of the American Mathematical Society

Size: px
Start display at page:

Download "of the American Mathematical Society"


1 ISSN of the American Mathematical Society January 2009 Volume 56, Number 1 Mathematical Models in Science and Engineering page 10 Is the Sky Still Falling? page 20 Urbana Meeting page 92 Raleigh Meeting page 95 Mains l and spinnaker (see page 88)



4 New and Forthcoming Integration and Modern Analysis John J. Benedetto; Wojciech Czaja, both of Maryland, College Park, USA This textbook begins with the fundamentals of classical real variables and leads to Lebesgue s defi nition of the integral, the theory of integration and the structure of measures in a measure theoretical format. The core chapters are followed by chapters of a topical nature, which illuminate the authors intellectual vision of modern real analysis. These topics include weak convergence, the Riesz representation theorem, the Lebesgue differential theorem, and selfsimilar sets and fractals. Historical remarks, illuminating problems and examples, and appendices on functional analysis and Fourier analysis provide insight into the theory and its applications APPROX. 565 P. 21 ILLUS. HARDCOVER ISBN CA. $79.95 BIRKHÄUSER ADVANCED TEXTS Explorations in Harmonic Analysis with Applications to Complex Function Theory and the Heisenberg Group Steven G. Krantz, Washington, St. Louis, MO, USA This text on modern harmonic analysis provides an introduction to the subject in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. The exposition begins with the fundamentals of Fourier analysis, complex function theory, and integral operators and further introduces students to cutting edge ideas about the Heisenberg group. This self-contained text serves as an introduction to analysis on the Heisenberg group. It is an ideal text for advanced undergraduate and graduate students and will aid them in forging new paths of research APPROX. 350 P. HARDCOVER ISBN $69.95 APPLIED AND NUMERICAL HARMONIC ANALYSIS Journal Special Issue Transformation Groups Dedicated to Bertram Kostant on the Occasion of his 80th Birthday Contributors: W. Baldoni, M. Brion, J. B. Carrell, C. De Concini, P. Etingof, V. Ginzburg, V. Guillemin, T. S. Holm, R. Howe, A. Joseph, R. Joshua, V. G. Kac, K. Kaveh, D. Kazhdan, A. Knutson, Y. Kosmann- Schwarzbach, S. Kumar, C. Laurent- Gengoux, S. Loktev, G. Lusztig, A. Oblomkov, I. Penkov, V. L. Popov, C. Procesi, K. Rietsch, L. Rybnikov, R. Sjamaar, E.-C. Tan, M. Vergne, M. Wakimoto, Z. Wang, A. Weinstein, J. F. Willenbring, L. Williams, S.-W. Yang, A. Zelevinsky, G. Zuckerman For a full table of contents please visit VOLUME 13, NUMBERS 3-4, DECEMBER 2008 ISSN (PRINT) X (ONLINE) Basic Algebra & Advanced Algebra Anthony W. Knapp, State of New York, Stony Brook, NY, USA Finally, the author s notorious masterly style of writing, which stands out by its high degree of clarity, elegance, refi nement, and accuracy, also rules over this newest textbook of his, which is very likely to become one of the great standard texts in algebra for generations. Zentralblatt Math Basic Algebra XXII, 717 P. 42 ILLUS. HARDCOVER ISBN $69.95 Advanced Algebra XXIV, 730 P. 10 ILLUS. HARDCOVER ISBN $69.95 Basic Algebra and Advanced Algebra (SET) ISBN $89.95 CORNERSTONES Elliptic Equations: An Introductory Course Michel Chipot, of Zürich, Switzerland The aim of this book is to introduce the reader to elliptic partial differential equations by avoiding technicalities and refi nements. Apart from the basic theory of equations in divergence form, it includes topics such as singular perturbation problems, homogenization, computations, asymptotic behaviour of problems in cylinders, elliptic systems, nonlinear problems, regularity theory, Navier-Stokes system, p-laplace equation. A minimal portion on Sobolev spaces is presented, while work or integration on the boundary has been carefully avoided. Numerous results presented are original and have not been published elsewhere APPROX. 300 P. HARDCOVER ISBN $69.95 BIRKHÄUSER ADVANCED TEXTS Dynamical Systems with Applications using MAPLE Second Edition Stephen Lynch, Manchester Metropolitan, UK The book will be useful for all kinds of dynamical systems courses. [It] shows the power of using a computer algebra program to study dynamical systems, and, by giving so many worked examples, provides ample opportunity for experiments. [It] is well written and a pleasure to read, which is helped by its attention to historical background. Mathematical Reviews (Review of First Edition) This new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural networks and Maplets have also been added. A supplementary e-book with interactive exercises, examples, and solutions will also be published ND ED. APPROX. 500 P. 350 ILLUS. SOFTCOVER ISBN CA. $59.95 Please mention promotion #014005x_184x248_1c when ordering. Prices are valid in the Americas only and are subject to change without notice. For price and ordering information outside the Americas, please contact Birkhäuser Verlag AG by x_184x248_1c

5 Notices of the American Mathematical Society January Communications 34 WHAT IS...the Schwarzian Derivative? Valentin Ovsienko and Sergei Tabachnikov 38 Hans Grauert: Mathematiker Pur Alan Huckleberry 42 A Celebration of Women in Mathematics at MIT Margaret A. M. Murray John Ewing Retires from the AMS Allyn Jackson 52 What Is New in? I. Breaking Free G. Grätzer Commentary 7 Opinion: Preserving Our History Michael Doob 8 Letters to the Editor 27 Pythagorean Crimes A Book Review Reviewed by Alex Kasman 31 The Cat in Numberland A Book Review Reviewed by James Propp Features 10 Mathematical Models in Science and Engineering Alfio Quarteroni Mathematical models, along with scientific theory and practical experiments, are a crucial part of modern engineering and science. The author takes a look at the role mathematical models play in topics ranging from vascular simulation to weather forecasting to designing America s Cup sailboats. 20 Is the Sky Still Falling? David M. Bressoud Over the past decade mathematicians have been increasingly concerned about the number of undergraduate students studying mathematics and the consequences thereof, an important one being a possible decreasing need for mathematics faculties to teach them. The author reviews current data, finding cause for both optimism, in increasing numbers, and pessimism, in declining percentages.

