Espaces grossiers adaptatifs pour les méthodes de décomposition de domaines à deux niveaux

Size: px
Start display at page:

Download "Espaces grossiers adaptatifs pour les méthodes de décomposition de domaines à deux niveaux"

Transcription

1 Espaces grossiers adaptatifs pour les méthodes de décomposition de domaines à deux niveaux Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines et Univ. Paris VI joint work with Victorita Dolean (Univ. Nice Sophia-Antipolis) Patrice Hauret (Michelin, Clermont-Ferrand) Frédéric Hecht (LJLL) Pierre Jolivet (LJLL) Clemens Pechstein (Johannes Kepler Univ., Linz) Robert Scheichl (Univ. Bath) Nicole Spillane (LJLL) CEA Saclay 2013

2 Outline 1 Introduction 2 An abstract 2-level Schwarz: the GenEO algorithm 3 Conclusion F. Nataf et al GENEO 2 / 31

3 Outline 1 Introduction Classical coarse space method 2 An abstract 2-level Schwarz: the GenEO algorithm 3 Conclusion F. Nataf et al GENEO 3 / 31

4 Motivation Large discretized system of PDEs strongly heterogeneous coefficients (high contrast, nonlinear, multiscale) E.g. Darcy pressure equation, P 1 -finite elements: Applications: flow in heterogeneous / stochastic / layered media structural mechanics electromagnetics etc. AU = F cond(a) α max α min h 2 Goal: iterative solvers robust in size and heterogeneities F. Nataf et al GENEO 4 / 31

5 Linear Algebra from the End User point of view Direct DDM Iterative Cons: Memory Pro: Flexible Pros: Memory Difficult to Naturally Easy to Pros: Robustness Cons: Robustness solve(mat,rhs,sol) Few black box routines solve(mat,rhs,sol) Few implementations of efficient DDM Multigrid methods: very efficient but may lack robustness, not always applicable (Helmholtz type problems, complex systems) and difficult to parallelize. F. Nataf et al GENEO 5 / 31

6 The First Domain Decomposition Method The original Schwarz Method (H.A. Schwarz, 1870) (u) = f in Ω u = 0 on Ω. Ω 1 Ω 2 Schwarz Method : (u1 n, un 2 ) (un+1 1, u n+1 2 ) with (u n+1 1 ) = f in Ω 1 u n+1 1 = 0 on Ω 1 Ω u n+1 1 = u2 n on Ω 1 Ω 2. (u n+1 2 ) = f in Ω 2 u n+1 2 = 0 on Ω 2 Ω u n+1 2 = u n+1 1 on Ω 2 Ω 1. Parallel algorithm, converges but very slowly, overlapping subdomains only. The parallel version is called Jacobi Schwarz method (JSM). F. Nataf et al GENEO 6 / 31

7 Strong and Weak scalability How to evaluate the efficiency of a domain decomposition? Strong scalability (Amdahl) How the solution time varies with the number of processors for a fixed total problem size Weak scalability (Gustafson) How the solution time varies with the number of processors for a fixed problem size per processor. Not achieved with the one level method Number of subdomains ASM The iteration number increases linearly with the number of subdomains in one direction. F. Nataf et al GENEO 7 / 31

8 How to achieve scalability Stagnation corresponds to a few very low eigenvalues in the spectrum of the preconditioned problem. They are due to the lack of a global exchange of information in the preconditioner. u = f in Ω u = 0 on Ω The mean value of the solution in domain i depends on the value of f on all subdomains. A classical remedy consists in the introduction of a coarse problem that couples all subdomains. This is closely related to deflation technique classical in linear algebra (see Nabben and Vuik s papers in SIAM J. Sci. Comp, 200X). F. Nataf et al GENEO 8 / 31

9 Adding a coarse space We add a coarse space correction (aka second level) Let V H be the coarse space and Z be a basis, V H = span Z, writing R 0 = Z T we define the two level preconditioner as: M 1 ASM,2 := RT 0 (R 0AR T 0 ) 1 R 0 + N i=1 R T i A 1 i R i. The Nicolaides approach is to use the kernel of the operator as a coarse space, this is the constant vectors, in local form this writes: Z := (Ri T D i R i 1) 1 i N where D i are chosen so that we have a partition of unity: N Ri T D i R i = Id. i=1 F. Nataf et al GENEO 9 / 31

10 Theoretical convergence result Theorem (Widlund, Dryija) Let M 1 ASM,2 be the two-level additive Schwarz method: κ(m 1 ASM,2 (1 A) C + H ) δ where δ is the size of the overlap between the subdomains and H the subdomain size. This does indeed work very well Number of subdomains ASM ASM + Nicolaides F. Nataf et al GENEO 10 / 31

11 Failure for Darcy equation with heterogeneities (α(x, y) u) = 0 in Ω R 2, u = 0 on Ω D, u n = 0 on Ω N. IsoValue Our approach Decomposition α(x, y) Jump ASM ASM + Nicolaides Fix the problem by an optimal and proven choice of a coarse space Z. F. Nataf et al GENEO 11 / 31

