlsruhe Doppler Lidar Andreas Wieser Institut für Meteorologie und Klimaforschung Forschungsbereich Troposphäre (IMK-TRO) First measurements with the new Karlsruhe Doppler Lidar June 03, 2004 Forschungszentrum Karlsruhe we

More information

Fugro OCEANOR SEAWATCH Wind LiDAR BUOY. A compact, proven measurement buoy that includes waves, current profile and wind profile

Fugro OCEANOR SEAWATCH Wind LiDAR BUOY. A compact, proven measurement buoy that includes waves, current profile and wind profile Fugro OCEANOR SEAWATCH Wind LiDAR BUOY A compact, proven measurement buoy that includes waves, current profile and wind profile Fugro OCEANOR Seawatch Wind LiDAR Buoy, Vegar Neshaug, October 2015 Seawatch

More information

IBM Big Green Innovations Environmental R&D and Services

IBM Big Green Innovations Environmental R&D and Services IBM Big Green Innovations Environmental R&D and Services Smart Weather Modelling Local Area Precision Forecasting for Weather-Sensitive Business Operations (e.g. Smart Grids) Lloyd A. Treinish Project

More information

Sintermann discussion measurement of ammonia emission from field-applied manure

Sintermann discussion measurement of ammonia emission from field-applied manure Sintermann discussion measurement of ammonia emission from field-applied manure Jan Huijsmans, Julio Mosquera and Arjan Hensen 9 April 2013 During the1990 s the measurement methods for ammonia (NH 3 )

More information

Modeling wind flow using O.F. Wind, an OpenFOAM based CFD tool: validation of Turbulence Intensity in a testing Suzlon Energy site Ltd.

Modeling wind flow using O.F. Wind, an OpenFOAM based CFD tool: validation of Turbulence Intensity in a testing Suzlon Energy site Ltd. Modeling wind flow using O.F. Wind, an OpenFOAM based CFD tool: validation of Turbulence Intensity in a testing Suzlon Energy site Ltd. L.Casella 1, W.Langreder 1, A.Fischer 2, M.Ehlen 2, D.Skoutelakos

More information

Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP

Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP Index-Velocity Rating Development for Rapidly Changing Flows in an Irrigation Canal Using Broadband StreamPro ADCP and ChannelMaster H-ADCP HENING HUANG, RD Instruments, 9855 Businesspark Avenue, San Diego,

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Integrating Wind Energy into the Design of Tall Buildings A Case Study of the Houston Discovery Tower WINDPOWER 2008

Integrating Wind Energy into the Design of Tall Buildings A Case Study of the Houston Discovery Tower WINDPOWER 2008 Integrating Wind Energy into the Design of Tall Buildings A Case Study of the Houston Discovery Tower WINDPOWER 2008 Brad C. Cochran, MS Rick R. Damiani, PhD, P.E. (Europe) CPP, Inc. 1415 Blue Spruce Drive

More information

Siting Guidelines Version 2.2

Siting Guidelines Version 2.2 Siting Guidelines Version 2.2 PN 790-0006-004 TRITON SONIC WIND PROFILER Siting Guidelines v. 2.2 PN 790-0006-004 Notices This manual and any examples contained are provided as is and are subject to change

More information

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011

Chapter 3: Weather Map. Weather Maps. The Station Model. Weather Map on 7/7/2005 4/29/2011 Chapter 3: Weather Map Weather Maps Many variables are needed to described weather conditions. Local weathers are affected by weather pattern. We need to see all the numbers describing weathers at many

More information

Development of a. Solar Generation Forecast System

Development of a. Solar Generation Forecast System ALBANY BARCELONA BANGALORE 16 December 2011 Development of a Multiple Look ahead Time Scale Solar Generation Forecast System John Zack Glenn Van Knowe Marie Schnitzer Jeff Freedman AWS Truepower, LLC Albany,

More information

Uncertainty of Power Production Predictions of Stationary Wind Farm Models

Uncertainty of Power Production Predictions of Stationary Wind Farm Models Uncertainty of Power Production Predictions of Stationary Wind Farm Models Juan P. Murcia, PhD. Student, Department of Wind Energy, Technical University of Denmark Pierre E. Réthoré, Senior Researcher,

More information

Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program

Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program Low Level Windshear Alert System (LLWAS) An integral part of the U.S. FAA Wind-shear safety program Low-level windshear is a hazard to aircraft in the airport runway corridors. With Climatronics LLWAS,

More information

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

More information

Aeroelastic models for wind turbines

Aeroelastic models for wind turbines Aeroelastic models for wind turbines how accurate does the flow model have to be? Helge Aagaard Madsen Georg Pirrung Torben J. Larsen Section Aeroelastic Design Department of Wind Energy hama@dtu.dk How

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Measurements at the ECN Wind Turbine Test Location Wieringermeer

Measurements at the ECN Wind Turbine Test Location Wieringermeer Measurements at the ECN Wind Turbine Test Location Wieringermeer P.J. Eecen, S.A.M. Barhorst, H. Braam, A.P.W.M. Curvers, H. Korterink, L.A.H. Machielse, R.J. Nijdam, L.W.M.M. Rademakers, J.P. Verhoef,

More information

Mobile field balancing reduces vibrations in energy and power plants. Published in VGB PowerTech 07/2012