6 Notices of the American Mathematical Society EDITOR: Andy Magid ASSOCIATE EDITORS: Daniel Biss, Susanne C. Brenner, Bill Casselman (Graphics Editor), Robert J. Daverman, Susan Friedlander, Robion Kirby, Steven G. Krantz, Lisette de Pillis, Peter Sarnak, Mark Saul, John Swallow, Lisa Traynor SENIOR WRITER and DEPUTY EDITOR: Allyn Jackson MANAGING EDITOR: Sandra Frost CONTRIBUTING WRITER: Elaine Kehoe PRODUCTION ASSISTANT: Muriel Toupin PRODUCTION: Kyle Antonevich, Stephen Moye, Erin Murphy, Lori Nero, Karen Ouellette, Donna Salter, Deborah Smith, Peter Sykes, Patricia Zinni ADVERTISING SALES: Anne Newcomb SUBSCRIPTION INFORMATION: Subscription prices for Volume 56 (2009) are US$488 list; US$390 institutional member; US$293 individual member. (The subscription price for members is included in the annual dues.) A late charge of 10% of the subscription price will be imposed upon orders received from nonmembers after January 1 of the subscription year. Add for postage: Surface delivery outside the United States and India US$27; in India US$40; expedited delivery to destinations in North America US$35; elsewhere US$88. Subscriptions and orders for AMS publications should be addressed to the American Mathematical Society, P.O. Box , Boston, MA USA. All orders must be prepaid. ADVERTISING: Notices publishes situations wanted and classified advertising, and display advertising for publishers and academic or scientific organizations. Advertising material or questions may be sent to (classified ads) or ams.org (display ads). SUBMISSIONS: Articles and letters may be sent to the editor by at by fax at , or by postal mail at Department of Mathematics, 601 Elm, PHSC 423, of Oklahoma, Norman, OK is preferred. Correspondence with the managing editor may be sent to For more information, see the section Reference and Book List. NOTICES ON THE AMS WEBSITE: Supported by the AMS membership, most of this publication is freely available electronically through the AMS website, the Society s resource for delivering electronic products and services. Use the URL org/notices/ to access the Notices on the website. [Notices of the American Mathematical Society (ISSN ) is published monthly except bimonthly in June/July by the American Mathematical Society at 201 Charles Street, Providence, RI USA, GST No RT****. Periodicals postage paid at Providence, RI, and additional mailing offices. POSTMASTER: Send address change notices to Notices of the American Mathematical Society, P.O. Box 6248, Providence, RI USA.] Publication here of the Society s street address and the other information in brackets above is a technical requirement of the U.S. Postal Service. Tel: , Copyright 2009 by the American Mathematical Society. All rights reserved. Printed in the United States of America.The paper used in this journal is acid-free and falls within the guidelines established to ensure permanence and durability. Departments About the Cover Mathematics People Venkatesh Awarded 2008 SASTRA Ramanujan Prize, Hansen Awarded 2008 CME/MSRI Prize, Faltings Receives von Staudt Prize, Burban and Opperman Receive ICRA Awards, NDSEG Fellowships Awarded, Masayoshi Nagata ( ). Mathematics Opportunities Proposal Due Dates at the DMS, AMS-AAAS Mass Media Summer Fellowships, DARPA Mathematical Challenges, NDSEG Fellowships, National Academies Research Associateship Programs, Noether Lecture at ICM 2010, 2009 Fermat Prize for Mathematics Research, Plus Magazine New Writers Award, Departments Again Coordinate Job Offer Deadlines, News from the Fields Institute, Clay Mathematics Institute 2009 Summer School, News from the Mathematical Biosciences Institute. Inside the AMS AMS Current Events Bulletin, Erdős Memorial Lecture, From the AMS Public Awareness Office, AMS Hosts Congressional Briefing: Can Mathematics Cure Leukemia?, Deaths of AMS Members. Reference and Book List Mathematics Calendar New Publications Offered by the AMS Classified Advertisements AAAS Meeting in Chicago, IL Call for Organizers: 2010 MRC Conferences General Information Regarding Meetings & Conferences of the AMS Meetings and Conferences of the AMS Presenters of Papers, Washington, DC Meeting Program of the Sessions, Washington, DC Meeting Meetings and Conferences Table of Contents Opinions expressed in signed Notices articles are those of the authors and do not necessarily reflect opinions of the editors or policies of the American Mathematical Society.

7 A M E R I C A N M AT H E M AT I C A L S O C I E T Y Gauss Euler Gerling Gudermann Dedekind Fourier Weierstrass Plücker Dirichlet Klein Lindemann Story Hilbert Lefschetz T his searchable database includes over 127,000 records of mathematicians from more than 100 countries, that date back as far as Entries include the degree recipient, university, name of advisor (linked to a list of his/her other students), dissertation title, year in which the degree was awarded, list of the degree recipient s students (if any), and the MSC code of the thesis. Submit additions and corrections on the website at See a demonstration of the website and submit information at the AMS booth during the Joint Mathematics Meetings. The Mathematics Genealogy Project is a service of North Dakota State and the American Mathematical Society.

8 AND YOU THOUGHT IT WAS ABOUT HOMEWORK. THE TOOLS OF ENGAGEMENT FOR MATH AND SCIENCE As the #1 homework and grading service for math and science, we d like to make one thing clear. It s not about homework. It s about student engagement. And no one does it better than WebAssign. We help you keep every student engaged with frequent, customized assignments. And our automated grading gives you more time to do what you do best. Teach. So if you thought WebAssign was just an option, think about this. What more could you do for your students than to engage them in learning? WebAssign. The way you imagined teaching could be. The way you imagined teaching could be w e b a s s i g n. n e t