12 Outline 1 Introduction 2 An abstract 2-level Schwarz: the GenEO algorithm Choice of the coarse space First Numerical results Parallel implementation 3 Conclusion F. Nataf et al GENEO 12 / 31

13 Objectives Strategy Define an appropriate coarse space V H 2 = span(z 2 ) and use the framework previously introduced, writing R 0 = Z2 T the two level preconditioner is: P 1 ASM 2 := RT 0 (R 0AR T 0 ) 1 R 0 + N i=1 R T i A 1 i R i. The coarse space must be Local (calculated on each subdomain) parallel Adaptive (calculated automatically) Easy and cheap to compute Robust (must lead to an algorithm whose convergence is proven not to depend on the partition nor the jumps in coefficients) F. Nataf et al GENEO 13 / 31

14 Abstract eigenvalue problem Gen.EVP per subdomain: Find p j,k V h Ωj and λ j,k 0: a Ωj (p j,k, v) = λ j,k a Ω j (Ξ j p j,k, Ξ j v) v V h Ωj A j p j,k = λ j,k X j A j X j p j,k (X j... diagonal) a D... restriction of a to D In the two-level ASM: Choose first m j eigenvectors per subdomain: V 0 = span { Ξ j p j,k } j=1,...,n k=1,...,m j This automatically includes Zero Energy Modes. F. Nataf et al GENEO 14 / 31

15 Abstract eigenvalue problem Gen.EVP per subdomain: Find p j,k V h Ωj and λ j,k 0: a Ωj (p j,k, v) = λ j,k a Ω j (Ξ j p j,k, Ξ j v) v V h Ωj A j p j,k = λ j,k X j A j X j p j,k (X j... diagonal) a D... restriction of a to D In the two-level ASM: Choose first m j eigenvectors per subdomain: V 0 = span { Ξ j p j,k } j=1,...,n k=1,...,m j This automatically includes Zero Energy Modes. F. Nataf et al GENEO 14 / 31

16 Comparison with existing works Galvis & Efendiev (SIAM 2010): κ p j,k v dx = λ j,k κ p j,k v dx Ω j Ω j v V h Ωj Efendiev, Galvis, Lazarov & Willems (submitted): a Ωj (p j,k, v) = λ j,k a Ωj (ξ j ξ i p j,k, ξ j ξ i v) v V Ωj Our gen.evp: i neighb(j) ξ j... partition of unity, calculated adaptively (MS) a Ωj (p j,k, v) = λ j,k a Ω j (Ξ j p j,k, Ξ j v) v V h Ωj both matrices typically singular = λ j,k [0, ] F. Nataf et al GENEO 15 / 31

17 Theory Two technical assumptions. Theorem (Spillane, Dolean, Hauret, N., Pechstein, Scheichl) If for all j: 0 < λ j,mj+1 < : [ κ(m 1 ASM,2 A) (1 + k 0) 2 + k 0 (2k 0 + 1) N max j=1 ( )] λ j,mj +1 Possible criterion for picking m j : (used in our Numerics) λ j,mj +1 < δ j H j H j... subdomain diameter, δ j... overlap F. Nataf et al GENEO 16 / 31

18 Numerical results via a Domain Specific Language FreeFem++ ( with: Metis Karypis and Kumar 1998 SCOTCH Chevalier and Pellegrini 2008 UMFPACK Davis 2004 ARPACK Lehoucq et al MPI Snir et al Intel MKL PARDISO Schenk et al MUMPS Amestoy et al PaStiX Hénon et al Why use a DS(E)L instead of C/C++/Fortran/..? performances close to low-level language implementation, hard to beat something as simple as: varf a(u, v) = int3d(mesh)([dx(u), dy(u), dz(u)]' * [dx(v), dy(v), dz(v)]) + int3d(mesh)(f * v) + on(boundary mesh)(u = 0) F. Nataf et al GENEO 17 / 31

19 Numerics 2D Elasticity E IsoValue e e e e e e e e e e e e e e e e e e e e+11 E 1 = ν 1 = 0.3 E 2 = ν 2 = 0.45 METIS partitions with 2 layers added subd. dofs AS-1 AS-ZEM (V H ) GENEO (V H ) (12) 42 (42) (48) 45 (159) (75) 47 (238) (192) 45 (519) F. Nataf et al GENEO 18 / 31

20 Numerics 3D Elasticity Iterations (CG) vs. number of subdomains E 1 = ν 1 = 0.3 Relative error vs. iterations 16 regular subdomains E 2 = ν 2 = 0.45 subd. dofs AS-1 AS-ZEM (V H ) GENEO (V H ) (24) 16 (46) (48) 16 (102) (96) 16 (214) AS-ZEM (Rigid body motions): m j = 6 F. Nataf et al GENEO 19 / 31

21 Numerical results Optimality Layers of hard and soft elastic materials m i is given automatically by the strategy. #Z per subd. one level ZEM GenEO max(m i 1, 3) 2600 (93) m i 5.1 e5 (184) 1.4 e4 (208) 53 (35) m i (25) condition number (iteration count) for one and two level ASMs Taking one fewer eigenvalue has a huge influence on the iteration count Taking one more has only a small influence F. Nataf et al GENEO 20 / 31

