XEW Data Analysis: Competitive Intelligence System in cloud

Size: px
Start display at page:

Download "XEW Data Analysis: Competitive Intelligence System in cloud"

Transcription

1 XEW Data Analysis: Competitive Intelligence System in cloud 6th. International Conference on Information Systems & Economic Intelligence Anass El Haddadi a,b, Wahiba Bahsoun a, Bernard Dousset a a Institut de Recherche en Informatique de Toulouse, IRIT UMR 5505 Université de Toulouse, Université Paul Sabatier 118, Route de Narbonne, F Toulouse cedex 9 (France) b ENSAH, DMI, Université Med 1, Al-Hoceima, Maroc

2 Outline Introduction The analytical model of CI Information system adapted to the CI appraoch XEW the CI System in cloud Conclusion

3 Introduction

4 Introduction Competitive Intelligence System Front Office Order Entry CRM Adapter Finance SFA App Server Subsidiary Integration Broker Adapter Adapter SCM ERP Back Office CRM App Server CRM Tracking Service Adapter SCM Partner

5 Outline Introduction The analytical model of CI Information system adapted to the CI appraoch XEW the CI System in cloud Conclusion

6 The analytical model of CI Competitive Intelligence (CI) is a set of coordinated actions of research, treatment and distribution of useful information to makers, to enable the action and decision making [1, 2]. More CI is both a process and a product [3]

7 Outline Introduction The analytical model of CI Information system adapted to the CI appraoch XEW the CI System in cloud Conclusion

8 Information Systems adaptedto the CI appraoch For Patrick Romagni and Valérie Wild, the definition of an information system adapted to the CI approach is as follows: organized set of procedures, at any time, to give decision-maker a representation of the company in its environment and its market. It produces information to assist in executive functions, management and decision-making. Facilitate decisions, to automate a number of actions or by providing to decision makers the necessary information for decision-making, Coordinate the processing of information, Store sustainably information, Improve data processing: the creation of information directly usable by decision makers.

9 Information Systems adaptedto the CI appraoch Reduce the number of vertical coordination by reducing managements layers, Improved environmental monitoring, An opening-up by a crosscommunication, Relationships based on complementarities business, A better adaptation to market dynamics.

10 Information Systems adaptedto the CI appraoch The advantage of this type of information system : Project management monitoring, Information sharing, Custom interface Collecting more accurate and targeted, Processing, analysis, storage Dissemination

11 Information Systemsadaptedto the CI appraoch 1. Develop 2. Choose 3. Identify & Prioritize 4. Identify & select 5. Collect & Evaluate 6. Organize & Remember 7. Validate & Stream 8. Analyze & Interpret 9. Validate & Spread

12 Information Systemsadaptedto the CI appraoch The model described is based on two main models: A multidimensional representation of documents: which can transfer qualitative data into quantitative data. The objective of this model is to get at the end, a unifying view of the documents collected. A function model,which aims to provide a set of generic and combinatory functions to build different kind of indicator as needed for analysis.

13 Outline Introduction The analytical model of CI Information system adapted to the CI appraoch XEW the CI System in cloud Conclusion

14 History D Visualization of PCA (Master) D parametric space : T. Benjamaà (Thesis) 1987 Trilogy 3D (PCA, FA, HC, Partitioning) Text mining, evolution : T. Dkaki (Thesis) Tetralogy Platform (4D) 1998 Interactiv Visualization of HC (Master), emmergence (Master) 1999 Design of CI system : M. Salle (Thesis & Medesiie project) 2002 Engineering of the need : T. Zid (Thesis et Medesiie project) 2003 Large graphs, geostrategy: S. Karouach (Thesis) 2004 Adequacy with the companies profiles : S. Hussein (Thesis) 2005 Morphing of evolutionary graphs: S. Karouach (post doc) 2009 VisuaGraph: E. Loubier (Thesis) 2009 Xplor V1: I Ghalamalah (Thesis) 2011 Xplor V1.1 & XEW: A. El Haddadi (Thesis)

15 Tetralogy Platform - TM Dictionary+ or - Extraction of the dictionaries Load diagram Synonyms

16 Tetralogy Platform - TM Dictionary of multi-terms

17 Tetralogy Platform - TM 2D Crossings Square matrix Asymmetrical matrix

18 Tetralogy Platform - TM 3D Crossings Third variable Filter

19 Tetralogy Platform - DM for the matrix treatment proposal of several algorithms of sorting supervised generation of crossing matrix 3D spreadsheet adapted to big size matrix (2 and 3 D zooms) for multidimensionnal analysis 3D and 4D interactive visualizations synchronization of local or distant charts visualization of trajectories and procrustean rotations (MFA) for classifications interactive hierarchical trees with class export partitioning of graphs, graphs of classes segmentation for the geographical maps

20 Tetralogy Platform - DM Sorting algorithms of matrix Connexity zoom diagonal blocks zoom

21 Tetralogy Platform DM (PCA) 4D map of co-ordinates Synchronisation Correlation ring

22 Tetralogy Platform DM (FCA)

23 Tetralogy Platform DM (MFCA)

24 TetralogyPlatform DM(AHC) de( A, B) = de( g, h) = ( g i hi)² dm( A, B) { de( xk, yl )} i= 1, n Min = dm( A, B) = { de( xk, yl )} k, l Max k, l e d ( xk, yl k l dµ( A, B) = A B ) Niveau de coupure à 8 classes Niveau de coupure à 4 classes

25 Tetralogy Platform - DM Supervised method K initial classes 4 classes 6 classes

26 Tetralogy Platform Data Visualization faibles. Linear distribution Evolution of coloration Data selection Choice of nonlinear scale weak signals detection

27 Tetralogy Platform Data Visualization Absent coutry. Country on the decline Country in emergence Mapin relative mode : trend study Classification exportation Country class size Levelof cut