9 Opinion Preserving Our History The use of T E X over the last decade and a half to write papers, lecture notes, and even ephemera has moved from the unusual to the commonplace. Indeed, some of my younger colleagues can t remember using anything else but T E X to write mathematics. For those of us somewhat longer in the tooth, we remember using other software, which was preceded by the little golf balls that allowed typing of mathematical symbols, which in turn was preceded by writing in the mathematics by hand (with the hope that the typesetting would introduce only a few errors). The utility of this wonderful piece of software has been greatly enhanced by the continuing and massive growth in the capability of the accompanying hardware. Indeed, in the early 1990s when the first implementations of T E X appeared on desktop machines, I wrote a review for the Notices with some comparative timings. 1 I had a test document of about 100 pages that contained an appropriate mixture of ordinary (for that time, English, without accents) text and mathematics. It could be run though T E X in times varying between one and five minutes. When I try the same thing on my newest desktop machine, the job takes seconds. Viewing it another way, three such jobs can be run in the time it takes to refresh the screen once. One of the happier results of this migration to T E X and the improvement in hardware has been the ability to put our papers on personal webpages so that anyone with a standard computer configuration can acquire them. This usually means making a PDF or a PostScript file available for download. The infrastructure of the Internet makes this transfer of files easy and transparent, and, as a result, the little postcards that were mailed to request reprints has joined those little golf balls as historical curiosities. Improvements in hardware have another happy consequence: papers written in the predigital era and consequently not available on the Internet are not beyond redemption. They, too, may be made available for download. Over the past few years there have been significant advances in the hardware and software used to scan paper documents. With the right equipment, scanning several hundred or even a thousand pages is not difficult. There are two approaches, both of which work well. The first is to use a standalone scanner. Robust models with document sheet feeders are available for under US$1,000. These usually include the software for doing the scanning, and sometimes OCR (optical character recognition) software is also included. There are lots of options when using such software, so here are some suggestions. When scanning the pages, the software can produce color, grayscale, or black and white files. Unless there is a compelling reason, black and white is usually the best choice for older documents. There is also a choice of resolution: 200, 300, 600, or 1200 dpi (dots per inch). Usually the 600 dpi is the best choice. There are also several different types of files that can be produced by the scanning software. All of them have some compression: these come in two types: lossless (no data lost during the compression) and lossy (some data irretrievable). A lossless compression is the best. There are also different file formats, the most common being PDF and TIFF. The PDF files are the ones to put on your webpage; they can be read on any modern computer with readily available software. Note that there are two different types of PDF files: ones that are image only and those that are also text searchable. The latter type is preferable, and most scanners can produce them. There is also a compelling reason to keep lossless TIFF files. Newer and smarter software will emerge that will do things we can t do today. If you keep the TIFF files, there will be no need to rescan since the information is already in an industry-standard format. There are frequently other options to consider. For example, many scanners allow the page to be autostraightened, that is, pages that are tilted because of inaccurate feeding or printing will be rotated into horizontal and vertical alignment. This is, more often than not, useful. Another option is despeckling, that is, the removal of very small dots on the page on the assumption that they are either background to the page text or errors introduced while scanning. The despeckling may be set to be more or less aggressive. This choice depends on the quality of the material being scanned. If there are handwritten symbols, its probably best to leave the despeckling off. If the document being scanned is printed, despeckling may be useful. For those with an experimental bent, running a few sample pages with different settings can be very helpful. A second approach is to use a photocopier. Many of them come with scanning software built in: you feed in the pages and the image files are ed back to you. Usually there are fewer options than with a scanner. The default resolution is usually 200 dpi, so be sure to set it to 600 dpi. Most of the provisos given above for scanners are also valid for photocopiers. I recently carried out a two-month project that involved scanning of some 53,000 pages. It really wasn t difficult. In fact the hardest part of preserving your mathematical history may be taking the staples out of those old pages. Our mathematical history is important and worth preserving. A bit of effort by all of us can produce a significant body of mathematical literature. Let s get our history out of the file cabinet and onto the Web! Michael Doob of Manitoba A version of this article appeared in IMU Net, September T E X and the Single CPU (I), March 1990, and (II) December January 2009 Notices of the AMS

10 Letters to the Editor More on Non-English Names My letter Non-English names of prominent mathematicians appeared in the April 2008 issue of the Notices. Since then I have received numerous s with additions and corrections. The original list of names has grown from two pages to five pages. The address of the updated PDF file is ~mcaragiu1/bonus_files/names. pdf. It can be found easily on the department page of the Department of Mathematics at Ohio Northern. Many thanks to all contributors! Further additions and corrections are welcome. Khristo Boyadzhiev Ohio Northern (Received September 3, 2008) A Formula for Citations The article Citation statistics: An IMU report (Notices, September 2008), summarizing the report (http://www.mathunion.org/ p u b l i c a t i o n s / r e p o r t / citationstatistics/), makes it once again clear how flawed the impact factor is. However, as to the right way to count citations, I felt the issue of singleauthor versus co-author was neglected. Moreover, in order to not only discard self-citations but also citations from one s circle of friends, I propose the following tough but fair (as much as a single number can possibly be) citation count f (X ) of an individual X. Some fixed article A that cites some fixed article Y of X should be accounted for as follows. First, in order for A to have any effect at all, the group of authors of A must not contain X, nor anybody who has ever been a co-author of X. That condition being satisfied, the contribution of A to Y s count g (Y ) should be 1/n where n 1 is the number of authors that X relied upon to produce Y. The fraction 1/n is not a slighting of Y s impact, it only takes into account that in the same time that a hypothetical single author X of X s caliber writes one article of Y s quality, the coauthor X produces n such articles (assuming all co-authors contribute equally). By definition f (X ) is the sum of all g (Y ) where Y ranges over all articles of X. Marcel Wild of Stellenbosch (Received October 9, 2008) WHAT IS a Mathematics Professor? With much interest, I ve been following the What is? Communications column in the Notices. It seems to me that a valuable contribution to mathematics and mathematics education could be made by discussing, in detail, what it means to be a professor. However, with hundreds of disciplines in the larger universities, this might be much too broad a subject to treat easily. Hence, what does it mean to be a mathematics professor? Note that I am not asking the narrower question of what it means to be either a great or a good mathematics professor. Later on, one could discuss those special subclasses of mathematics professors or even generalize the discussions to professors in other disciplines. I conjecture that it would not be good for mathematics if no one can propose a satisfactory answer or most everyone ignores such simple questions. What is a mathematics professor? Surely a candidate for a degree or a position would have a suitable answer. Correction There was an error in the drawing that accompanied the article WHAT IS... a Cross Ratio? by François Labourie in the November 2008 issue of Notices (page 1234). The corrected drawing is shown below and the accompanying relevant text...let finally z and t be the centres of two horospheres tangent to both C x and C y respectively. Then x, y, z, t. should instead read... let finally z and t be the centres of two horospheres tangent to each other as well as to C x and C y respectively. Then y, z, x, t. Sandy Frost Albert A. Mullin (Received October 4, 2008) Notices of the AMS Volume 56, Number 1

11 The AMS Epsilon Fund for Young Scholars Help bring THE WORLD of mathematics into the lives of young people. Whether they become scientists, engineers, or entrepreneurs, young people with mathematical talent need to be nurtured. Income from this fund supports the Young Scholars Program, which provides grants to summer programs for talented high school students. Please give generously. Learn about giving opportunities and estate planning Contact the AMS Development Office (U.S. and Canada) or (worldwide) 09/04