22 Eigenvalues and eigenvectors Eigenvector number 1 is e-15; exageration coefficient is: Eigenvector number 2 is e-16; exageration coefficient is: Eigenvector number 3 is e-15; exageration coefficient is: Eigenvector number 4 is e-05; exageration coefficient is: Eigenvector number 5 is e-05; exageration coefficient is: Eigenvector number 6 is e-05; exageration coefficient is: Eigenvector number 7 is ; exageration coefficient is: Eigenvector number 8 is ; exageration coefficient is: Eigenvector number 9 is ; exageration coefficient is: Eigenvector number 10 is ; exageration coefficient is: Eigenvector number 11 is ; exageration coefficient is: Eigenvector number 12 is ; exageration coefficient is: Eigenvector number 13 is ; exageration coefficient is: Eigenvector number 14 is ; exageration coefficient is: Eigenvector number 15 is ; exageration coefficient is: eigenvalue (log scale) eigenvalue number Logarithmic scale F. Nataf et al GENEO 21 / 31

23 Darcy pressure equation κ(x, y) x y Figure : Two dimensional diffusivity κ F. Nataf et al GENEO 22 / 31

24 Channels and inclusion IsoValue e e e e e e+06 IsoValue Channels and inclusions: 1 α , the solution and partitionings (Metis or not) F. Nataf et al GENEO 23 / 31

25 Parallel implementation PhD of Pierre Jolivet. Since version 1.16, bundled with the Message Passing Interface. FreeFem++ is working on the following parallel architectures (among others): N of cores Memory Peak perf hpc1@ljll 160@2.00 Ghz 640 Go 10 TFLOP/s titane@cea 12192@2.93 Ghz 37 To 140 TFLOP/s babel@idris 40960@850 Mhz 20 To 139 TFLOP/s curie@cea 92000@2.93 Ghz 315 To 1.6 PFLOP/s Bruyères-le-Châtel, France. Orsay, France. F. Nataf et al GENEO 24 / 31

26 Strong scalability in two dimensions heterogeneous elasticity Elasticity problem with heterogeneous coefficients Timing relative to processes Linear speedup 10 #iterations #processes Speed-up for a 1.2 billion unknowns 2D problem. Direct solvers in the subdomains. Peak performance wall-clock time: 26s. F. Nataf et al GENEO 25 / 31

27 Strong scalability in three dimensions heterogeneous elasticity Elasticity problem with heterogeneous coefficients Timing relative to processes Linear speedup 10 #iterations #processes Speed-up for a 160 million unknowns 3D problem. Direct solvers in subdomains. Peak performance wall-clock time: 36s. F. Nataf et al GENEO 26 / 31

28 Weak scalability in two dimensions Darcy problems with heterogeneous coefficients Weak efficiency relative to processes 100 % 80 % 60 % 40 % 20 % 0 % #d.o.f. (in millions) #processes Efficiency for a 2D problem. Direct solvers in the subdomains. Final size: 22 billion unknowns. Wall-clock time: 200s. F. Nataf et al GENEO 27 / 31

29 Weak scalability in three dimensions Darcy problems with heterogeneous coefficients Weak e ciency relative to processes 100 % 80 % 60 % 40 % 20 % 0% #d.o.f. (in millions) #processes Efficiency for a 3D problem. Direct solvers in the subdomains. Final size: 2 billion unknowns. Wall-clock time: 200s. F. Nataf et al GENEO 28 / 31

30 Outline 1 Introduction 2 An abstract 2-level Schwarz: the GenEO algorithm 3 Conclusion F. Nataf et al GENEO 29 / 31

31 Conclusion GenEO for ASM Implementation requires only element stiffness matrices + connectivity FreeFem++ MPI implementation Not shown here Outlook GenEO for BNN/FETI methods Nonlinear time dependent problem (Reuse of the coarse space) Coarse problem satisfies assembling property multilevel method link to σamge? Other discretizations: finite volume, finite difference,... F. Nataf et al GENEO 30 / 31

32 Conclusion GenEO for ASM Implementation requires only element stiffness matrices + connectivity FreeFem++ MPI implementation Not shown here Outlook GenEO for BNN/FETI methods Nonlinear time dependent problem (Reuse of the coarse space) Coarse problem satisfies assembling property multilevel method link to σamge? Other discretizations: finite volume, finite difference,... F. Nataf et al GENEO 30 / 31

33 Conclusion GenEO for ASM Implementation requires only element stiffness matrices + connectivity FreeFem++ MPI implementation Not shown here Outlook GenEO for BNN/FETI methods Nonlinear time dependent problem (Reuse of the coarse space) Coarse problem satisfies assembling property multilevel method link to σamge? Other discretizations: finite volume, finite difference,... F. Nataf et al GENEO 30 / 31

