Instituto Superior Técnico Masters in Civil Engineering. Lecture 2: Transport networks design and evaluation Xpress presentation - Laboratory work

Size: px
Start display at page:

Download "Instituto Superior Técnico Masters in Civil Engineering. Lecture 2: Transport networks design and evaluation Xpress presentation - Laboratory work"

Transcription

1 Instituto Superior Técnico Masters in Civil Engineering REGIÕES E REDES () Lecture 2: Transport networks design and evaluation Xpress presentation - Laboratory work Eng. Luis Martínez

2 OUTLINE Xpress presentation Xpress structure Create input files for Xpress Xpress-IVE overview Xpress-IVE key features Mosel programming language key words Declare and initialize variables in Mosel Declare an objective function and constraints in Mosel Declare and run the optimization in Mosel Output the results (library mmive ) Xpress Laboratory work with two network design examples A minimum spanning tree problem example A Min-cost-flow problem example 2

3 XPRESS PRESENTATION - XPRESS STRUCTURE Xpress-MP is a suite of mathematical modeling and optimization tools used to solve linear, integer, quadratic, non-linear, and stochastic programming problems. Solver engines: Xpress-Optimizer (LP, MIP, QP, MIQP, QCQP, NLP) Xpress-SLP (NLP, MINLP) Xpress-SP is a Stochastic Programming tool for solving optimization problems involving uncertainty Xpress-Kalis is Constraint Programming software (discrete combinatorial problems) Model building and development tools: Xpress-Mosel programming language Xpress-BCL is an object-oriented library Xpress-IVE is a complete visual development environment for Xpress-Mosel under Windows Xpress-Application Developer (XAD) extends Xpress-Mosel with an API for graphical user interface development 3

4 XPRESS PRESENTATION - CREATE INPUT FILES FOR XPRESS The input files are created in.dat files format These files should contain the vectors and matrices with the input variables identified for reading from the Xpress engine. Arcs: [( ) "Lisboa" "Odivelas" (2 ) "Lisboa" "Loures" (3 ) "Lisboa" "Amadora" (4 ) "Lisboa" "Oeiras" (5 ) "Lisboa" "Sintra" (6 ) "Lisboa" "Cascais" (7 ) "Lisboa" "Mafra" (8 ) "Lisboa" "Vila Franca de Xira ] x: [("Lisboa")46 ("Odivelas") ("Loures") 0098 ("Amadora") 052] flow: [ ] 4

5 XPRESS PRESENTATION - XPRESS-IVE OVERVIEW Run and debug control Variables and constraints activity and output Mosel editor Optimization results Optimization process 5

6 XPRESS PRESENTATION - XPRESS-IVE KEY FEATURES The code file should have the following structure: model model name uses libraries to be used ("mmxprs","mmive ) parameters define parameters of the model filename of the input data file (DATAFILE= dat) end-parameters declarations declare variables and ranges of variables of the input file end-declarations initializations from DATAFILE initialize variables from file (insert variables names) end-initializations declarations declare decision variables end-declarations end-model 6

7 XPRESS PRESENTATION - MOSEL PROGRAMMING LANGUAGE KEY WORDS Key words: Variables types string text integer integer number real real number mpvar decision variable array(range) of type of variable forall(range) iterator forall(range) do end-do cycle with actions if end-if conditional action sum somation := assign value; =, >=,<= equality and inequality operators 7

8 XPRESS PRESENTATION - DECLARE AND INITIALIZE VARIABLES IN MOSEL Variables declaration and initialization: declarations NODES: set of string x: array(nodes) of real y: array(nodes) of real A: array(arcs:set of integer,..2) of string DIST: array (ARCS) of real demand:array(nodes,nodes) of integer end-declarations initializations from DATAFILE A x y demand end-initializations Declare range Declare input variables (range size defined by the input data file) Variables read in the file 8