12 Mathematical Models in Science and Engineering Alfio Quarteroni Mathematical modeling aims to describe the different aspects of the real world, their interaction, and their dynamics through mathematics. It constitutes the third pillar of science and engineering, achieving the fulfillment of the two more traditional disciplines, which are theoretical analysis and experimentation. Nowadays, mathematical modeling has a key role also in fields such as the environment and industry, while its potential contribution in many other areas is becoming more and more evident. One of the reasons for this growing success is definitely due to the impetuous progress of scientific computation; this discipline allows the translation of a mathematical model which can be explicitly solved only occasionally into algorithms that can be treated and solved by ever more powerful computers. See Figure 1 for a synthetic view of the whole process leading from a problem to its solution by scientific computation. Since 1960 numerical analysis the discipline that allows mathematical equations (algebraic, functional, differential, and integrals) to be solved through algorithms had a leading role in solving problems linked to mathematical modeling derived from engineering and applied sciences. Following this success, new disciplines started to use mathematical modeling, namely information and communication technology, bioengineering, financial engineering, and so on. As a matter of fact, mathematical models offer new possibilities to manage the increasing complexity of technology, which is at the basis of modern industrial Alfio Quarteroni is professor of mathematics at the Ecole Polytechnique Fédérale de Lausanne and the Politecnico of Milan. His address is epfl.ch. production. They can explore new solutions in a very short time period, thus allowing the speed of innovation cycles to be increased. This ensures a potential advantage to industries, which can save time and money in the development and validation phases. We can state therefore that mathematical modeling and scientific computation are gradually and relentlessly expanding in manifold fields, becoming a unique tool for qualitative and quantitative analysis. In the following paragraphs we will discuss the role of mathematical modeling and of scientific computation in applied sciences; their importance in simulating, analyzing, and decision making; and their contribution to technological progress. We will show some results and underline the perspectives in different fields such as industry, environment, life sciences, and sports. Scientific Computation for Technological Innovation Linked to the incredible increase of computer calculation speed, scientific computation may be decisive enough to define the border between complex problems that can be treated and those that, on the contrary, cannot. The aim of scientific computation is the development of versatile and reliable models, detailed in closed form, and tested on a wide range of test cases, either analogical or experimental, for which there are helpful reference solutions. A mathematical model must be able to address universal concepts, such as, for instance, the conservation of mass or the momentum of a fluid, or the moment of inertia of a structure; moreover, in order to obtain a successful numerical simulation, it is necessary to define which level of detail must be introduced in the different parts of a model 10 Notices of the AMS Volume 56, Number 1

13 Figure 1. Scientific computing at a glance. and which simplifications must be carried out to facilitate its integration into different models. Models able to simulate very complex problems should take into account uncertainty due to the lack of data (or data affected by noise) that feed the model itself. These kinds of models will be used to foresee natural, biological, and environmental processes, in order to better understand how complex phenomena work, and also to contribute to the design of innovative products and technologies. An important aspect of scientific computation is represented by computational fluid dynamics (CFD), a discipline that aims to solve by computers problems governed by fluids. In aerospace, for example, CFD can be applied in many ways. Numerical models based on potential flow equations or on the more sophisticated Euler or Navier- Stokes equations can be used, for example, in the aerodynamic analysis of wing tips or for the whole fuselage for performance optimization. See Figure 2 and Figure 3 for numerical simulations carried out on, respectively, a civil aircraft (the Falcon 50) and the X29 experimental aircraft using the Euler equations solved by a stabilized finite element approximation [1]. Simulation implies validation and optimization, with the aim of designing aircraft able to meet certain requirements: better structural reliability, better aerodynamic performance, lower environmental impact thanks to the reduction in noise emissions (in the case of commercial airplanes), speed optimization, and improvement of maneuverability (in the case of military aircraft). The solution to these problems requires multi-objective optimization algorithms: deterministic, stochastic, or genetic. Moreover, models of electromagnetic diffusion are used to simulate external electromagnetic fields in order to restrain them from interfering with those generated by the several electronic circuits that are contained in the instrumentation on board. Models are used to simulate the stresses and the deformation of some parts of the aircraft (for the simulation of the analysis of materials strain), through algorithms for the interaction between fluid and structure with the aim of improving structural and dynamic stability. Similar analyses are studied in the car industry, where numerical simulation is used in virtually every aspect of design and car production. Models are used to simulate internal engine combustion in order to save fuel, improve the quality of emissions, and reduce noise. Moreover, to improve performance, security, and comfort, several kinds of equations must be solved, such as those modeling external and internal fluid dynamics, aero-elasticity, and aero-acoustic vibration dynamics, but also those governing thermal exchange, combustion processes, shock waves (occurring during the opening phase of an air bag), structural dynamics under large stresses, and large deformations to simulate the consequences of car crashes. The chemical industry uses mathematical models to simulate polymerization processes, pressing, or extrusion for complex rheologic materials, where the typical macro analysis of continuum mechanics must be connected to the micro one, the latter being more adequate to describe the complex rheology of materials with nanostructure. This requires the development of multiscale analysis techniques and algorithms, which are able to describe the exchange of mechanical, thermal, and chemical processes in heterogeneous spatial scales. In the electronics industry, the simulation of drift-diffusion, hydrodynamics, Boltzmann, or Schrödinger equations plays a key role in designing ever smaller and faster integrated circuits, with growing functionality and with dramatic waste reduction (which are fundamental, for example, in different applications of mobile phones). Efficient algorithms are January 2009 Notices of the AMS 11

14 Figure 4. Wind velocity simulation over the Mediterranean Sea. Figure 2. Mach number distribution and streamlines for a civil aircraft. Figure 3. Mach number and streamlines on the X29 experimental aircraft. useful also for coding and decoding multi-user messages. Modeling the Weather In the last few decades, the critical problem of predicting the weather in a short time (daily or weekly) has become more and more linked to longterm prediction (for a decade or even a century), to climatic evolution, and to atmospheric pollution problems. Luckily, there are natural climatic changes in a particular area that obey physical law, and can thus be simulated through mathematical models. Also, from a global point of view (over either a continental or worldwide scale) there are changes due to deterministic phenomena, for example to variation in the inclination of the earth s axis, the eccentricity of the earth s orbit, the oceanic circulation, or intense geological phenomena like volcanic eruptions. The meteorological prediction problem was formulated as a mathematical issue only at the beginning of the twentieth century by the Norwegian mathematician Vilhelm Bjerkned, who described atmospheric motion using the Euler equations for perfect gas dynamics (well known at that time), suitably modified in order to take into account the action of the force of gravity and the earth s rotation. Unluckily, data regarding the atmosphere were available only in a few points, and they referred to heterogeneous variables and to different periods of time. Moreover, Euler equations described an extremely wide range of atmospheric motions, which can take place on spatial and temporal scales that are very different from each other (feet instead of miles, seconds instead of days). The lack of data regarding some of these scales may generate spurious motions (which do not exist in nature) and reduce the prediction quality. A realistic description of meteorological phenomena cannot but take into account the prediction of water steam distribution, its changes (from liquid to gas), and consequent rainfall. The first attempt to solve this problem from a numerical point of view was carried out by Lewis Richardson, who succeeded in calculating a concrete example of the solution of atmospheric motion on a region as wide as the whole of North Europe. The results obtained by Richardson through extremely complicated hand calculations led to completely wrong predictions, though: as a matter of fact, at that time there was no theory able to dominate 12 Notices of the AMS Volume 56, Number 1