34 Bibliography Schwarz: DtN and GenEO Preprints available on HAL: N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, An Algebraic Local Generalized Eigenvalue in the Overlapping Zone Based Coarse Space : A first introduction, C. R. Mathématique, Vol. 349, No , pp , F. Nataf, H. Xiang, V. Dolean, N. Spillane, A coarse space construction based on local Dirichlet to Neumann maps, SIAM J. Sci Comput., Vol. 33, No.4, pp , F. Nataf, H. Xiang, V. Dolean, A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps, C. R. Mathématique, Vol. 348, No , pp , V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet to Neumann maps, CMAM, 2012 vol. 12, P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud homme, N. Spillane, High Performance domain decomposition methods on massively parallel architectures with FreeFem++, J. of Numerical Mathematics, 2012 vol. 20. N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps, submitted to Numerische Mathematik, V. Dolean, F. Nataf, P. Jolivet: Domain decomposition methods. Theory and parallel implementation with FreeFEM++, Lecture notes (coming soon). THANK YOU FOR YOUR ATTENTION! F. Nataf et al GENEO 31 / 31

35 Bibliography Schwarz: DtN and GenEO Preprints available on HAL: N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, An Algebraic Local Generalized Eigenvalue in the Overlapping Zone Based Coarse Space : A first introduction, C. R. Mathématique, Vol. 349, No , pp , F. Nataf, H. Xiang, V. Dolean, N. Spillane, A coarse space construction based on local Dirichlet to Neumann maps, SIAM J. Sci Comput., Vol. 33, No.4, pp , F. Nataf, H. Xiang, V. Dolean, A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps, C. R. Mathématique, Vol. 348, No , pp , V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet to Neumann maps, CMAM, 2012 vol. 12, P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud homme, N. Spillane, High Performance domain decomposition methods on massively parallel architectures with FreeFem++, J. of Numerical Mathematics, 2012 vol. 20. N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract Robust Coarse Spaces for Systems of PDEs via Generalized Eigenproblems in the Overlaps, submitted to Numerische Mathematik, V. Dolean, F. Nataf, P. Jolivet: Domain decomposition methods. Theory and parallel implementation with FreeFEM++, Lecture notes (coming soon). THANK YOU FOR YOUR ATTENTION! F. Nataf et al GENEO 31 / 31

Domain Decomposition Methods. Partial Differential Equations

Domain Decomposition Methods. Partial Differential Equations Domain Decomposition Methods for Partial Differential Equations ALFIO QUARTERONI Professor ofnumericalanalysis, Politecnico di Milano, Italy, and Ecole Polytechnique Federale de Lausanne, Switzerland ALBERTO

More information

Modélisation de problèmes spécifiques avec le logiciel libre FreeFem++

Modélisation de problèmes spécifiques avec le logiciel libre FreeFem++ Modélisation de problèmes spécifiques avec le logiciel libre FreeFem++ F. Hecht LJLL, UPMC Alpines, INRIA Rocquencourt with S. Auliac, I. Danaila P. Jolivet, A Le Hyaric, F. Nataf, O. Pironneau, P-H. Tournier

More information

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation M. Donatelli 1 M. Semplice S. Serra-Capizzano 1 1 Department of Science and High Technology

More information

Large-Scale Reservoir Simulation and Big Data Visualization

Large-Scale Reservoir Simulation and Big Data Visualization Large-Scale Reservoir Simulation and Big Data Visualization Dr. Zhangxing John Chen NSERC/Alberta Innovates Energy Environment Solutions/Foundation CMG Chair Alberta Innovates Technology Future (icore)

More information

Mesh Generation and Load Balancing

Mesh Generation and Load Balancing Mesh Generation and Load Balancing Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee April 04, 2012 CS 594 04/04/2012 Slide 1 / 19 Outline Motivation Reliable

More information

It s Not A Disease: The Parallel Solver Packages MUMPS, PaStiX & SuperLU

It s Not A Disease: The Parallel Solver Packages MUMPS, PaStiX & SuperLU It s Not A Disease: The Parallel Solver Packages MUMPS, PaStiX & SuperLU A. Windisch PhD Seminar: High Performance Computing II G. Haase March 29 th, 2012, Graz Outline 1 MUMPS 2 PaStiX 3 SuperLU 4 Summary

More information

An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems

An Additive Neumann-Neumann Method for Mortar Finite Element for 4th Order Problems An Additive eumann-eumann Method for Mortar Finite Element for 4th Order Problems Leszek Marcinkowski Department of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, Leszek.Marcinkowski@mimuw.edu.pl

More information

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms

Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,

More information

AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS

AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS AN INTERFACE STRIP PRECONDITIONER FOR DOMAIN DECOMPOSITION METHODS by M. Storti, L. Dalcín, R. Paz Centro Internacional de Métodos Numéricos en Ingeniería - CIMEC INTEC, (CONICET-UNL), Santa Fe, Argentina

More information

P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE

P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE 1 P013 INTRODUCING A NEW GENERATION OF RESERVOIR SIMULATION SOFTWARE JEAN-MARC GRATIEN, JEAN-FRANÇOIS MAGRAS, PHILIPPE QUANDALLE, OLIVIER RICOIS 1&4, av. Bois-Préau. 92852 Rueil Malmaison Cedex. France