9 XPRESS PRESENTATION - DECLARE AN OBJECTIVE FUNCTION AND CONSTRAINTS Objective function declaration Cost:=sum(i in ARCS)(a*flow(i) + b*exist(i))*dist(i) Constraint variable (linctr) Constraints declaration forall(a in NODES) Total(a):= sum(i in ARCS A(i,)=a) flow(i)>= sum(b in NODES) demand(a,b) FlowT:=sum(c in ARCS) flow(c) = sum(i,j in NODES) demand(i,j) forall(c in ARCS) flow(c) is_integer forall(c in ARCS) Exist(c) is_binary Decision variables 9

10 XPRESS PRESENTATION - DECLARE AND RUN THE OPTIMIZATION IN MOSEL After the declaration of the objective function and all the constraints we need to define the optimization method that will apply (minimization, maximization) minimize (Cost) maximize (utility) Optimize the identified constraint variable After the definition of the optimization method (if we don t define any output results text or graphical), we need to close the model with the key word end-model Having all the complete code needed we can now run the model in the Run button. 0

11 XPRESS PRESENTATION - OUTPUT THE RESULTS Write output results in text: getsol(mpvar) get the solution values of the variable getobjval get final value of the objective function writeln(string) write in a string line write(string) write a string strfmt(number) write as string Draw graphs: CnctGraph:= IVEaddplot("Road", IVE_YELLOW) TermGraph:= IVEaddplot("Cities", IVE_GREEN) IVEdrawpoint(TermGraph, x(i), y(i)) IVEdrawline(CnctGraph, x(a(i)), y(a(i)), x(a(j)), y(a(j))) IVEdrawlabel(CnctGraph, (x(a(i))+x(a(j)))/2, (y(a(i))+y(a(j)))/2, string(getsol(flow(a,j))))

12 XPRESS LABORATORY - A MINIMUM SPANNING TREE PROBLEM EXAMPLE (I) Goal: Design a network that connects all the nodes of the graph at minimum cost Decision Variables: X: array (NODES, NODES) binary Level: array (NODES) - integer Objective function: Constraints: Number of connections: Nodes i, j= Nodes / i <> j xij i, j= α Length ij Avoid Subcycle: level level + N + N x i, j j i Direct all connections towards the root: Road length: = N ij N / j <> j x ij i= = Spain Network Example Connections: A Coruña-Pontevedra Lugo-A Coruña Asturias-Lugo Cantabria-León Vizcaya-Cantabria Guipúzcoa-Vizcaya León-Asturias Burgos-Vizcaya Navarra-Guipúzcoa Madrid-Salamanca Barcelona-Zaragoza Valencia-Zaragoza Sevilla- Badajoz Salamanca-León Zaragoza-Navarra Badajoz-Salamanca 2

13 XPRESS LABORATORY - A MIN-COST COST-FLOW MULTI-TERMINAL TERMINAL PROBLEM EXAMPLE (I) Goal: Assign demand flow the an existing network from a several sources to a several sink nodes at minimum cost considering capacity constraints on the links of the graph Decision Variables: Flow: array (ARCS,ODpairs) integer Objective function: Constraints: Total source flow: Node equilibrium: Capacity constraint: nodes, jodpairs arcs ODPairs i= Flow ai Positive flow: i Capacity arcs Arcs / D = n i= Arcs / O = i O j j, ODPairs i= Flow Arcs, ODPairs ij i=, j= = a k k=, jodpairs Flowaj 0 α Flow Length Flow Arcs / O = n MaximumRatio ij ij Flow Demand k, j i j Spain Network Example 3

Xpress-Mosel User guide

Xpress-Mosel User guide FICO TM Xpress Optimization Suite Xpress-Mosel User guide Release 3.0 Last update 3 June, 2009 www.fico.com Make every decision count TM Published by Fair Isaac Corporation c Copyright Fair Isaac Corporation

More information

Mosel tips and tricks

Mosel tips and tricks Mosel tips and tricks Last update 25 February, 2013 www.fico.com Make every decision count TM New and less known features of Mosel Selected new features Adding a file to a tar archive (new in Rel 7.3)

More information

Contents. Xpress-Mosel Language Reference Manual

Contents. Xpress-Mosel Language Reference Manual Contents 1 Introduction 1 1.1 What is Mosel?.................................................. 1 1.2 General Organization............................................ 1 1.3 Running Mosel..................................................