15 the traps of the equations to be solved. The contribution of Carl-Gustaf Rossby, one of Richardson s students, was decisive enough to optimize the efforts made by Richardson. After immigrating to the USA in the 1920s, he contributed to founding the meteorological service for civil and military aviation during the Second World War. Among the indirect contributions he gave, the weather prediction made by the Americans for D-Day (June 4, 1944) can be included. The simplified mathematical models introduced by Rossby allowed the first meteorological prediction to be made with an electronic computer, resulting from cooperation between John von Neumann and Jules Charney, which started in Princeton in the 1940s. In particular, it was possible to make a prediction for the whole of North America through a simplified model that described the atmosphere as a unique fluid layer. Even though it took 24 hours to make a prediction for the following 12 hours on the only electronic computer available (ENIAC), the efforts of von Neumann and Charney showed for the first time that a prediction based only on a mathematical model could achieve the same results as those by an expert on meteorology of that time. The modern approach to numerical weather prediction was born. As a matter of fact, beyond the spectacular improvements in computer performance, there have also been radical improvements in the accuracy of mathematical prediction tools, the development of a theory on the predictability of chaotic dynamical systems, and an improvement in data assimilation techniques. In the 1970s, the systematic use of surveys made by satellites was introduced, and it constitutes nowadays the most relevant part of the data used to start numerical models. Since then, the impact of scientific and technological progress has been very important. For instance, the IFS global model of the European Center for Medium Range Weather Forecasts (ECMWF) uses a computation grid with an average spatial resolution of about 22km horizontal and 90km vertical. This allows part of the stratosphere to be included. This model can make a 10-day prediction in about 1 hour on a modern parallel supercomputer, even though 6 further hours, necessary to insert the data, must be added. The IFS model allows reliable predictions to be made for about 7.5 days on a continental scale in Europe. See Figure 4 for an example of weather prediction. Models for Life Sciences In the 1970s, in vitro experiments, and those on animals, represented the main approach to cardiovascular studies. Recently, the progress of computational fluid dynamics and the great improvements of computer performance produced remarkable advances that revolutionize vascular research [7]. Figure 5. Computed velocity profiles downstream a carotid bifurcation. Figure 6. Shear stress distribution on a pulmonary artery. For instance, a physical magnitude such as the shear stress on the endothelial membrane, which is very difficult to test in vitro, can be easily calculated on real geometries obtained with tri-dimensional algorithms, thanks to the support of modern and noninvasive data acquisition technology (such as nuclear magnetic resonance, digital angiography, axial tomography, and Doppler anemometry). Flowing in arteries and veins, blood mechanically interacts with vessel walls, generating complex fluid-structural interaction problems. As a matter of fact, the pressure wave transfers mechanical energy to the walls, which dilate; such an energy is returned to the blood flow while the vessels are compressed. Vascular simulation of the interaction between the fluid and the wall requires algorithms that describe both the energy transfer between the fluid (typically modeled by the Navier- Stokes equations) and the structure (modeled by solid mechanics equations) at a macroscopic level, and the influence at a microscopic level of the shear stress on orientation, deformation, and January 2009 Notices of the AMS 13

16 Figure 7. Scientific computing for cardiovascular flow simulation and related topics. damage of endothelial cells [8]. At the same time, flow equations must be coupled to appropriate models in order to describe the transport, diffusion, and absorption of chemical components in the blood (such as oxygen, lipids, and drugs), in the different layers that constitute artery walls (tunica intima, tunica media, and tunica adventitia). Numerical simulations of this kind may help to clarify biochemical modifications produced by changes in the flow field, generated, for example, by the presence of a stenosis, i.e., an artery narrowing. In the cardiovascular system, conditions of separated flow and secondary circulatory motions are met, not only in the presence of vessels featuring large curvature (e.g., the aortic bend or the coronary arteries), but also downstream of bifurcations (for instance the carotid artery in its internal and external branches) or regions with 14 Notices of the AMS Volume 56, Number 1

17 restrictions due to the presence of stenosis. There are other areas with a flow inversion (from distal to proximal regions) and also areas with low shear stress with temporal oscillations [9]. These cases are nowadays recognized as potential factors in the development of arterial pathologies. A detailed comprehension of local haemodynamic change, of the effects of vascular wall modifications on the flow scheme, and of the gradual adaptation in the medium to long period of the whole system following surgical interventions, is nowadays possible thanks to the use of sophisticated computer simulations, and may be extremely useful in the preliminary phase before a therapeutic treatment. A similar scenario may provide specific data for surgical procedures. Simulating the flow in a coronary bypass, in particular the re-circulation that takes place downstream of the graft in the coronary artery, may help us to understand the effects of artery morphology on the flow and thus of the post-surgical progression. The theory of optimal shape control may be useful for designing a bypass able to minimize the vorticity produced downstream of the graft in the coronary artery. Similarly, the study of the effects of a vascular prosthesis and of implantation of artificial heart valves on local and global haemodynamics may progress thanks to more accurate simulations in the field of blood flow. In virtual surgery, the result of alternative treatments for a specific patient may be planned through simulations. This numerical approach is an aspect of a paradigm of practice, known as predictive medicine. See Figure 7 for a comprehensive picture on our current research projects in the field of cardiovascular flow simulations. Models for Simulation and Competition The application of mathematical models is not limited to the technological, environmental, or medical field. As a matter of fact, deterministic and stochastic models have been adopted for many years in analyzing the risk of financial products, thus facilitating the creation of a new discipline known as financial engineering. Moreover, the new frontier has already begun to touch sociology, architecture, free time, and sports. As far as competitive sports are concerned, CFD for some years now has been assuming a key role in analyzing and designing Formula One cars. But Formula One racing is not the only field where mathematical/numerical modelling has been applied. As a matter of fact, my research group from EPFL has been involved in an extremely interesting experience, which saw the Swiss yacht Alinghi win the America s Cup both in 2003 and again in Until twenty years ago, the different designing teams used to develop different shapes of sails, hulls, bulbs, and keels. Nowadays the different Figure 8. Pressure distribution around yacht appendages. geometric shapes have been standardized, and even the smallest details may make a difference from the results point of view. Quoting Jerome Milgram, a professor from MIT and an expert in advising different American America s Cup teams: America s Cup teams require an extreme precision in the design of the hull, the keel, and the sails. A new boat able to reduce the viscous resistance by one percent, would have a potential advantage on the finish line of as much as 30 seconds. To optimize a boat s performance, it is necessary to solve the fluid-dynamics equations around the whole boat, taking into account the variability of wind and waves, of the different conditions during the yacht race, of the position, and of the moves of the opposing boat, but also the dynamics of the interaction between fluids (water and air) and the structural components (hull, appendages, sails, and mast) must be considered. Moreover, the shape and dynamics of the so-called free surface (the interface between air and water) has to be accurately simulated as well. A complete mathematical model must take into account all these aspects characterizing the physical problem. The aim is to develop together with the designers optimal models for the hull, the keel, and appendages. Ideally, one wishes to minimize water resistance on the hull and appendages and to maximize the boost produced by the sails. Mathematics allows different situations to be simulated, thus reducing costs and saving time usually necessary to produce a great number of prototypes to be tested in a towing tank and wind tunnel. For each new boat simulation proposed by the designers (which were January 2009 Notices of the AMS 15