Mobile field balancing reduces vibrations in energy and power plants. Published in VGB PowerTech 07/2012 Mobile field balancing reduces vibrations in energy and power plants Published in VGB PowerTech 07/2012 Dr. Edwin Becker PRÜFTECHNIK Condition Monitoring PRÜFTECHNIK Condition Monitoring GmbH 85737 Ismaning

More information

Power output of offshore wind farms in relation to atmospheric stability Laurens Alblas BSc

Power output of offshore wind farms in relation to atmospheric stability Laurens Alblas BSc Power output of offshore wind farms in relation to atmospheric stability Laurens Alblas BSc Photo: Vestas Wind Systems A/S 1 1. Introduction Background Atmospheric stability is known to influence wind

More information

Advanced nacelle anemometry and SCADA-data, analysis techniques and limitations. Frank Ormel Chief Specialist in Product Integration Vestas

Advanced nacelle anemometry and SCADA-data, analysis techniques and limitations. Frank Ormel Chief Specialist in Product Integration Vestas Advanced nacelle anemometry and SCADA-data, analysis techniques and limitations Frank Ormel Chief Specialist in Product Integration Vestas Outline Introduction State of the art Advanced methods Nacelle

More information

Database of measurements on the offshore wind farm Egmond aan Zee

Database of measurements on the offshore wind farm Egmond aan Zee Database of measurements on the offshore wind farm Egmond aan Zee A.J. Brand J.W. Wagenaar P.J. Eecen M.C. Holtslag 1 1 TU Delft, Faculty Aerospace Engineering Presented at the the EWEA 2012 conference,

More information

WindREN AB IEA Task 19 national overview - Swedish activities in measurements and mapping of icing and de-icing of wind turbines Göran Ronsten,

WindREN AB IEA Task 19 national overview - Swedish activities in measurements and mapping of icing and de-icing of wind turbines Göran Ronsten, WindREN AB IEA Task 19 national overview - Swedish activities in measurements and mapping of icing and de-icing of wind turbines Göran Ronsten, WindREN Why bother? Binding targets to be achieved by 2020

More information

300 MW Variable Speed Drives for Pump-Storage Plant Application Goldisthal

300 MW Variable Speed Drives for Pump-Storage Plant Application Goldisthal May 24 MW Variable Speed Drives for Aurélie Bocquel APCG / 4BOC4 (MW-Goldisthal 1-5-24).PPT MW Variable Speed Drives for Content Major benefits of the cyclo-converter driven doubly-fed induction machines

More information

Wind Energy Resource Map of the State of Paraná, Brazil

Wind Energy Resource Map of the State of Paraná, Brazil DEWI Magazin Nr. 15, August 1999 extern Wind Energy Resource Map of the State of Paraná, Brazil Odilon A. Camargo do Amarante; CAMARGO SCHUBERT Engenharia Eólica Ltda. Dario J. Schultz; COPEL Companhia

More information

Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

More information

WIND ENERGY - THE FACTS PART I TECHNOLOGY

WIND ENERGY - THE FACTS PART I TECHNOLOGY WIND ENERGY - THE FACTS PART I TECHNOLOGY Acknowledgements Part I was compiled by Paul Gardner, Andrew Garrad, Lars Falbe Hansen, Peter Jamieson, Colin Morgan, Fatma Murray and Andrew Tindal of Garrad

More information

Comment on "Observational and model evidence for positive low-level cloud feedback"

Comment on Observational and model evidence for positive low-level cloud feedback LLNL-JRNL-422752 Comment on "Observational and model evidence for positive low-level cloud feedback" A. J. Broccoli, S. A. Klein January 22, 2010 Science Disclaimer This document was prepared as an account

More information

Modelling the Marine Boundary Layer for Offshore Wind Power Utilisation

Modelling the Marine Boundary Layer for Offshore Wind Power Utilisation Modelling the Marine Boundary Layer for Offshore Wind Power Utilisation Vom Fachbereich Physik der Universität Oldenburg zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) angenommene

More information

P3.8 INTEGRATING A DOPPLER SODAR WITH NUCLEAR POWER PLANT METEOROLOGICAL DATA. Thomas E. Bellinger

P3.8 INTEGRATING A DOPPLER SODAR WITH NUCLEAR POWER PLANT METEOROLOGICAL DATA. Thomas E. Bellinger P3.8 INTEGRATING A DOPPLER SODAR WITH NUCLEAR POWER PLANT METEOROLOGICAL DATA Thomas E. Bellinger Illinois Emergency Management Agency Springfield, Illinois 1. INTRODUCTION A Doppler sodar owned by the

More information

APPENDIX A. Bay Area Air Quality Management District

APPENDIX A. Bay Area Air Quality Management District APPENDIX A Bay Area Air Quality Management District Meteorological Monitoring Guidance for Manual of Procedures, Volume VI: Air Monitoring Procedures (Adopted July 20, 1994) (Latest Revision March 21,

More information

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency. CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department

More information

GE Power & Water Renewable Energy. Digital Wind Farm THE NEXT EVOLUTION OF WIND ENERGY. www.ge.com/wind

GE Power & Water Renewable Energy. Digital Wind Farm THE NEXT EVOLUTION OF WIND ENERGY. www.ge.com/wind GE Power & Water Renewable Energy Digital Wind Farm THE NEXT EVOLUTION OF WIND ENERGY www.ge.com/wind GE S DIGITAL WIND FARM PITCH Since entering the wind industry in 2002, GE Power & Water s Renewable

More information