More information

Open-source Quality Assurance and Performance Analysis Tools

Open-source Quality Assurance and Performance Analysis Tools Open-source Quality Assurance and Performance Analysis Tools Armin Pruessner, Michael Bussieck, Steven Dirkse, Stefan Vigerske GAMS Development Corporation 1217 Potomac Street NW Washington, DC 20007 1

More information

Quality Assurance For Mathematical Modeling Systems

Quality Assurance For Mathematical Modeling Systems Quality Assurance For Mathematical Modeling Systems Armin Pruessner, Michael Bussieck, Steven Dirkse, Alex Meeraus GAMS Development Corporation 1217 Potomac Street NW Washington, DC 20007 1 Agenda Motivation

More information

Instituto Superior Técnico. Theme 1: Transport networks design and evaluation Case study presentation and synthesis

Instituto Superior Técnico. Theme 1: Transport networks design and evaluation Case study presentation and synthesis Instituto Superior Técnico REGIÕES E REDES (REGIONS AND NETWORKS) Theme 1: Transport networks design and evaluation Case study presentation and synthesis Luis Martinez 1 OUTLINE Case study: Soybean transportation

More information

Column Generation in GAMS Extending the GAMS Branch-and-Cut-and-Heuristic (BCH) Facility

Column Generation in GAMS Extending the GAMS Branch-and-Cut-and-Heuristic (BCH) Facility Column Generation in GAMS Extending the GAMS Branch-and-Cut-and-Heuristic (BCH) Facility Michael R. Bussieck MBussieck@gams.com GAMS Software GmbH GAMS Development Corp 83rd Working Group Meeting Real

More information

New features of Mosel in Release 7.5

New features of Mosel in Release 7.5 New features of Mosel in Release 7.5 Y. Colombani, S.Heipcke Xpress Team, FICO http://www.fico.com/xpress 1 Xpress-Mosel A high-level modeling language combined with standard functionality of programming

More information

Thomas Jefferson High School for Science and Technology Program of Studies Foundations of Computer Science. Unit of Study / Textbook Correlation

Thomas Jefferson High School for Science and Technology Program of Studies Foundations of Computer Science. Unit of Study / Textbook Correlation Thomas Jefferson High School for Science and Technology Program of Studies Foundations of Computer Science updated 03/08/2012 Unit 1: JKarel 8 weeks http://www.fcps.edu/is/pos/documents/hs/compsci.htm

More information

TOMLAB - For fast and robust largescale optimization in MATLAB

TOMLAB - For fast and robust largescale optimization in MATLAB The TOMLAB Optimization Environment is a powerful optimization and modeling package for solving applied optimization problems in MATLAB. TOMLAB provides a wide range of features, tools and services for

More information

Chapter 13: Binary and Mixed-Integer Programming

Chapter 13: Binary and Mixed-Integer Programming Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:

More information

Airport Planning and Design. Excel Solver

Airport Planning and Design. Excel Solver Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of

More information

Applications of optimization with Xpress-MP

Applications of optimization with Xpress-MP Applications of optimization with Xpress-MP Revised translation from the French language edition of: Programmation linéaire by Christelle Guéret, Christian Prins, Marc Sevaux c 2000 Editions Eyrolles,

More information

mobility Lisbon 2014 structure of CICLE CITIES LISBON 2014 MOBILITY IN LISBON AND THE PARADIGM SHIFT OF THE MUNICIPAL MASTER PLAN

mobility Lisbon 2014 structure of CICLE CITIES LISBON 2014 MOBILITY IN LISBON AND THE PARADIGM SHIFT OF THE MUNICIPAL MASTER PLAN CML PSR Consultores - DIRECÇÃO Lda MUNICIPAL DE MOBILIDADE E TRANSPORTES MOBILITY IN LISBON AND THE PARADIGM SHIFT OF THE MUNICIPAL MASTER PLAN CICLE CITIES LISBON 2014 structure of mobility Lisbon 2014