28 Tetralogy Platform Data Visualization

29 Tetralogy Platform Data Visualization

30 Tetralogy Platform Tetralogy platform caracteristics it is a coherent whole of inter-operative prototypes, use a single standard for the format of the data, its graphic interface is homogeneous, resources and methods are shared via the network. Research use evaluation support of methods, tools and BI products, many examples, on the scale, already analyzed. Application domain : strategic watch Scientific watch (scientometry, indicators, evaluation) Technologic watch (patent rights, products, proceeded) Business watch (markets, competitors, substitutes)

31 Tetralogy to XEW Advantage Processing speed (ram, hash coding) Disadvantage Limited size (<5000*5000/2D, < 25000*250*4/3D) The result is that more and more space is lost! (sparse matrix) Loading time Managing domain names 2 or 3 variables

32 Tetralogy to XEW

33 Life Cycle of XEW model Validation and dissemination Planification Indicators for analysis Information Retrieval Multidimentional representation of documents Homogenization and structuring documents

34 Sourcing Web Service Website Internet Invisible Web Newsgroups Mailing-lists Newsletters 5000 Professional DB Patents Papers, thesis, Economic data Network and contact Experts Organism

35 Sourcing Web Service

36 Sourcing Web Service in cloud

37 Sourcing Web Service in cloud Crawling and Scraping WS Front Office Order Entry CRM Adapter Finance SFA App Server Subsidiary Integration Broker Adapter Adapter SCM ERP Back Office CRM App Server CRM Tracking Service Adapter SCM Partner

38 Open Source NoSQL Databases

39 Data Analysis WS

40 Data Analysis WS

41 XEW the CIS Data Analysis WS Virtualization App App App App App App OS OS OS Operating System Hypervisor Hardware Hardware

42 Data Analysis WS Storage virtualization Application virtualization

43 Data Analysis WS Storage virtualization uses virtualization to enable better functionality and more features in computer data storage systems.

44 Data Analysis WS Application virtualization is software technology that encapsulates application software from the underlying operating system on which it is executed. A fully virtualized application is not installed in the traditional sense, although it is still executed as if it were. The application behaves at runtime like it is directly interfacing with the original operating system and all the resources managed by it, but can be isolated or sandboxed to varying degrees.

45 Open Source Cloud Computing Open Source Hypervisors

46 Open Source Cloud Computing Open Source Compute Clouds(IaaS)

47 Open Source Cloud Computing Open Source Cloud Storage Software

48 Data Analysis WS

49 Data Analysis WS

50 ixew: iphone Xplor EveryWhere

51 Data Analysis WS

52 Outline Introduction The analytical model of CI Information system adapted to the CI appraoch XEW the CI System in cloud Conclusion

53 Conclusion KM of Tetralogy and XEW 1.0 Data Stream Mining WS of crawling and scraping: USPTO, IEEE

54 Conclusion Governance in cloud

55 Conclusion

56 References M. Salles, "Projet MEDESIIE : Méthode MEDESIIE de définition du besoin en intelligence économique des PME", Université Toulouse I, HAAG S., "Management Information Systems for the Information Age, Third Edition.". Third Edition. McGraw-Hill Ryerson, GILAD B., "The Futur of Competitive Intelligence, Contest for the Profession s Soul", Competitive Intelligence Magazine, 11(5), 22, R. G. Vedder, M. T. Vanecek, C. S. Guynes, and J. J. Cappel, "CEO and CIO Perspectives on Competitive Intelligence", Communications of the ACM, Vol. 42, N 8, P.S. Seligman, G.M. Wijers, H.G. Sol, Analyzing the structure of I.S. methodologies, an alternative approach, In proceedings of the Conference in information systems, The Ntherlands, M. Salles, Modélisation des situations de décision dans une méthode d'ingénierie du besoin en I.E, Conférence IERA, Intelligence Economique : Recherches et Applications, Nancy, France, M. Salles, De l'analyse du besoin des PME en IE à l'intelligence Territoriale. Colloque Européen d'intelligence Economique, Poitiers Futuroscope, ESCEM Poitiers, p , Poitiers, France, A. David, O. Thiery, Application of EQuA2te Architecture. Economic Intelligence, N. Bouaka, «Développement d un modèle pour l explication d un problème décisionnel : un outil d aide à la décision dans un contexte d Intelligence Economique. Thèse de doctorat de l université Nancy 2, PH. Kislin, Modélisation du problème informationnel du veilleur dans la démarche d intelligence économique. Thèse de doctorat de l université Nancy 2, France, P. Romagni, Wild V., L'Intelligence économique au service de l'entreprise, ou l'information comme outil de gestion. Les Presses du Management, 1998 Club Informatique des Grandes Entreprises Françaises, «Intelligence économique et stratégique». Rapport Cigref, Ghalamallah, Proposition d un modèle d analyse exploratoire multidimensionnelle dans un contexte d intelligence economique, doctorat de l université de toulouse, 18 décembre (2009). F. Jakobiak, L'intelligence économique : la comprendre, l'implanter, l'utiliser. Les éditions d organisation, A. El haddadi, B. Dousset, I. Berrada and I. Loubier, Les multi-sources dans un contexte d Intelligence Economique, EGC 2010, P A1-125 A1-136, El haddadi, B. Dousset. and I. Berrada., Xplor everywhere a tool for competitive intelligence on the web and mobile, VSST 2010, Octobre, Toulouse France, H. Hatim, A. El haddadi, H. El bakkali, B. Dousset, and I. Berrada, Approche générique de contrôle d accés aux donénes et aux traitements dans une plate-forme d intelligence économique, colloque Veille Stratégique et technologique, 2010.