More information

A Parallel Lanczos Algorithm for Eigensystem Calculation

A Parallel Lanczos Algorithm for Eigensystem Calculation A Parallel Lanczos Algorithm for Eigensystem Calculation Hans-Peter Kersken / Uwe Küster Eigenvalue problems arise in many fields of physics and engineering science for example in structural engineering

More information

Domain decomposition techniques for interfacial discontinuities

Domain decomposition techniques for interfacial discontinuities Domain decomposition techniques for interfacial discontinuities Geordie McBain Institut Jean le Rond d Alembert December 5, 2012 Connexion and substructuring Two ways to look at domain decomposition Decomposing

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

Iterative Solvers for Linear Systems

Iterative Solvers for Linear Systems 9th SimLab Course on Parallel Numerical Simulation, 4.10 8.10.2010 Iterative Solvers for Linear Systems Bernhard Gatzhammer Chair of Scientific Computing in Computer Science Technische Universität München

More information

Poisson Equation Solver Parallelisation for Particle-in-Cell Model

Poisson Equation Solver Parallelisation for Particle-in-Cell Model WDS'14 Proceedings of Contributed Papers Physics, 233 237, 214. ISBN 978-8-7378-276-4 MATFYZPRESS Poisson Equation Solver Parallelisation for Particle-in-Cell Model A. Podolník, 1,2 M. Komm, 1 R. Dejarnac,

More information

A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster

A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster Acta Technica Jaurinensis Vol. 3. No. 1. 010 A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster G. Molnárka, N. Varjasi Széchenyi István University Győr, Hungary, H-906

More information

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications

More information

HPC Deployment of OpenFOAM in an Industrial Setting

HPC Deployment of OpenFOAM in an Industrial Setting HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment

More information

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*

More information

Towards real-time image processing with Hierarchical Hybrid Grids

Towards real-time image processing with Hierarchical Hybrid Grids Towards real-time image processing with Hierarchical Hybrid Grids International Doctorate Program - Summer School Björn Gmeiner Joint work with: Harald Köstler, Ulrich Rüde August, 2011 Contents The HHG

More information

TESLA Report 2003-03

TESLA Report 2003-03 TESLA Report 23-3 A multigrid based 3D space-charge routine in the tracking code GPT Gisela Pöplau, Ursula van Rienen, Marieke de Loos and Bas van der Geer Institute of General Electrical Engineering,

More information

Fast Multipole Method for particle interactions: an open source parallel library component

Fast Multipole Method for particle interactions: an open source parallel library component Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,

More information

Fast Iterative Solvers for Integral Equation Based Techniques in Electromagnetics

Fast Iterative Solvers for Integral Equation Based Techniques in Electromagnetics Fast Iterative Solvers for Integral Equation Based Techniques in Electromagnetics Mario Echeverri, PhD. Student (2 nd year, presently doing a research period abroad) ID:30360 Tutor: Prof. Francesca Vipiana,

More information

Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems

Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001,

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition

P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition P164 Tomographic Velocity Model Building Using Iterative Eigendecomposition K. Osypov* (WesternGeco), D. Nichols (WesternGeco), M. Woodward (WesternGeco) & C.E. Yarman (WesternGeco) SUMMARY Tomographic

More information

AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications

AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications Dr. Bjoern Landmann Dr. Kerstin Wieczorek Stefan Bachschuster 18.03.2015 FluiDyna GmbH, Lichtenbergstr. 8, 85748 Garching

More information

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Massively Parallel Multilevel Finite

More information

High Performance Multi-Layer Ocean Modeling. University of Kentucky, Computer Science Department, 325 McVey Hall, Lexington, KY 40506-0045, USA.

High Performance Multi-Layer Ocean Modeling. University of Kentucky, Computer Science Department, 325 McVey Hall, Lexington, KY 40506-0045, USA. High Performance Multi-Layer Ocean Modeling Craig C. Douglas A, Gundolf Haase B, and Mohamed Iskandarani C A University of Kentucky, Computer Science Department, 325 McVey Hall, Lexington, KY 40506-0045,

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

AN APPROACH FOR SECURE CLOUD COMPUTING FOR FEM SIMULATION

AN APPROACH FOR SECURE CLOUD COMPUTING FOR FEM SIMULATION AN APPROACH FOR SECURE CLOUD COMPUTING FOR FEM SIMULATION Jörg Frochte *, Christof Kaufmann, Patrick Bouillon Dept. of Electrical Engineering and Computer Science Bochum University of Applied Science 42579

More information

Efficient numerical simulation of time-harmonic wave equations

Efficient numerical simulation of time-harmonic wave equations Efficient numerical simulation of time-harmonic wave equations Prof. Tuomo Rossi Dr. Dirk Pauly Ph.Lic. Sami Kähkönen Ph.Lic. Sanna Mönkölä M.Sc. Tuomas Airaksinen M.Sc. Anssi Pennanen M.Sc. Jukka Räbinä

More information

Research Associate at Universität Hamburg. Research Associate at University of Bath