More information

Some Optimization Fundamentals

Some Optimization Fundamentals ISyE 3133B Engineering Optimization Some Optimization Fundamentals Shabbir Ahmed E-mail: sahmed@isye.gatech.edu Homepage: www.isye.gatech.edu/~sahmed Basic Building Blocks min or max s.t. objective as

More information

WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math

WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math Textbook Correlation WESTMORELAND COUNTY PUBLIC SCHOOLS 2011 2012 Integrated Instructional Pacing Guide and Checklist Computer Math Following Directions Unit FIRST QUARTER AND SECOND QUARTER Logic Unit

More information

LocalSolver: black-box local search for combinatorial optimization

LocalSolver: black-box local search for combinatorial optimization LocalSolver: black-box local search for combinatorial optimization Frédéric Gardi Bouygues e-lab, Paris fgardi@bouygues.com Joint work with T. Benoist, J. Darlay, B. Estellon, R. Megel, K. Nouioua Bouygues

More information

How to speed-up hard problem resolution using GLPK?

How to speed-up hard problem resolution using GLPK? How to speed-up hard problem resolution using GLPK? Onfroy B. & Cohen N. September 27, 2010 Contents 1 Introduction 2 1.1 What is GLPK?.......................................... 2 1.2 GLPK, the best one?.......................................

More information

ARIZONA CTE CAREER PREPARATION STANDARDS & MEASUREMENT CRITERIA SOFTWARE DEVELOPMENT, 15.1200.40

ARIZONA CTE CAREER PREPARATION STANDARDS & MEASUREMENT CRITERIA SOFTWARE DEVELOPMENT, 15.1200.40 SOFTWARE DEVELOPMENT, 15.1200.40 STANDARD 1.0 APPLY PROBLEM-SOLVING AND CRITICAL THINKING SKILLS TO INFORMATION 1.1 Describe methods of establishing priorities 1.2 Prepare a plan of work and schedule information

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

CPLEX Tutorial Handout

CPLEX Tutorial Handout CPLEX Tutorial Handout What Is ILOG CPLEX? ILOG CPLEX is a tool for solving linear optimization problems, commonly referred to as Linear Programming (LP) problems, of the form: Maximize (or Minimize) c

More information

Optimization applications in finance, securities, banking and insurance

Optimization applications in finance, securities, banking and insurance IBM Software IBM ILOG Optimization and Analytical Decision Support Solutions White Paper Optimization applications in finance, securities, banking and insurance 2 Optimization applications in finance,

More information

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Network Optimization using AIMMS in the Analytics & Visualization Era

Network Optimization using AIMMS in the Analytics & Visualization Era Network Optimization using AIMMS in the Analytics & Visualization Era Dr. Ovidiu Listes Senior Consultant AIMMS Analytics and Optimization Outline Analytics, Optimization, Networks AIMMS: The Modeling

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent

More information

ADVANCED SCHOOL OF SYSTEMS AND DATA STUDIES (ASSDAS) PROGRAM: CTech in Computer Science

ADVANCED SCHOOL OF SYSTEMS AND DATA STUDIES (ASSDAS) PROGRAM: CTech in Computer Science ADVANCED SCHOOL OF SYSTEMS AND DATA STUDIES (ASSDAS) PROGRAM: CTech in Computer Science Program Schedule CTech Computer Science Credits CS101 Computer Science I 3 MATH100 Foundations of Mathematics and

More information

Introduction to ROOT and data analysis

Introduction to ROOT and data analysis Introduction to ROOT and data analysis What is ROOT? Widely used in the online/offline data analyses in particle and nuclear physics Developed for the LHC experiments in CERN (root.cern.ch) Based on Object