57 Thankyou!!! SIIE -February 12, 13 and 14th., 2015 at Hammamet, Tunisia - Anass EL HADDADI -

XPLOR EVERYWHERE A TOOL FOR COMPETITIVE INTELLIGENCE ON THE WEB AND MOBILE

XPLOR EVERYWHERE A TOOL FOR COMPETITIVE INTELLIGENCE ON THE WEB AND MOBILE XPLOR EVERYWHERE A TOOL FOR COMPETITIVE INTELLIGENCE ON THE WEB AND MOBILE Anass EL HADDADI (*, **), Bernard DOUSSET (*), Ilham BERRADA (**) anass.el-haddadi@irit.fr ; dousset@irit.fr ; iberrada@ensias.ma

More information

Processing data streams by relational analysis

Processing data streams by relational analysis Processing data streams by relational analysis Ilhème Ghalamallah Institut de Recherche en Informatique de Toulouse, IRIT-SIG Plan Introduction Tetralogie Proposition X-Plor Conclusion 1 In the business

More information

Corporate Information Systems Architecture for Business Intelligence Solutions

Corporate Information Systems Architecture for Business Intelligence Solutions Corporate Information Systems Architecture for Business Intelligence Solutions B. S. Afolabi and S. Goria Laboratoire Lorrain de Recherches en Informatique et ses Applications (LORIA) Université Nancy

More information

Business intelligence systems and user s parameters: an application to a documents database

Business intelligence systems and user s parameters: an application to a documents database Business intelligence systems and user s parameters: an application to a documents database Babajide Afolabi, Odile Thiery To cite this version: Babajide Afolabi, Odile Thiery. Business intelligence systems

More information

REPRESENTATION OF KNOWLEDGE RESOURCE IN THE CONTEXT OF ECONOMIC INTELLIGENCE SYSTEMS

REPRESENTATION OF KNOWLEDGE RESOURCE IN THE CONTEXT OF ECONOMIC INTELLIGENCE SYSTEMS REPRESENTATION OF KNOWLEDGE RESOURCE IN THE CONTEXT OF ECONOMIC INTELLIGENCE SYSTEMS Oladejo Bolanle, David Amos LORIA, Campus Scientifique, Vandoeuvre les Nancy Cedex Nancy, France oladejof@loria.fr,

More information

INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA

INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA POLITECNICO DI MILANO GRADUATE SCHOOL OF BUSINESS BABD INTERNATIONAL MASTER IN BUSINESS ANALYTICS AND BIG DATA Courses Description A JOINT PROGRAM WITH POLITECNICO DI MILANO SCHOOL OF MANAGEMENT PRE-COURSES

More information

How can HRM support your Business Intelligence system?

How can HRM support your Business Intelligence system? Business School W O R K I N G P A P E R S E R I E S Working Paper 2014-151 How can HRM support your Business Intelligence system? Manelle Guechtouli http://www.ipag.fr/fr/accueil/la-recherche/publications-wp.html

More information

Il est repris ci-dessous sans aucune complétude - quelques éléments de cet article, dont il est fait des citations (texte entre guillemets).

Il est repris ci-dessous sans aucune complétude - quelques éléments de cet article, dont il est fait des citations (texte entre guillemets). Modélisation déclarative et sémantique, ontologies, assemblage et intégration de modèles, génération de code Declarative and semantic modelling, ontologies, model linking and integration, code generation

More information

Brief description of the paper/report. Identification

Brief description of the paper/report. Identification Brief description of the paper/report Argument Original reference A holonic framework for coordination and optimization in oil and gas production complexes E. Chacon, I. Besembel, Univ. Los Andes, Mérida,

More information

Odile BOIZARD EDUCATION

Odile BOIZARD EDUCATION Odile BOIZARD Assistant Professor of Management Information Systems BP 921 13288 Marseille cedex 9 France +33 (0) 4 91 82 77 91 odile.boizard@kedgebs.com EDUCATION 2008 IHEDN (Institut des hautes Etudes

More information

A Knowledge Management Framework Using Business Intelligence Solutions

A Knowledge Management Framework Using Business Intelligence Solutions www.ijcsi.org 102 A Knowledge Management Framework Using Business Intelligence Solutions Marwa Gadu 1 and Prof. Dr. Nashaat El-Khameesy 2 1 Computer and Information Systems Department, Sadat Academy For

More information

Applying the Chronographical Approach to the Modelling of Multistorey Building Projects

Applying the Chronographical Approach to the Modelling of Multistorey Building Projects Applying the Chronographical Approach to the Modelling of Multistorey Building Projects A. Francis, E. T. Miresco Department of Construction Engineering, École de technologie supérieure, University of

More information

Vulnerability Analysis of Fire Spreading in a Building using Fuzzy Logic and its Integration in a Decision Support System

Vulnerability Analysis of Fire Spreading in a Building using Fuzzy Logic and its Integration in a Decision Support System Vulnerability Analysis of Fire Spreading in a Building using Fuzzy Logic and its Integration in a Decision Support System Sanae KHALI ISSA Laboratory of Computer Sciences, Systems and Telecommunication

More information

HOW TO DEAL WITH THE CONFLICTING VIEWS OF THE WORLD EXPRESSED IN REGIONAL

HOW TO DEAL WITH THE CONFLICTING VIEWS OF THE WORLD EXPRESSED IN REGIONAL HOW TO DEAL WITH THE CONFLICTING VIEWS OF THE WORLD EXPRESSED IN REGIONAL ECONOMIC DEVELOPMENT POLICIES? Maryse Salles Maître de conférences en Informatique Maryse.Salles@univ-tlse1.fr, + 33 (0)5 61 63

More information

GUIDE OF HOW TO WRITE BIBLIOGRAPHICAL REFERENCES. 1- THE OBJECTIVE OF A BIBLIOGRAPHY.. p.2

GUIDE OF HOW TO WRITE BIBLIOGRAPHICAL REFERENCES. 1- THE OBJECTIVE OF A BIBLIOGRAPHY.. p.2 GUIDE OF HOW TO WRITE BIBLIOGRAPHICAL REFERENCES 1- THE OBJECTIVE OF A BIBLIOGRAPHY.. p.2 2- SOME GENERAL INSTRUCTIONS OF HOW TO WRITE BIBLIOGRAPHICAL REFERENCES... p.2 3- BIBLIOGRAPHICAL NOTE OF WORKS..