18 turbulence vorticity generated by the interaction of the air, thus obtaining useful information for the tactician as well. These studies aim to design a boat having an optimal combination of the four features that an America s Cup yacht must have: lightness, speed, resistance, and maneuverability necessary to change the race outcome. A more in-depth description of the mathematical tools necessary for this kind of investigation is provided in the next section. Figure 9. Streamlines around mainsails and spinnaker in a downwind leg. several hundred), it was necessary to build the geometrical model about 300 splines surfaces are needed to overlay the whole boat to create the grid on the surface of all the elements of the boat reliable enough to enable the determination of the transition between laminar flow and turbulent flow regions, and consequently to generate the volumetric grid in external domain. The Navier- Stokes equations for incompressible viscous flows must be used to describe both water and wind dynamics and the consequent free surface, which need to be completed by additional equations that allow the computation of turbulent energy and its dissipation rate. These equations cannot be solved exactly to yield explicit solutions in closed form. Their approximate solution requires the introduction of refined discretization methods, which allow an infinite dimensional problem to be transformed into a big but finite dimensional one. The typical calculation, based on finite volume schemes, involved the solution of nonlinear problems with many millions of unknowns. Using parallel algorithms, 24 hours on parallel calculation platforms with 64 processors were necessary to produce a simulation, characterized by more than 160 million unknowns. A further computation is concerned with the simulation of the dynamical interaction between wind and sails by fluid-structure algorithms. These simulations enable the design team to eliminate those solutions that seem innovative and to go on with those that actually guarantee better performance. Moreover, by simulating the effects of aerodynamic interaction between two boats, one can determine the consistency of shadow regions (the areas with less wind because of the position of a boat with respect to the other), the flow perturbation, and the Mathematical Models for America s Cup The standard approach adopted in the America s Cup design teams to evaluate whether a design change (and all the other design modifications that this change implies) is globally advantageous, is based on the use of a Velocity Prediction Program (VPP), which can be used to estimate the boat speed and attitude for any prescribed wind condition and sailing angle. A numerical prediction of boat speed and attitude can be obtained by modeling the balance between the aerodynamic and hydrodynamic forces acting on the boat. For example, on the water plane, a steady sailing condition is obtained imposing two force balances in the x direction (aligned with the boat velocity) and the y direction (normal to x on the water plane) and a heeling moment balance around the centerline of the boat: (1) D h +T a = 0, S h +S a = 0, M h +M a = 0, where D h is the hydrodynamic drag (along the course direction), T a is the aerodynamic thrust, S h is the hydrodynamic side force perpendicular to the course, S a is the aerodynamic side force, M h and M a are, respectively, the hydromechanical righting moment and the aerodynamic heeling moment around the boat mean line. The angle β Y between the course direction and the boat centerline is called yaw angle. The aerodynamic thrust and side force can be seen as a decomposition in the reference system aligned with the course direction of the aerodynamic lift and drag, which are defined on a reference system aligned with the apparent wind direction. Similar balance equations can be obtained for the other degrees of freedom. In a VPP program, all the terms in system (1) are modeled as functions of boat speed, heel angle, and yaw angle. Suitable correlations between the degrees of freedom of the system and the different force components can be obtained based on different sources of data: experimental results, theoretical predictions, and numerical simulations. The role of advanced computational fluid dynamics is to supply accurate estimates of the 16 Notices of the AMS Volume 56, Number 1

19 Aero Total Force Aero Side Force Aero Lift Heeling Moment Aero Side Force Aero Drag Hydro Drag Aero Thrust Boat Speed Hydro Side Force Righting Moment Y Apparent Wind True Wind z Weight Buoyancy Force X Hydro Side Force Y Hydro Total Force Figure 10. Forces and moments acting on boat. forces acting on the boat in different sailing conditions in order to improve the reliability of the prediction of the overall performance associated with a given design configuration. The flow equations Let Ω denote the three-dimensional computational domain in which we solve the flow equations. If ˆΩ is a region surrounding the boatb, the computational domain is the complement of B with respect to ˆΩ, that is Ω = ˆΩ\B. The equations that govern the flow around B are the density-dependent (or inhomogeneous) incompressible Navier Stokes equations, which read: (2) (3) (4) ρ t + (ρu)=0 (ρu) t u=0 + (ρu u) τ(u,p)=ρg for x Ω and 0 < t < T, and where ρ is the (variable) density,uis the velocity field, p is the pressure,g=(0, 0,g) T is the gravity acceleration, andτ(u,p)=µ( u+ u T ) pi is the stress tensor with µ indicating the (variable) viscosity. The above equations have to be complemented with suitable initial conditions and boundary conditions. For the latter we typically consider a given velocity profile at the inflow boundary, with a flat far field free-surface elevation. In the case we are interested in, the computational domain Ω is made of two regions, the volume Ω w occupied by the water and that Ω a occupied by the air. The interface Γ separating Ω w fromω a is the (unknown) free-surface, which may be a disconnected two-dimensional manifold if wave breaking is accounted for. The unknown densityρ actually takes two constant states,ρ w (in Ω w ) andρ a (inω a ). The values ofρ w andρ a depend on the fluid temperatures, which are considered to be constant in the present model. The fluid viscositiesµ w (inω w ) andµ a (inω a ) are constants that depend onρ w andρ a, respectively. The set of equations (2)-(4) can therefore be seen as a model for the evolution of a two-phase flow consisting of two immiscible incompressible fluids with constant densitiesρ w andρ a and different viscosity coefficients µ w and µ a. In this respect, in view of the numerical simulation, we could regard equation (2) as the candidate for updating the (unknown) interface locationγ, then treat equations (3)-(4) as a coupled system of Navier Stokes equations in the two sub-domains Ω w andω a : (ρ w u w ) t u w = 0, inω w (0,T), (ρ a u a ) t u a = 0, + (ρ w u w u w ) τ w (u w,p w )=ρ w g, + (ρ a u a u a ) τ a (u a,p a )=ρ a g, inω a (0,T). We have setτ w (u w,p w )=µ w ( u w + u w T ) p w I, whileτ a (u a,p a ) is defined similarly. The free surfaceγ is a sharp interface between Ω w andω a, on which the normal components of the two velocitiesu a n andu w n should agree.furthermore, the tangential components must match as well since the two flows are incompressible. Thus we have the following kinematic condition (5) u a =u w onγ. Moreover, the forces acting on the fluid at the free-surface are in equilibrium. This is a dynamic condition and means that the normal forces on either side ofγ are of equal magnitude and opposed January 2009 Notices of the AMS 17