More information

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 445 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu

More information

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students

Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent

More information

Creating a More Efficient Course Schedule at WPI Using Linear Optimization

Creating a More Efficient Course Schedule at WPI Using Linear Optimization Project Number: ACH1211 Creating a More Efficient Course Schedule at WPI Using Linear Optimization A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial

More information

Mixed Integer Linear Programming in R

Mixed Integer Linear Programming in R Mixed Integer Linear Programming in R Stefan Theussl Department of Statistics and Mathematics Wirtschaftsuniversität Wien July 1, 2008 Outline Introduction Linear Programming Quadratic Programming Mixed

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Solving convex MINLP problems with AIMMS

Solving convex MINLP problems with AIMMS Solving convex MINLP problems with AIMMS By Marcel Hunting Paragon Decision Technology BV An AIMMS White Paper August, 2012 Abstract This document describes the Quesada and Grossman algorithm that is implemented

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

A Tool for Generating Partition Schedules of Multiprocessor Systems

A Tool for Generating Partition Schedules of Multiprocessor Systems A Tool for Generating Partition Schedules of Multiprocessor Systems Hans-Joachim Goltz and Norbert Pieth Fraunhofer FIRST, Berlin, Germany {hans-joachim.goltz,nobert.pieth}@first.fraunhofer.de Abstract.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Bachelor of Games and Virtual Worlds (Programming) Subject and Course Summaries

Bachelor of Games and Virtual Worlds (Programming) Subject and Course Summaries First Semester Development 1A On completion of this subject students will be able to apply basic programming and problem solving skills in a 3 rd generation object-oriented programming language (such as

More information

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik

A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution. Bartosz Sawik Decision Making in Manufacturing and Services Vol. 4 2010 No. 1 2 pp. 37 46 A Reference Point Method to Triple-Objective Assignment of Supporting Services in a Healthcare Institution Bartosz Sawik Abstract.

More information

An open source software approach to combine simulation and optimization of business processes

An open source software approach to combine simulation and optimization of business processes An open source software approach to combine simulation and optimization of business processes Mike Steglich and Christian Müller Technical University of Applied Sciences Wildau Bahnhofstraße, D-745 Wildau,

More information

Java the UML Way: Integrating Object-Oriented Design and Programming

Java the UML Way: Integrating Object-Oriented Design and Programming Java the UML Way: Integrating Object-Oriented Design and Programming by Else Lervik and Vegard B. Havdal ISBN 0-470-84386-1 John Wiley & Sons, Ltd. Table of Contents Preface xi 1 Introduction 1 1.1 Preliminaries

More information

A network flow algorithm for reconstructing. binary images from discrete X-rays

A network flow algorithm for reconstructing. binary images from discrete X-rays A network flow algorithm for reconstructing binary images from discrete X-rays Kees Joost Batenburg Leiden University and CWI, The Netherlands kbatenbu@math.leidenuniv.nl Abstract We present a new algorithm

More information

EXCEL SOLVER TUTORIAL

EXCEL SOLVER TUTORIAL ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plug-in, Solver, that we will be using

More information

SBB: A New Solver for Mixed Integer Nonlinear Programming

SBB: A New Solver for Mixed Integer Nonlinear Programming SBB: A New Solver for Mixed Integer Nonlinear Programming Michael R. Bussieck GAMS Development Corp. Arne S. Drud ARKI Consulting & Development A/S OR2001, Duisburg Overview! SBB = Simple Branch & Bound!