More information

KNOWLEDGE MANAGEMENT IN ECONOMIC INTELLIGENCE WITH REASONING ON TEMPORAL ATTRIBUTES

KNOWLEDGE MANAGEMENT IN ECONOMIC INTELLIGENCE WITH REASONING ON TEMPORAL ATTRIBUTES KNOWLEDGE MANAGEMENT IN ECONOMIC INTELLIGENCE WITH REASONING ON TEMPORAL ATTRIBUTES Bolanle OLADEJO (*), Adenike OSOFISAN (**), Victor ODUMUYIWA (*) oladejof@loria.fr, nikeosofisan@gmail.com, victor.odumuyiwa@loria.fr

More information

Available online at www.sciencedirect.com Available online at www.sciencedirect.com. Advanced in Control Engineering and Information Science

Available online at www.sciencedirect.com Available online at www.sciencedirect.com. Advanced in Control Engineering and Information Science Available online at www.sciencedirect.com Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering 00 (2011) 15 (2011) 000 000 1822 1826 Procedia Engineering www.elsevier.com/locate/procedia

More information

L évolution des progiciels métier dans un contexte SOA

L évolution des progiciels métier dans un contexte SOA L évolution des progiciels métier dans un contexte SOA Ashish SHARMA Business Development Manager Oracle Fusion Middleware Agenda Quels scénarios pour conformer

More information

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY AUTUMN 2016 BACHELOR COURSES

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY AUTUMN 2016 BACHELOR COURSES FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY Please note! This is a preliminary list of courses for the study year 2016/2017. Changes may occur! AUTUMN 2016 BACHELOR COURSES DIP217 Applied Software

More information

TECHNOLOGY ANALYSIS FOR INTERNET OF THINGS USING BIG DATA LEARNING

TECHNOLOGY ANALYSIS FOR INTERNET OF THINGS USING BIG DATA LEARNING TECHNOLOGY ANALYSIS FOR INTERNET OF THINGS USING BIG DATA LEARNING Sunghae Jun 1 1 Professor, Department of Statistics, Cheongju University, Chungbuk, Korea Abstract The internet of things (IoT) is an

More information

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks

A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired

More information

Ghizlane El Boussaidi http://pages.videotron.com/ghizlane/ 3207, boul. Lévesque Est Phone : (450) 661-4397

Ghizlane El Boussaidi http://pages.videotron.com/ghizlane/ 3207, boul. Lévesque Est Phone : (450) 661-4397 Ghizlane El Boussaidi http://pages.videotron.com/ghizlane/ 3207, boul. Lévesque Est Phone : (450) 661-4397 Laval, Québec, Canada email : gelboussaidi@gmail.com H7E 2P4 Citizenship: Canadian EDUCATION Ph.D.

More information

Indicators' relativity & data collection dependence.

Indicators' relativity & data collection dependence. Indicators' relativity & data collection dependence. QUONIAM L.*, ROSTAING H.*, BOUTIN E.**, DOU H.* *C.R.R.M. Fac. St. Jérôme. 13397 Marseille CEDEX 20. France. E-mail: crrm@crrm.univ-mrs.fr **Centre

More information

Customer Analytics. Turn Big Data into Big Value

Customer Analytics. Turn Big Data into Big Value Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data

More information

HGH BI Solutions. Business Intelligence & Integration. Equipping Your Organization for Effective Decision Making

HGH BI Solutions. Business Intelligence & Integration. Equipping Your Organization for Effective Decision Making HGH BI Solutions Business Intelligence & Integration Equipping Your Organization for Effective Decision Making Peter Kranenburg RI MCP HGH Business Consultancy B.V. Agenda BI building blocks - components

More information

Interactions et collaboration dans les Learning Games immersifs. David.Panzoli@univ-jfc.fr

Interactions et collaboration dans les Learning Games immersifs. David.Panzoli@univ-jfc.fr Interactions et collaboration dans les Learning Games immersifs David.Panzoli@univ-jfc.fr Parcours scientifique Thèse en informatique à l IRIT (Université de Toulouse) Environnements de réalité virtuelle,

More information

CHALLENGES AND APPROACHES FOR KNOWLEDGE MANAGEMENT. Jean-Louis ERMINE CEA/UTT

CHALLENGES AND APPROACHES FOR KNOWLEDGE MANAGEMENT. Jean-Louis ERMINE CEA/UTT CHALLENGES AND APPROACHES FOR KNOWLEDGE MANAGEMENT Jean-Louis ERMINE CEA/UTT Abstract: Knowledge Management is now a crucial issue in companies: Knowledge is a major economic challenge for the future.