Research Associate at Universität Hamburg. Research Associate at University of Bath Elisabeth Ullmann Fachbereich Mathematik Universität Hamburg Bundesstr. 55, 20146 Hamburg, Germany Phone: +49 (0)40 42838 5151 E-mail: elisabeth.ullmann@uni-hamburg.de Personal Data Citizenship: Germany

More information

Minkowski Sum of Polytopes Defined by Their Vertices

Minkowski Sum of Polytopes Defined by Their Vertices Minkowski Sum of Polytopes Defined by Their Vertices Vincent Delos, Denis Teissandier To cite this version: Vincent Delos, Denis Teissandier. Minkowski Sum of Polytopes Defined by Their Vertices. Journal

More information

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu haohuan@tsinghua.edu.cn High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University

More information

Benchmark Tests on ANSYS Parallel Processing Technology

Benchmark Tests on ANSYS Parallel Processing Technology Benchmark Tests on ANSYS Parallel Processing Technology Kentaro Suzuki ANSYS JAPAN LTD. Abstract It is extremely important for manufacturing industries to reduce their design process period in order to

More information

Scientific Computing Programming with Parallel Objects

Scientific Computing Programming with Parallel Objects Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore

More information

Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008

Yousef Saad University of Minnesota Computer Science and Engineering. CRM Montreal - April 30, 2008 A tutorial on: Iterative methods for Sparse Matrix Problems Yousef Saad University of Minnesota Computer Science and Engineering CRM Montreal - April 30, 2008 Outline Part 1 Sparse matrices and sparsity

More information

The Application of a Black-Box Solver with Error Estimate to Different Systems of PDEs

The Application of a Black-Box Solver with Error Estimate to Different Systems of PDEs The Application of a Black-Bo Solver with Error Estimate to Different Systems of PDEs Torsten Adolph and Willi Schönauer Forschungszentrum Karlsruhe Institute for Scientific Computing Karlsruhe, Germany

More information

Nonlinear Modal Analysis of Mechanical Systems with Frictionless Contact Interfaces

Nonlinear Modal Analysis of Mechanical Systems with Frictionless Contact Interfaces Nonlinear Modal Analysis of Mechanical Systems with Frictionless Contact Interfaces Denis Laxalde, Mathias Legrand and Christophe Pierre Structural Dynamics and Vibration Laboratory Department of Mechanical

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Workshop on Numerical Simulation of the Maxwell Equations Graz, 17. 18.3.2008 O. Steinbach (ed.) Berichte aus dem Institut für Numerische Mathematik Book of Abstracts 2008/2

More information

Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components

Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components Domain Decomposition Methods for Elastic Materials with Compressible and Almost Incompressible Components Sabrina Gippert geboren in Neuss Fakultät für Mathematik Universität Duisburg-Essen November 01

More information

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT-240 Action Taken (Please Check One) New Course Initiated

More information

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State

More information

High-fidelity electromagnetic modeling of large multi-scale naval structures

High-fidelity electromagnetic modeling of large multi-scale naval structures High-fidelity electromagnetic modeling of large multi-scale naval structures F. Vipiana, M. A. Francavilla, S. Arianos, and G. Vecchi (LACE), and Politecnico di Torino 1 Outline ISMB and Antenna/EMC Lab

More information

Computational Optical Imaging - Optique Numerique. -- Deconvolution --

Computational Optical Imaging - Optique Numerique. -- Deconvolution -- Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method

More information

Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples

Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples Finite difference and finite element methods Lecture 10 Sensitivities and Greeks Key task in financial engineering: fast and accurate calculation of sensitivities of market models with respect to model

More information

Mathematical Libraries and Application Software on JUROPA and JUQUEEN

Mathematical Libraries and Application Software on JUROPA and JUQUEEN Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries and Application Software on JUROPA and JUQUEEN JSC Training Course May 2014 I.Gutheil Outline General Informations Sequential Libraries Parallel

More information

Hash-Storage Techniques for Adaptive Multilevel Solvers and Their Domain Decomposition Parallelization

Hash-Storage Techniques for Adaptive Multilevel Solvers and Their Domain Decomposition Parallelization Contemporary Mathematics Volume 218, 1998 B 0-8218-0988-1-03018-1 Hash-Storage Techniques for Adaptive Multilevel Solvers and Their Domain Decomposition Parallelization Michael Griebel and Gerhard Zumbusch

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

HPC enabling of OpenFOAM R for CFD applications

HPC enabling of OpenFOAM R for CFD applications HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,

More information

METHODOLOGICAL CONSIDERATIONS OF DRIVE SYSTEM SIMULATION, WHEN COUPLING FINITE ELEMENT MACHINE MODELS WITH THE CIRCUIT SIMULATOR MODELS OF CONVERTERS.