More information

Cloud Branching. Timo Berthold. joint work with Domenico Salvagnin (Università degli Studi di Padova)

Cloud Branching. Timo Berthold. joint work with Domenico Salvagnin (Università degli Studi di Padova) Cloud Branching Timo Berthold Zuse Institute Berlin joint work with Domenico Salvagnin (Università degli Studi di Padova) DFG Research Center MATHEON Mathematics for key technologies 21/May/13, CPAIOR

More information

Introduction to Simulink

Introduction to Simulink Introduction to Simulink MEEN 364 Simulink is a software package for modeling, simulating, and analyzing dynamical systems. It supports linear and nonlinear systems, modeled in continuous time, sampled

More information

Equilibrium computation: Part 1

Equilibrium computation: Part 1 Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium

More information

Development. Software Application. MFC, and STL. A Visual C++, Tutorial. Zhang Wenzu. Bud Fox. Tan May Ling. CRC Press. Taylor &.

Development. Software Application. MFC, and STL. A Visual C++, Tutorial. Zhang Wenzu. Bud Fox. Tan May Ling. CRC Press. Taylor &. Software Application Development A Visual C++, MFC, and STL Tutorial Bud Fox Zhang Wenzu Tan May Ling CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor

More information

Using ODBC and other database interfaces

Using ODBC and other database interfaces Whitepaper FICO TM Xpress Optimization Suite Using ODBC and other database interfaces with Mosel Data exchange with spreadsheets and databases FICO TM Xpress Optimization Suite whitepaper Last update 5

More information

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes

Decision Mathematics D1 Advanced/Advanced Subsidiary. Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Tuesday 5 June 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

William E. Hart Carl Laird Jean-Paul Watson David L. Woodruff. Pyomo Optimization. Modeling in Python. ^ Springer

William E. Hart Carl Laird Jean-Paul Watson David L. Woodruff. Pyomo Optimization. Modeling in Python. ^ Springer William E Hart Carl Laird Jean-Paul Watson David L Woodruff Pyomo Optimization Modeling in Python ^ Springer Contents 1 Introduction 1 11 Mathematical Modeling 1 12 Modeling Languages for Optimization

More information

IE 1079/2079. Summer 2009. Dr. Louis Luangkesorn. Introduction. What is logistics? Course Content. Course structure. Course policies.

IE 1079/2079. Summer 2009. Dr. Louis Luangkesorn. Introduction. What is logistics? Course Content. Course structure. Course policies. Outline 1 2 3 4 University of Pittsburgh June 22, 2009 5 6 Course What is logistics? focuses on the supply chain of services and products Comparisons IE 1080 - Supply Chain Analysis - Focuses on production

More information

Locating and sizing bank-branches by opening, closing or maintaining facilities

Locating and sizing bank-branches by opening, closing or maintaining facilities Locating and sizing bank-branches by opening, closing or maintaining facilities Marta S. Rodrigues Monteiro 1,2 and Dalila B. M. M. Fontes 2 1 DMCT - Universidade do Minho Campus de Azurém, 4800 Guimarães,

More information

Visual Basic Programming. An Introduction

Visual Basic Programming. An Introduction Visual Basic Programming An Introduction Why Visual Basic? Programming for the Windows User Interface is extremely complicated. Other Graphical User Interfaces (GUI) are no better. Visual Basic provides

More information

Programming in C# with Microsoft Visual Studio 2010

Programming in C# with Microsoft Visual Studio 2010 Course 10266A: Programming in C# with Microsoft Visual Studio 2010 Course Details Course Outline Module 1: Introducing C# and the.net Framework This module explains the.net Framework, and using C# and

More information

Support Vector Machines Explained

Support Vector Machines Explained March 1, 2009 Support Vector Machines Explained Tristan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introduction This document has been written in an attempt to make the Support Vector Machines (SVM),

More information

A Weighted-Sum Mixed Integer Program for Bi-Objective Dynamic Portfolio Optimization

A Weighted-Sum Mixed Integer Program for Bi-Objective Dynamic Portfolio Optimization AUTOMATYKA 2009 Tom 3 Zeszyt 2 Bartosz Sawik* A Weighted-Sum Mixed Integer Program for Bi-Objective Dynamic Portfolio Optimization. Introduction The optimal security selection is a classical portfolio