More information

IT services for analyses of various data samples

IT services for analyses of various data samples IT services for analyses of various data samples Ján Paralič, František Babič, Martin Sarnovský, Peter Butka, Cecília Havrilová, Miroslava Muchová, Michal Puheim, Martin Mikula, Gabriel Tutoky Technical

More information

Transana 2.60 Distinguishing features and functions

Transana 2.60 Distinguishing features and functions Transana 2.60 Distinguishing features and functions This document is intended to be read in conjunction with the Choosing a CAQDAS Package Working Paper which provides a more general commentary of common

More information

Business Intelligence System for Monitoring, Analysis and Forecasting of Socioeconomic Development of Russian Territories

Business Intelligence System for Monitoring, Analysis and Forecasting of Socioeconomic Development of Russian Territories Business Intelligence System for Monitoring, Analysis and Forecasting of Socioeconomic Development of Russian Territories The Ministry of Economic Development of the Russian Federation is responsible for

More information

Intelligence Application for University Resources Automation and Actors Management

Intelligence Application for University Resources Automation and Actors Management Information Sciences and Computing Volume 2013, Number 1, Article ID ISC020713, 10 pages Available online at http://www.infoscicomp.com/ Research Article Intelligence Application for University Resources

More information

The Masters of Science in Information Systems & Technology

The Masters of Science in Information Systems & Technology The Masters of Science in Information Systems & Technology College of Engineering and Computer Science University of Michigan-Dearborn A Rackham School of Graduate Studies Program PH: 313-593-5361; FAX:

More information

Toronto 26 th SAP BI. Leap Forward with SAP

Toronto 26 th SAP BI. Leap Forward with SAP Toronto 26 th SAP BI Leap Forward with SAP Business Intelligence SAP BI 4.0 and SAP BW Operational BI with SAP ERP SAP HANA and BI Operational vs Decision making reporting Verify the evolution of the KPIs,

More information

Course Syllabus For Operations Management. Management Information Systems

Course Syllabus For Operations Management. Management Information Systems For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third

More information

COURSE CODE TITLE ECTS MARKETING STRATEGIQUE I

COURSE CODE TITLE ECTS MARKETING STRATEGIQUE I FALL TERM 2007 COURSE CODE TITLE ECTS MARKETING STRATEGIQUE I LSMS2000 Etudes et modèles de marché LSMS2001 Comportement du consommateur LSMS2002 Marketing stratégique avancé FINANCE D'ENTREPRISE LSMS2010

More information

Focus Group on Computer Tools Used for Professional Writing and Preliminary Evaluation of LinguisTech

Focus Group on Computer Tools Used for Professional Writing and Preliminary Evaluation of LinguisTech Focus Group on Computer Tools Used for Professional Writing and Preliminary Evaluation of LinguisTech Marie-Josée Goulet and Annie Duplessis University of Quebec in Outaouais Gatineau, Quebec, Canada Introduction

More information

Sri Damayanty Manullang

Sri Damayanty Manullang Sri Damayanty Manullang Miss Sri Damayanty Manullang obtained her SLTA (Sekolah Lanjutan Tingkat Atas - secondary school) in Narumonda Kecamatan Porsea, then, she joined the Institute of Pedagogy in the

More information

Marc R. BRADFORD Professor

Marc R. BRADFORD Professor Marc R. BRADFORD Professor Teaching Areas: Corporate and Structured Finance, Project and Asset Finance, Global Finance Year hired at ISC Paris: 1993 Full-Time Participating Grande Ecole and MBA Education:

More information

Administrer les solutions Citrix XenApp et XenDesktop 7.6 CXD-203

Administrer les solutions Citrix XenApp et XenDesktop 7.6 CXD-203 Administrer les solutions Citrix XenApp XenDesktop 7.6 CXD-203 MIEL Centre Agréé : N 11 91 03 54 591 Pour contacter le service formation : 01 60 19 16 27 Pour consulter le planning des formations : www.miel.fr/formation

More information

REDUCE THREATS IN COMPETITIVE INTELLIGENCE SYSTEM: A GENERIC INFORMATION FUSION ACCESS CONTROL MODEL

REDUCE THREATS IN COMPETITIVE INTELLIGENCE SYSTEM: A GENERIC INFORMATION FUSION ACCESS CONTROL MODEL REDUCE THREATS IN COMPETITIVE INTELLIGENCE SYSTEM: A GENERIC INFORMATION FUSION ACCESS CONTROL MODEL Anass El haddadi1, 2, Hamid Hatim2, Bernard Dousset1, Ilham Berrada2, and Hanane El Bakkali2 1IRIT UMR

More information

Operationalise Predictive Analytics

Operationalise Predictive Analytics Operationalise Predictive Analytics Publish SPSS, Excel and R reports online Predict online using SPSS and R models Access models and reports via Android app Organise people and content into projects Monitor

More information

D une Infrastructure Dynamique au. Cloud Computing : la proposition IBM

D une Infrastructure Dynamique au. Cloud Computing : la proposition IBM D une Dynamique au Computing : la proposition IBM Patrick Battmann Vice Président ITS (Integrated Technology Services) IBM France An effective Computing deployment is built on a Dynamic and is highly optimized

More information

MEng, BSc Computer Science with Artificial Intelligence

MEng, BSc Computer Science with Artificial Intelligence School of Computing FACULTY OF ENGINEERING MEng, BSc Computer Science with Artificial Intelligence Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give

More information

Reconstruction d un modèle géométrique à partir d un maillage 3D issu d un scanner surfacique

Reconstruction d un modèle géométrique à partir d un maillage 3D issu d un scanner surfacique Reconstruction d un modèle géométrique à partir d un maillage 3D issu d un scanner surfacique Silvère Gauthier R. Bénière, W. Puech, G. Pouessel, G. Subsol LIRMM, CNRS, Université Montpellier, France C4W,

More information

Business Intelligence Systems in the business strategy - an approach to the Romanian reality

Business Intelligence Systems in the business strategy - an approach to the Romanian reality Business Intelligence Systems in the business strategy - an approach to the Romanian reality Serghie Dan, Al. I. Cuza University of Iasi, Romania Balan Ana Maria, Al. I. Cuza University of Iasi, Romania

More information

Early project organization and start-up techniques based on project management information system

Early project organization and start-up techniques based on project management information system Early project organization and start-up techniques based on project management information system A.M. ALQUIER, M. SALLES & M.H. TIGNOL Université des Sciences Sociales, Toulouse, France Département de

More information

COMP9321 Web Application Engineering

COMP9321 Web Application Engineering COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411