20 direction, while the tangential forces must agree in both magnitude and direction: (6) τ a (u a,p a ) n=τ w (u w,p w ) n+κσn onγ, where σ is the surface tension coefficient, that is a force per unit length of a free surface element acting tangentially to the free-surface. It is a property of the liquid and depends on the temperature as well as on other factors. The quantityκ in (6) is the curvature of the free-surface,κ=r 1 t 1 +R 1 t 2, wherer t1 andr t2 are radii of curvature along the coordinates(t 1,t 2 ) of the plane tangential to the free-surface (orthogonal ton). Coupling with a 6-DOF rigid body dynamical system The attitude of the boat advancing in calm water or wavy sea is strictly correlated with its performance. For this reason, a state-of-the-art numerical tool for yacht design predictions should be able to account for the boat motion. Following the approach adopted in [2, 3], two orthogonal cartesian reference systems are considered: an inertial reference system(o,x,y,z), which moves forward with the mean boat speed, and a body-fixed reference system (G, x, y, z), whose origin is the boat center of massg, which translates and rotates with the boat. The XY plane in the inertial reference system is parallel to the undisturbed water surface, and the Z-axis points upward. The body-fixed x-axis is directed from bow to stern, y positive starboard, and z upwards. The dynamics of the boat in the 6 degrees of freedom are determined by integrating the equations of variation of linear and angular momentum in the inertial reference system, as follows (7) (8) mẍ G =F TĪ T 1 Ω+Ω TĪ T 1 Ω=M G wheremis the boat mass,ẍ G is the linear acceleration of the center of mass,f is the force acting on the boat, Ω andωare the angular acceleration and velocity, respectively,m G is the moment with respect togacting on the boat,ī is the tensor of inertia of the boat about the body-fixed reference system axes, and T is the transformation matrix between the body-fixed and the inertial reference system (see [2] for details). The forces and moments acting on the boat are given by F = F Flow +mg+f Ext M G = M Flow +(X Ext X G ) F Ext wheref Flow andm Flow are the force and moment, respectively, due to the interaction with the flow and F Ext is an external forcing term (which may model, e.g., the wind force on sails) while X Ext is its application point. The equations for wind sails interaction The sail deformation is due to the fluid motion: the aerodynamic pressure field deforms the sail surfaces and this, in its turn, modifies the flow field around the sails. From a mathematical viewpoint, this yields a coupled system that comprises the incompressible Navier-Stokes equations with constant density ρ=ρ air (3-4) and a second order elastodynamic equation that models the sail deformation as that of a membrane. More specifically, the evolution of the considered elastic structure is governed by the classical conservation laws for continuum mechanics. Considering a Lagrangian framework, if ˆΩ s is the reference 2D domain occupied by the sails, the governing equation can be written as follows: (9) ρ s 2 d t 2 = σ s(d)+f s in ˆΩ s (0,T], whereρ s is the material density, the displacement d is a function of the space coordinatesx ˆΩ s and of the timet [0;T],σ s are the internal stresses whilef s are the external loads acting on the sails (these are indeed the normal stressesτ(u,p) n on the sail surface exerted by the flowfield). In fact, ˆΩ s represents a wider (bounded and disconnected) domain that includes also the mast and the yarns as parts of the structural model. The boundary of ˆΩ s is denoted by ˆΩ s and[0;t] R + is the time interval of our analysis. For suitable initial and boundary conditions and an assignment of an appropriate constitutive equation for the considered materials (definingσ s (d)), the displacement field d is computed by solving (9) in its weak form: 2 d i ρ s ˆΩ (10) s t (δd i)dx+ σ II ik(δǫ 2 ki )dx ˆΩ s = f si (δd i )dx, ˆΩ s whereσ II is the second Piola-Kirchoff stress tensor, ǫ is the Green-Lagrange strain tensor, and δd are the test functions expressing the virtual deformation. The second coupling condition enforces the continuity of the two velocity fields,uand d, t on the sail surface. Fluid-structural coupling algorithm As previously introduced, the coupling procedure iteratively loops between the fluid solver (passing sail velocities and getting pressure fields) and the structural solver (passing pressures and getting velocities and structural deformations) until the structure undergoes no more deformations because a perfect balance of forces and moments is reached. When dealing with transient simulations, this must be true for each time step, and the sail geometry evolves over time as a sequence of 18 Notices of the AMS Volume 56, Number 1

The Turbulence Problem

The Turbulence Problem Leonardo da Vinci s illustration of the swirling flow of turbulence. (The Royal Collection 2004, Her Majesty Queen Elizabeth II) The Turbulence Problem An Experimentalist s Perspective Robert Ecke Turbulent

More information

NESSI White Paper, December 2012. Big Data. A New World of Opportunities

NESSI White Paper, December 2012. Big Data. A New World of Opportunities NESSI White Paper, December 2012 Big Data A New World of Opportunities Contents 1. Executive Summary... 3 2. Introduction... 4 2.1. Political context... 4 2.2. Research and Big Data... 5 2.3. Purpose of

More information

System failure. Why governments must learn to think differently. Second edition. Jake Chapman

System failure. Why governments must learn to think differently. Second edition. Jake Chapman System failure Why governments must learn to think differently Second edition Jake Chapman Open access. Some rights reserved. As the publisher of this work, Demos has an open access policy which enables

More information

Review of the Present Status of Rotor Aerodynamics

Review of the Present Status of Rotor Aerodynamics WIND ENERGY Wind Energ., 1, 46±69 (1998) Review Article Review of the Present Status of Rotor Aerodynamics H. Snel,* Netherlands Energy Research Foundation, Petten, The Netherlands Key words: aerodynamics;

More information

Introduction to Data Mining and Knowledge Discovery

Introduction to Data Mining and Knowledge Discovery Introduction to Data Mining and Knowledge Discovery Third Edition by Two Crows Corporation RELATED READINGS Data Mining 99: Technology Report, Two Crows Corporation, 1999 M. Berry and G. Linoff, Data Mining

More information

B.2 Executive Summary

B.2 Executive Summary B.2 Executive Summary As demonstrated in Section A, Compute Canada (CC) supports a vibrant community of researchers spanning all disciplines and regions in Canada. Providing access to world- class infrastructure

More information

A Survival Kit for European Project Management Advice for Coordinators of Centralised Socrates Projects

A Survival Kit for European Project Management Advice for Coordinators of Centralised Socrates Projects A Survival Kit for European Project Management Advice for Coordinators of Centralised Socrates Projects 2 nd revised edition: For projects of selection round 1-3-2002 and later Contributors: Editor: Holger

More information

Interested in European research?