More information

Lecture 2 Mathcad Basics

Lecture 2 Mathcad Basics Operators Lecture 2 Mathcad Basics + Addition, - Subtraction, * Multiplication, / Division, ^ Power ( ) Specify evaluation order Order of Operations ( ) ^ highest level, first priority * / next priority

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

Overview of Industrial Batch Process Scheduling

Overview of Industrial Batch Process Scheduling CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021150 895

More information

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering

More information

Course 10266A: Programming in C# with Microsoft Visual Studio 2010

Course 10266A: Programming in C# with Microsoft Visual Studio 2010 Length Five days About this Course The course focuses on C# program structure, language syntax, and implementation detailswith.net Framework 4.0. This course describes the new enhancements in the C# 4.0

More information

Programming Languages & Tools

Programming Languages & Tools 4 Programming Languages & Tools Almost any programming language one is familiar with can be used for computational work (despite the fact that some people believe strongly that their own favorite programming

More information

Neural Networks. CAP5610 Machine Learning Instructor: Guo-Jun Qi

Neural Networks. CAP5610 Machine Learning Instructor: Guo-Jun Qi Neural Networks CAP5610 Machine Learning Instructor: Guo-Jun Qi Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector

More information

ML for the Working Programmer

ML for the Working Programmer ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming

More information

GAMS Productivity - Performance - Reliability

GAMS Productivity - Performance - Reliability GAMS Productivity - Performance - Reliability Jan-H. Jagla, Lutz Westermann GAMS Software GmbH Annual Review Meeting CAPD, CMU Pittsburgh, PA, March 12 13, 2007 Agenda GAMS Productivity Performance Reliability

More information

An Optimization Approach for Cooperative Communication in Ad Hoc Networks

An Optimization Approach for Cooperative Communication in Ad Hoc Networks An Optimization Approach for Cooperative Communication in Ad Hoc Networks Carlos A.S. Oliveira and Panos M. Pardalos University of Florida Abstract. Mobile ad hoc networks (MANETs) are a useful organizational

More information

Computing Concepts with Java Essentials

Computing Concepts with Java Essentials 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Computing Concepts with Java Essentials 3rd Edition Cay Horstmann

More information

An Introduction to Data Mining

An Introduction to Data Mining An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail

More information

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT-240 Action Taken (Please Check One) New Course Initiated

More information

Load Balancing of Telecommunication Networks based on Multiple Spanning Trees

Load Balancing of Telecommunication Networks based on Multiple Spanning Trees Load Balancing of Telecommunication Networks based on Multiple Spanning Trees Dorabella Santos Amaro de Sousa Filipe Alvelos Instituto de Telecomunicações 3810-193 Aveiro, Portugal dorabella@av.it.pt Instituto

More information

R-Related Features and Integration in STATISTICA

R-Related Features and Integration in STATISTICA R-Related Features and Integration in STATISTICA Run native R programs from inside STATISTICA Enhance STATISTICA with unique R capabilities Enhance R with unique STATISTICA capabilities Create and support

More information

Chapter 10: Network Flow Programming

Chapter 10: Network Flow Programming Chapter 10: Network Flow Programming Linear programming, that amazingly useful technique, is about to resurface: many network problems are actually just special forms of linear programs! This includes,

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

ARIZONA CTE CAREER PREPARATION STANDARDS & MEASUREMENT CRITERIA SOFTWARE DEVELOPMENT, 15.1200.40

ARIZONA CTE CAREER PREPARATION STANDARDS & MEASUREMENT CRITERIA SOFTWARE DEVELOPMENT, 15.1200.40 SOFTWARE DEVELOPMENT, 15.1200.40 1.0 APPLY PROBLEM-SOLVING AND CRITICAL THINKING SKILLS TO INFORMATION TECHNOLOGY 1.1 Describe methods and considerations for prioritizing and scheduling software development

More information

Financial Optimization ISE 347/447. Preliminaries. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Preliminaries. Dr. Ted Ralphs Financial Optimization ISE 347/447 Preliminaries Dr. Ted Ralphs ISE 347/447 Preliminaries 1 Introductory Stuff Welcome! Class Meeting Time Office Hours TBD Surveys ISE 347/447 Preliminaries 2 What will