More information

MEng, BSc Applied Computer Science

MEng, BSc Applied Computer Science School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions

More information

A Grid Architecture for Manufacturing Database System

A Grid Architecture for Manufacturing Database System Database Systems Journal vol. II, no. 2/2011 23 A Grid Architecture for Manufacturing Database System Laurentiu CIOVICĂ, Constantin Daniel AVRAM Economic Informatics Department, Academy of Economic Studies

More information

Big Data and Analytics: Challenges and Opportunities

Big Data and Analytics: Challenges and Opportunities Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif

More information

Integrate 'Oracle Forms', 'Oracle Reports', 'Oracle

Integrate 'Oracle Forms', 'Oracle Reports', 'Oracle Integrate 'Oracle Forms', 'Oracle Reports', 'Oracle Discoverer' with Oracle Single Sign On', 'Oracle Internet Directory' and 'Virtual Private Database' for the Luxembourg communities. How to make sure

More information

Designing a Multi Agent System Architecture for IT Governance Platform

Designing a Multi Agent System Architecture for IT Governance Platform Designing a Multi Agent System Architecture for IT Governance Platform S. ELHASNAOUI, H. MEDROMI, S.FARIS, H.IGUER, A. SAYOUTI (EAS- LISER) Systems Architecture Team ENSEM, Hassan II University BP.8118,

More information

Evaluation of Business Intelligence Maturity Level in Albania Banking Systems

Evaluation of Business Intelligence Maturity Level in Albania Banking Systems Evaluation of Business Intelligence Maturity Level in Albania Banking Systems Blerta Moçka 1*, Gudar Beqiraj 2 and Daniel Leka 3 Faculty of Economy and Agribusiness, Agricultural University of Tirana,

More information

Research of Smart Distribution Network Big Data Model

Research of Smart Distribution Network Big Data Model Research of Smart Distribution Network Big Data Model Guangyi LIU Yang YU Feng GAO Wendong ZHU China Electric Power Stanford Smart Grid Research Institute Smart Grid Research Institute Research Institute

More information

Smart Specialization Regional Innovation Strategy (SRI 3S) in Provence Alpes Côte d Azur

Smart Specialization Regional Innovation Strategy (SRI 3S) in Provence Alpes Côte d Azur Smart Specialization Regional Innovation Strategy (SRI 3S) in Provence Alpes Côte d Azur 1 PACA Assets for economic growth 3 rd French region in terms of GDP 1st University of France (70 000 students)

More information

CompatibleOne & le SLA

CompatibleOne & le SLA & SLA CompatibleOne & le SLA Définitions et socle technologique Modèle de représentation du SLA L instanciation d un SLA dans Accords Conclusions 2 Cloud Définition du NIST 5 caratéristiques essentielles

More information

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers

Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers 60 Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative

More information

Self-Service Business Intelligence

Self-Service Business Intelligence Self-Service Business Intelligence BRIDGE THE GAP VISUALIZE DATA, DISCOVER TRENDS, SHARE FINDINGS Solgenia Analysis provides users throughout your organization with flexible tools to create and share meaningful

More information

Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011

Management Decision Making. Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management Decision Making Hadi Hosseini CS 330 David R. Cheriton School of Computer Science University of Waterloo July 14, 2011 Management decision making Decision making Spreadsheet exercise Data visualization,

More information

Programme Course Code Language of instruction Course Contact hours ECTS MGE OIC42002F French Analyse budgétaire et tableaux de bord 24 5 MGE

Programme Course Code Language of instruction Course Contact hours ECTS MGE OIC42002F French Analyse budgétaire et tableaux de bord 24 5 MGE Programme Course Code Language of instruction Course Contact hours ECTS MGE OIC42002F French Analyse budgétaire et tableaux de bord 24 5 MGE EFI42030F French Analyse financière approfondie 24 5 MGE EFI42030F

More information

Fabien Hermenier. 2bis rue Bon Secours 44000 Nantes. hermenierfabien@gmail.com http://www.emn.fr/x-info/fhermeni/

Fabien Hermenier. 2bis rue Bon Secours 44000 Nantes. hermenierfabien@gmail.com http://www.emn.fr/x-info/fhermeni/ Fabien Hermenier 2bis rue Bon Secours 44000 Nantes hermenierfabien@gmail.com http://www.emn.fr/x-info/fhermeni/ Activities Oct. 2009 - Sep. 2010 : Post-doctoral researcher École des Mines de Nantes, ASCOLA

More information

Big Data Mining Services and Knowledge Discovery Applications on Clouds

Big Data Mining Services and Knowledge Discovery Applications on Clouds Big Data Mining Services and Knowledge Discovery Applications on Clouds Domenico Talia DIMES, Università della Calabria & DtoK Lab Italy talia@dimes.unical.it Data Availability or Data Deluge? Some decades

More information

Dong-Joo Kang* Dong-Kyun Kang** Balho H. Kim***

Dong-Joo Kang* Dong-Kyun Kang** Balho H. Kim*** Visualization Issues of Mass Data for Efficient HMI Design on Control System in Electric Power Industry Visualization in Computerized Operation & Simulation Tools Dong-Joo Kang* Dong-Kyun Kang** Balho

More information

ANALYTICS STRATEGY: creating a roadmap for success

ANALYTICS STRATEGY: creating a roadmap for success ANALYTICS STRATEGY: creating a roadmap for success Companies in the capital and commodity markets are looking at analytics for opportunities to improve revenue and cost savings. Yet, many firms are struggling

More information

RAPPORT FINANCIER ANNUEL PORTANT SUR LES COMPTES 2014

RAPPORT FINANCIER ANNUEL PORTANT SUR LES COMPTES 2014 RAPPORT FINANCIER ANNUEL PORTANT SUR LES COMPTES 2014 En application de la loi du Luxembourg du 11 janvier 2008 relative aux obligations de transparence sur les émetteurs de valeurs mobilières. CREDIT