Interested in European research? report Interested in European research? Research*eu is our monthly magazine keeping you in touch with main developments (results, programmes, events, etc.). It is available in English, French, German and

More information

AN INTRODUCTION TO. Data Science. Jeffrey Stanton, Syracuse University

AN INTRODUCTION TO. Data Science. Jeffrey Stanton, Syracuse University AN INTRODUCTION TO Data Science Jeffrey Stanton, Syracuse University INTRODUCTION TO DATA SCIENCE 2012, Jeffrey Stanton This book is distributed under the Creative Commons Attribution- NonCommercial-ShareAlike

More information

Big Data Cloud Computing

Big Data Cloud Computing Big Data Cloud Computing Industry and Technology Assessment 7 June, 2012 HTTP: Hunter Thomas Tony Project Page 1 Introduction In the current age, information is treated as precious commodity. As society

More information

A systematic approach to environmental priority strategies in product development (EPS). Version 2000 General system characteristics

A systematic approach to environmental priority strategies in product development (EPS). Version 2000 General system characteristics Centre for Environmental Assessment of Products and Material Systems A systematic approach to environmental priority strategies in product development (EPS). Version 2000 General system characteristics

More information

Agile Methodologies and Tools for implementing and testing X-Agent Based Macroeconomic models

Agile Methodologies and Tools for implementing and testing X-Agent Based Macroeconomic models Ph.D. in Electronic and Computer Engineering Dept. of Electrical and Electronic Engineering University of Cagliari Agile Methodologies and Tools for implementing and testing X-Agent Based Macroeconomic

More information

Basic Marketing Research: Volume 1

Basic Marketing Research: Volume 1 Basic Marketing Research: Volume 1 Handbook for Research Professionals Official Training Guide from Qualtrics Scott M. Smith Gerald S. Albaum Copyright 2012, Qualtrics Labs, Inc. ISBN: 978-0-9849328-1-8

More information

Neural Networks as Cybernetic Systems

Neural Networks as Cybernetic Systems --- Neural Networks as Cybernetic Systems 2 nd and revised edition Holk Cruse Neural Networks as Cybernetic Systems 2 nd and revised edition Holk Cruse, Dr. Department of Biological Cybernetics and Theoretical

More information

An Introduction for Scientists and Engineers

An Introduction for Scientists and Engineers Feedback Systems An Introduction for Scientists and Engineers Karl Johan Åström Richard M. Murray Version v2.1b (February 22, 29) This is the electronic edition of Feedback Systems and is available from

More information

SENSE Midterm Review 2004

SENSE Midterm Review 2004 SENSE Midterm Review 2004 Wageningen University Leiden University Utrecht University University of Amsterdam (UvA) Vrije Universiteit, Amsterdam (VU) WIMEK - Wageningen Institute for Environment and Climate

More information

Standards for Technological Literacy

Standards for Technological Literacy Standards for Technological Literacy Content for the Study of Technology Third Edition Standards for Technological Literacy: Content for the Study of Technology Third Edition International Technology

More information



More information



More information

SYLLABUS. Cambridge International AS and A Level Physics. Cambridge Advanced

SYLLABUS. Cambridge International AS and A Level Physics. Cambridge Advanced SYLLABUS Cambridge International AS and A Level Physics 9702 For examination in June and November 2015 Cambridge Advanced Changes to syllabus for 2015 This syllabus has been updated. Significant changes

More information

2. Tuning methodology 5. 3. Competences in the teaching and learning process 17. 4. ECTS, student workload and learning outcomes 47

2. Tuning methodology 5. 3. Competences in the teaching and learning process 17. 4. ECTS, student workload and learning outcomes 47 Introduction to Tuning-2.indd a 7/3/07 18:08:28 Content 1. Introduction 1 2. Tuning methodology 5 3. Competences in the teaching and learning process 17 4. ECTS, student workload and learning outcomes

More information

A First Encounter with Machine Learning. Max Welling Donald Bren School of Information and Computer Science University of California Irvine

A First Encounter with Machine Learning. Max Welling Donald Bren School of Information and Computer Science University of California Irvine A First Encounter with Machine Learning Max Welling Donald Bren School of Information and Computer Science University of California Irvine November 4, 2011 2 Contents Preface Learning and Intuition iii

More information

Big Data Privacy Workshop Advancing the State of the Art in Technology and Practice

Big Data Privacy Workshop Advancing the State of the Art in Technology and Practice Big Data Privacy Workshop Advancing the State of the Art in Technology and Practice co- hosted by The White House Office of Science & Technology Policy & Massachusetts Institute of Technology MIT Big Data

More information

Climate Surveys: Useful Tools to Help Colleges and Universities in Their Efforts to Reduce and Prevent Sexual Assault

Climate Surveys: Useful Tools to Help Colleges and Universities in Their Efforts to Reduce and Prevent Sexual Assault Climate Surveys: Useful Tools to Help Colleges and Universities in Their Efforts to Reduce and Prevent Sexual Assault Why are we releasing information about climate surveys? Sexual assault is a significant

More information

Accessibility, sustainability, excellence: how to expand access to research publications

Accessibility, sustainability, excellence: how to expand access to research publications Accessibility, sustainability, excellence: how to expand access to research publications Report of the Working Group on Expanding Access to Published Research Findings 2 Foreword This report, Accessibility,

More information

Analysis, Design and Implementation of a Helpdesk Management System

Analysis, Design and Implementation of a Helpdesk Management System Analysis, Design and Implementation of a Helpdesk Management System Mark Knight Information Systems (Industry) Session 2004/2005 The candidate confirms that the work submitted is their own and the appropriate

More information

School of Electrical Engineering and Computer Science

School of Electrical Engineering and Computer Science Power System Security Anjan Bose Kevin Tomsovic School of Electrical Engineering and Computer Science Washington State University Pullman, WA 99164-2752 Power system security is the ability to maintain

More information

Call Center Optimization

Call Center Optimization Call Center Optimization Copyright c 2013 Ger Koole All rights reserved MG books, Amsterdam ISBN 978 90 820179 0 8 Cover design: Thom van Hooijdonk Cover photo: Dent d Hérens and Matterhorn seen from the

More information

COMMUNIC. Deliverables L3 : Functional Program of the Digital Model. Version 10/12/2010

COMMUNIC. Deliverables L3 : Functional Program of the Digital Model. Version 10/12/2010 ANR-06-RGCU-002 COMMUNIC Deliverables L3 : Functional Program of the Digital Model Version 10/12/2010 Collaboration using the Multi-Purpose Digital Model and Concurrent Engineering Presentation of deliverable

More information

Reverse Engineering of Geometric Models - An Introduction

Reverse Engineering of Geometric Models - An Introduction Reverse Engineering of Geometric Models - An Introduction Tamás Várady Ralph R. Martin Jordan Cox 13 May 1996 Abstract In many areas of industry, it is desirable to create geometric models of existing

More information