METHODOLOGICAL CONSIDERATIONS OF DRIVE SYSTEM SIMULATION, WHEN COUPLING FINITE ELEMENT MACHINE MODELS WITH THE CIRCUIT SIMULATOR MODELS OF CONVERTERS. SEDM 24 June 16th - 18th, CPRI (Italy) METHODOLOGICL CONSIDERTIONS OF DRIVE SYSTEM SIMULTION, WHEN COUPLING FINITE ELEMENT MCHINE MODELS WITH THE CIRCUIT SIMULTOR MODELS OF CONVERTERS. Áron Szûcs BB Electrical

More information

ANTALYA INTERNATIONAL UNIVERSITY INDUSTRIAL ENGINEERING COURSE DESCRIPTIONS

ANTALYA INTERNATIONAL UNIVERSITY INDUSTRIAL ENGINEERING COURSE DESCRIPTIONS ANTALYA INTERNATIONAL UNIVERSITY INDUSTRIAL ENGINEERING COURSE DESCRIPTIONS CORE COURSES MATH 101 - Calculus I Trigonometric functions and their basic properties. Inverse trigonometric functions. Logarithmic

More information

1 Finite difference example: 1D implicit heat equation

1 Finite difference example: 1D implicit heat equation 1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following

More information

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions

Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Big Data Optimization: Randomized lock-free methods for minimizing partially separable convex functions Peter Richtárik School of Mathematics The University of Edinburgh Joint work with Martin Takáč (Edinburgh)

More information

Best practices for efficient HPC performance with large models

Best practices for efficient HPC performance with large models Best practices for efficient HPC performance with large models Dr. Hößl Bernhard, CADFEM (Austria) GmbH PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana,

More information

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Reduced order model and simultaneous computation for thermomechanical multidimensional models

Reduced order model and simultaneous computation for thermomechanical multidimensional models Reduced order model and simultaneous computation for thermomechanical multidimensional models Fatima Daïm, D. Ryckelynck, D. M. Benziane Centre des Matériaux Mines-ParisTech 17 juin 2011 D. Ryckelynck

More information

A Load Balancing Tool for Structured Multi-Block Grid CFD Applications

A Load Balancing Tool for Structured Multi-Block Grid CFD Applications A Load Balancing Tool for Structured Multi-Block Grid CFD Applications K. P. Apponsah and D. W. Zingg University of Toronto Institute for Aerospace Studies (UTIAS), Toronto, ON, M3H 5T6, Canada Email:

More information

FEM Software Automation, with a case study on the Stokes Equations

FEM Software Automation, with a case study on the Stokes Equations FEM Automation, with a case study on the Stokes Equations FEM Andy R Terrel Advisors: L R Scott and R C Kirby Numerical from Department of Computer Science University of Chicago March 1, 2006 Masters Presentation

More information

Numerical Analysis Introduction. Student Audience. Prerequisites. Technology.

Numerical Analysis Introduction. Student Audience. Prerequisites. Technology. Numerical Analysis Douglas Faires, Youngstown State University, (Chair, 2012-2013) Elizabeth Yanik, Emporia State University, (Chair, 2013-2015) Graeme Fairweather, Executive Editor, Mathematical Reviews,

More information

How High a Degree is High Enough for High Order Finite Elements?

How High a Degree is High Enough for High Order Finite Elements? This space is reserved for the Procedia header, do not use it How High a Degree is High Enough for High Order Finite Elements? William F. National Institute of Standards and Technology, Gaithersburg, Maryland,

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

A Multi-layered Domain-specific Language for Stencil Computations

A Multi-layered Domain-specific Language for Stencil Computations A Multi-layered Domain-specific Language for Stencil Computations Christian Schmitt, Frank Hannig, Jürgen Teich Hardware/Software Co-Design, University of Erlangen-Nuremberg Workshop ExaStencils 2014,

More information

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Fabienne Comte, Celine Duval, Valentine Genon-Catalot To cite this version: Fabienne

More information

Load Balancing using Potential Functions for Hierarchical Topologies

Load Balancing using Potential Functions for Hierarchical Topologies Acta Technica Jaurinensis Vol. 4. No. 4. 2012 Load Balancing using Potential Functions for Hierarchical Topologies Molnárka Győző, Varjasi Norbert Széchenyi István University Dept. of Machine Design and

More information

Building an Inexpensive Parallel Computer

Building an Inexpensive Parallel Computer Res. Lett. Inf. Math. Sci., (2000) 1, 113-118 Available online at http://www.massey.ac.nz/~wwiims/rlims/ Building an Inexpensive Parallel Computer Lutz Grosz and Andre Barczak I.I.M.S., Massey University

More information

Low Level. Software. Solution. extensions to handle. coarse grained task. compilers with. Data parallel. parallelism.

Low Level. Software. Solution. extensions to handle. coarse grained task. compilers with. Data parallel. parallelism. . 1 History 2 æ 1960s - First Organized Collections Problem Solving Environments for Parallel Scientiæc Computation Jack Dongarra Univ. of Tenn.èOak Ridge National Lab dongarra@cs.utk.edu æ 1970s - Advent

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

ALGEBRAIC EIGENVALUE PROBLEM

ALGEBRAIC EIGENVALUE PROBLEM ALGEBRAIC EIGENVALUE PROBLEM BY J. H. WILKINSON, M.A. (Cantab.), Sc.D. Technische Universes! Dsrmstedt FACHBEREICH (NFORMATiK BIBL1OTHEK Sachgebieto:. Standort: CLARENDON PRESS OXFORD 1965 Contents 1.