More information

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014 Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions

More information

CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics

CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics CUSTOMER RELATIONSHIP MANAGEMENT (CRM) CII Institute of Logistics Session map Session1 Session 2 Introduction The new focus on customer loyalty CRM and Business Intelligence CRM Marketing initiatives Session

More information

Millier Dickinson Blais

Millier Dickinson Blais Research Report Millier Dickinson Blais 2007-2008 National Survey of the Profession September 14, 2008 Contents 1 Introduction & Methodology... 3 2 National Results... 5 3 Regional Results... 6 3.1 British

More information

Introduction au BIM. ESEB 38170 Seyssinet-Pariset Economie de la construction email : contact@eseb.fr

Introduction au BIM. ESEB 38170 Seyssinet-Pariset Economie de la construction email : contact@eseb.fr Quel est l objectif? 1 La France n est pas le seul pays impliqué 2 Une démarche obligatoire 3 Une organisation plus efficace 4 Le contexte 5 Risque d erreur INTERVENANTS : - Architecte - Économiste - Contrôleur

More information

James B. Fenwick, Jr., Program Director and Associate Professor Ph.D., The University of Delaware FenwickJB@appstate.edu

James B. Fenwick, Jr., Program Director and Associate Professor Ph.D., The University of Delaware FenwickJB@appstate.edu 118 Master of Science in Computer Science Department of Computer Science College of Arts and Sciences James T. Wilkes, Chair and Professor Ph.D., Duke University WilkesJT@appstate.edu http://www.cs.appstate.edu/

More information

WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat

WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise

More information

Visual Data Mining. Motivation. Why Visual Data Mining. Integration of visualization and data mining : Chidroop Madhavarapu CSE 591:Visual Analytics

Visual Data Mining. Motivation. Why Visual Data Mining. Integration of visualization and data mining : Chidroop Madhavarapu CSE 591:Visual Analytics Motivation Visual Data Mining Visualization for Data Mining Huge amounts of information Limited display capacity of output devices Chidroop Madhavarapu CSE 591:Visual Analytics Visual Data Mining (VDM)

More information

Sujets «ITS» du défi Transport 2015 Horizon 2020

Sujets «ITS» du défi Transport 2015 Horizon 2020 Session d information sur les ITS 24 février 2015 Sujets «ITS» du défi Transport 2015 Horizon 2020 Patrick Malléjacq, coordinateur du PCN Transport Institut français des sciences et technologies des transports,

More information

Les Cahiers du GERAD ISSN: 0711 2440

Les Cahiers du GERAD ISSN: 0711 2440 Les Cahiers du GERAD ISSN: 0711 2440 Filtering of Images for Detecting Multiple Targets Trajectories I. Gentil, B. Rémillard P. Del Moral G 2002 72 December 2002 Les textes publiés dans la série des rapports

More information

To introduce software process models To describe three generic process models and when they may be used

To introduce software process models To describe three generic process models and when they may be used Software Processes Objectives To introduce software process models To describe three generic process models and when they may be used To describe outline process models for requirements engineering, software

More information

Oracle9i Data Warehouse Review. Robert F. Edwards Dulcian, Inc.

Oracle9i Data Warehouse Review. Robert F. Edwards Dulcian, Inc. Oracle9i Data Warehouse Review Robert F. Edwards Dulcian, Inc. Agenda Oracle9i Server OLAP Server Analytical SQL Data Mining ETL Warehouse Builder 3i Oracle 9i Server Overview 9i Server = Data Warehouse

More information

KNOWLEDGE DISCOVERY FOR SUPPLY CHAIN MANAGEMENT SYSTEMS: A SCHEMA COMPOSITION APPROACH

KNOWLEDGE DISCOVERY FOR SUPPLY CHAIN MANAGEMENT SYSTEMS: A SCHEMA COMPOSITION APPROACH KNOWLEDGE DISCOVERY FOR SUPPLY CHAIN MANAGEMENT SYSTEMS: A SCHEMA COMPOSITION APPROACH Shi-Ming Huang and Tsuei-Chun Hu* Department of Accounting and Information Technology *Department of Information Management

More information

Business Intelligence Solutions for Gaming and Hospitality

Business Intelligence Solutions for Gaming and Hospitality Business Intelligence Solutions for Gaming and Hospitality Prepared by: Mario Perkins Qualex Consulting Services, Inc. Suzanne Fiero SAS Objective Summary 2 Objective Summary The rise in popularity and

More information

Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management

Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management Using reporting and data mining techniques to improve knowledge of subscribers; applications to customer profiling and fraud management Paper Jean-Louis Amat Abstract One of the main issues of operators

More information

Master s Program in Information Systems

Master s Program in Information Systems The University of Jordan King Abdullah II School for Information Technology Department of Information Systems Master s Program in Information Systems 2006/2007 Study Plan Master Degree in Information Systems

More information

Noel ALBERT. Assistant Professor of Marketing

Noel ALBERT. Assistant Professor of Marketing Noel ALBERT Assistant Professor of Marketing BP 921 13288 Marseille cedex 9 France +33 (0) 4 91 82 73 39 noel.albert@kedgebs.com EXPERIENCES AT EUROMED MARSEILLE Courses taught 2011 2013 Research Method,

More information

INSTITUT FEMTO-ST. Webservices Platform for Tourism (WICHAI)

INSTITUT FEMTO-ST. Webservices Platform for Tourism (WICHAI) INSTITUT FEMTO-ST UMR CNRS 6174 Webservices Platform for Tourism (WICHAI) Kitsiri Chochiang Fouad Hanna Marie-Laure Betbeder Jean-Christophe Lapayre Rapport Technique n RTDISC2015-1 DÉPARTEMENT DISC October

More information

Fast and Easy Delivery of Data Mining Insights to Reporting Systems

Fast and Easy Delivery of Data Mining Insights to Reporting Systems Fast and Easy Delivery of Data Mining Insights to Reporting Systems Ruben Pulido, Christoph Sieb rpulido@de.ibm.com, christoph.sieb@de.ibm.com Abstract: During the last decade data mining and predictive

More information

OPTIMIZING BUSINESS INTELLIGENCE SOLUTION FOR BANIKING IN ALBANIA

OPTIMIZING BUSINESS INTELLIGENCE SOLUTION FOR BANIKING IN ALBANIA OPTIMIZING BUSINESS INTELLIGENCE SOLUTION FOR BANIKING IN ALBANIA Blerta Moçka 1, Gudar Beqiraj 2, Daniel Leka 3 1 Head of Department of Information Technology, Faculty of Business and Technology, Kristal

More information

BUSINESS INTELLIGENCE TOOLS FOR IMPROVE SALES AND PROFITABILITY

BUSINESS INTELLIGENCE TOOLS FOR IMPROVE SALES AND PROFITABILITY Revista Tinerilor Economişti (The Young Economists Journal) BUSINESS INTELLIGENCE TOOLS FOR IMPROVE SALES AND PROFITABILITY Assoc. Prof Luminiţa Şerbănescu Ph. D University of Piteşti Faculty of Economics,

More information

Business Intelligence Using Data Mining Techniques on Very Large Datasets

Business Intelligence Using Data Mining Techniques on Very Large Datasets International Journal of Science and Research (IJSR) Business Intelligence Using Data Mining Techniques on Very Large Datasets Arti J. Ugale 1, P. S. Mohod 2 1 Department of Computer Science and Engineering,

More information

Business Intelligence Dynamic SME. Business Intelligence

Business Intelligence Dynamic SME. Business Intelligence Dynamic SME Business Intelligence T h o m a s F e l i x K a r r a s c h Agenda: 1. Definition 2. Advantages 3. Implementation 4. Recommendations 5. Attachments 6. Bibliography 1 2 3 6 8 11 1. Definition

More information

SOFTWARE DEFINED SOLUTIONS JEUDI 19 NOVEMBRE 2015. Nicolas EHRMAN Sr Presales SDS

SOFTWARE DEFINED SOLUTIONS JEUDI 19 NOVEMBRE 2015. Nicolas EHRMAN Sr Presales SDS SOFTWARE DEFINED SOLUTIONS JEUDI 19 NOVEMBRE 2015 Nicolas EHRMAN Sr Presales SDS Transform your Datacenter to the next level with EMC SDS EMC SOFTWARE DEFINED STORAGE, A SUCCESS STORY 5 ÈME ÉDITEUR MONDIAL

More information

IC05 Introduction on Networks &Visualization Nov. 2009.

IC05 Introduction on Networks &Visualization Nov. 2009. <mathieu.bastian@gmail.com> IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration

More information

Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects

Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects Enterprise Resource Planning Analysis of Business Intelligence & Emergence of Mining Objects Abstract: Build a model to investigate system and discovering relations that connect variables in a database

More information

OLAP Visualization Operator for Complex Data

OLAP Visualization Operator for Complex Data OLAP Visualization Operator for Complex Data Sabine Loudcher and Omar Boussaid ERIC laboratory, University of Lyon (University Lyon 2) 5 avenue Pierre Mendes-France, 69676 Bron Cedex, France Tel.: +33-4-78772320,

More information

DBMS / Business Intelligence, Business Intelligence / DBMS

DBMS / Business Intelligence, Business Intelligence / DBMS DBMS / Business Intelligence, Business Intelligence / DBMS Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the

More information

Formation à l ED STIC ED STIC Doctoral education. Hanna Klaudel

Formation à l ED STIC ED STIC Doctoral education. Hanna Klaudel Formation à l ED STIC ED STIC Doctoral education Hanna Klaudel Texte de référence / Text of low L arrêté de 7 août 2006 : «Les écoles doctorales proposent aux doctorants les formations utiles à leur projet

More information

UMR 5600 CNRS Environnement Ville Société - 18, rue Chevreul, 69007 Lyon - France (frenard@grandlyon.org)

UMR 5600 CNRS Environnement Ville Société - 18, rue Chevreul, 69007 Lyon - France (frenard@grandlyon.org) Using multicriteria method of decision support in a GIS as an instrument of urban vulnerability management related to flooding: a case study in the Greater Lyon (France) L intérêt d une méthode d aide

More information

Internships and graduation jobs Development

Internships and graduation jobs Development Internships and graduation jobs Development We strongly believe in the power of students. Therefore we offer challenging internships and graduation projects to jumpstart your career. Your job not listed?

More information

Le projet européen ECOLABEL

Le projet européen ECOLABEL 4/02/2015 Le projet européen ECOLABEL Agnès JULLIEN (Ifsttar) WP1 leader (key performance indicators) agnes.jullien@ifsttar.fr ECOLABEL PROJECT PROPOSED METHODOLOGY and KPIs Main concepts Development of

More information

«Object-Oriented Multi-Methods in Cecil» Craig Chambers (Cours IFT6310, H08)

«Object-Oriented Multi-Methods in Cecil» Craig Chambers (Cours IFT6310, H08) «Object-Oriented Multi-Methods in Cecil» Craig Chambers (Cours IFT6310, H08) Mathieu Lemoine 2008/02/25 Craig Chambers : Professeur à l Université de Washington au département de Computer Science and Engineering,

More information

Information Visualization WS 2013/14 11 Visual Analytics

Information Visualization WS 2013/14 11 Visual Analytics 1 11.1 Definitions and Motivation Lot of research and papers in this emerging field: Visual Analytics: Scope and Challenges of Keim et al. Illuminating the path of Thomas and Cook 2 11.1 Definitions and

More information

Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com

Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING

More information