More information

YALES2 porting on the Xeon- Phi Early results

YALES2 porting on the Xeon- Phi Early results YALES2 porting on the Xeon- Phi Early results Othman Bouizi Ghislain Lartigue Innovation and Pathfinding Architecture Group in Europe, Exascale Lab. Paris CRIHAN - Demi-journée calcul intensif, 16 juin

More information

The MUMPS Solver: academic needs and industrial expectations

The MUMPS Solver: academic needs and industrial expectations The MUMPS Solver: academic needs and industrial expectations Chiara Puglisi (Inria-Grenoble (LIP-ENS Lyon)) MUMPS group, Bordeaux 1 CERFACS, CNRS, ENS-Lyon, INRIA, INPT, Université Séminaire Aristote -

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Asymptotic Analysis of Fields in Multi-Structures

Asymptotic Analysis of Fields in Multi-Structures Asymptotic Analysis of Fields in Multi-Structures VLADIMIR KOZLOV Department of Mathematics, Linkoeping University, Sweden VLADIMIR MAZ'YA Department of Mathematics, Linkoeping University, Sweden ALEXANDER

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

Solving the Coarse Problem on Large Memory Multi Processors

Solving the Coarse Problem on Large Memory Multi Processors INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng. 47, 513 535 (2000) Application of the FETI method to ASCI problems scalability results on 1000 processors and discussion

More information

Advanced Computational Software

Advanced Computational Software Advanced Computational Software Scientific Libraries: Part 2 Blue Waters Undergraduate Petascale Education Program May 29 June 10 2011 Outline Quick review Fancy Linear Algebra libraries - ScaLAPACK -PETSc

More information

MIMO CHANNEL CAPACITY

MIMO CHANNEL CAPACITY MIMO CHANNEL CAPACITY Ochi Laboratory Nguyen Dang Khoa (D1) 1 Contents Introduction Review of information theory Fixed MIMO channel Fading MIMO channel Summary and Conclusions 2 1. Introduction The use

More information

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

More information

Algorithmic Research and Software Development for an Industrial Strength Sparse Matrix Library for Parallel Computers

Algorithmic Research and Software Development for an Industrial Strength Sparse Matrix Library for Parallel Computers The Boeing Company P.O.Box3707,MC7L-21 Seattle, WA 98124-2207 Final Technical Report February 1999 Document D6-82405 Copyright 1999 The Boeing Company All Rights Reserved Algorithmic Research and Software

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

Adaptive Framework for Network Traffic Classification using Dimensionality Reduction and Clustering

Adaptive Framework for Network Traffic Classification using Dimensionality Reduction and Clustering IV International Congress on Ultra Modern Telecommunications and Control Systems 22 Adaptive Framework for Network Traffic Classification using Dimensionality Reduction and Clustering Antti Juvonen, Tuomo

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

A New Unstructured Variable-Resolution Finite Element Ice Sheet Stress-Velocity Solver within the MPAS/Trilinos FELIX Dycore of PISCEES

A New Unstructured Variable-Resolution Finite Element Ice Sheet Stress-Velocity Solver within the MPAS/Trilinos FELIX Dycore of PISCEES A New Unstructured Variable-Resolution Finite Element Ice Sheet Stress-Velocity Solver within the MPAS/Trilinos FELIX Dycore of PISCEES Irina Kalashnikova, Andy G. Salinger, Ray S. Tuminaro Numerical Analysis

More information

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements

Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh

More information

Calculation of Eigenmodes in Superconducting Cavities

Calculation of Eigenmodes in Superconducting Cavities Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December

More information

MUSICAL INSTRUMENT FAMILY CLASSIFICATION

MUSICAL INSTRUMENT FAMILY CLASSIFICATION MUSICAL INSTRUMENT FAMILY CLASSIFICATION Ricardo A. Garcia Media Lab, Massachusetts Institute of Technology 0 Ames Street Room E5-40, Cambridge, MA 039 USA PH: 67-53-0 FAX: 67-58-664 e-mail: rago @ media.

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations

Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations Roy D. Williams, 1990 Presented by Chris Eldred Outline Summary Finite Element Solver Load Balancing Results Types Conclusions

More information

Applied mathematics and mathematical statistics

Applied mathematics and mathematical statistics Applied mathematics and mathematical statistics The graduate school is organised within the Department of Mathematical Sciences.. Deputy head of department: Aila Särkkä Director of Graduate Studies: Marija

More information

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems Dynamic Eigenvalues for Scalar Linear Time-Varying Systems P. van der Kloet and F.L. Neerhoff Department of Electrical Engineering Delft University of Technology Mekelweg 4 2628 CD Delft The Netherlands

More information

SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH.

SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH. SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH. CONTENTS: AP calculus credit and Math Placement levels. List of semester math courses. Student pathways through the semester math courses Transition

More information

Basin simulation for complex geological settings

Basin simulation for complex geological settings Énergies renouvelables Production éco-responsable Transports innovants Procédés éco-efficients Ressources durables Basin simulation for complex geological settings Towards a realistic modeling P. Havé*,

More information