More information

Distributionally Robust Optimization with ROME (part 2)

Distributionally Robust Optimization with ROME (part 2) Distributionally Robust Optimization with ROME (part 2) Joel Goh Melvyn Sim Department of Decision Sciences NUS Business School, Singapore 18 Jun 2009 NUS Business School Guest Lecture J. Goh, M. Sim (NUS)

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

ABET General Outcomes. Student Learning Outcomes for BS in Computing

ABET General Outcomes. Student Learning Outcomes for BS in Computing ABET General a. An ability to apply knowledge of computing and mathematics appropriate to the program s student outcomes and to the discipline b. An ability to analyze a problem, and identify and define

More information

Scheduling Algorithm with Optimization of Employee Satisfaction

Scheduling Algorithm with Optimization of Employee Satisfaction Washington University in St. Louis Scheduling Algorithm with Optimization of Employee Satisfaction by Philip I. Thomas Senior Design Project http : //students.cec.wustl.edu/ pit1/ Advised By Associate

More information

Branch, Cut, and Price: Sequential and Parallel

Branch, Cut, and Price: Sequential and Parallel Branch, Cut, and Price: Sequential and Parallel T.K. Ralphs 1, L. Ladányi 2, and L.E. Trotter, Jr. 3 1 Department of Industrial and Manufacturing Systems Engineering, Lehigh University, Bethlehem, PA 18017,

More information

Development at the Speed and Scale of Google. Ashish Kumar Engineering Tools

Development at the Speed and Scale of Google. Ashish Kumar Engineering Tools Development at the Speed and Scale of Google Ashish Kumar Engineering Tools The Challenge Speed and Scale of Google More than 5000 developers in more than 40 offices More than 2000 projects under active

More information

Domains and Competencies

Domains and Competencies Domains and Competencies DOMAIN I TECHNOLOGY APPLICATIONS CORE Standards Assessed: Computer Science 8 12 I VII Competency 001: The computer science teacher knows technology terminology and concepts; the

More information

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008 Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Solving Very Large Financial Planning Problems on Blue Gene

Solving Very Large Financial Planning Problems on Blue Gene U N I V E R S School of Mathematics T H E O I T Y H F G E D I N U R Solving Very Large Financial Planning Problems on lue Gene ndreas Grothey, University of Edinburgh joint work with Jacek Gondzio, Marco

More information

Data Structure [Question Bank]

Data Structure [Question Bank] Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:

More information

Lecture 5: Conic Optimization: Overview

Lecture 5: Conic Optimization: Overview EE 227A: Conve Optimization and Applications January 31, 2012 Lecture 5: Conic Optimization: Overview Lecturer: Laurent El Ghaoui Reading assignment: Chapter 4 of BV. Sections 3.1-3.6 of WTB. 5.1 Linear

More information

Introduction to Process Optimization

Introduction to Process Optimization Chapter 1 Introduction to Process Optimization Most things can be improved, so engineers and scientists optimize. While designing systems and products requires a deep understanding of influences that achieve

More information

A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

More information

A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heap-order property

A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heap-order property CmSc 250 Intro to Algorithms Chapter 6. Transform and Conquer Binary Heaps 1. Definition A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called

More information

Computer Science. 232 Computer Science. Degrees and Certificates Awarded. A.S. Degree Requirements. Program Student Outcomes. Department Offices

Computer Science. 232 Computer Science. Degrees and Certificates Awarded. A.S. Degree Requirements. Program Student Outcomes. Department Offices 232 Computer Science Computer Science (See Computer Information Systems section for additional computer courses.) We are in the Computer Age. Virtually every occupation in the world today has an interface

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

Java 6 'th. Concepts INTERNATIONAL STUDENT VERSION. edition

Java 6 'th. Concepts INTERNATIONAL STUDENT VERSION. edition Java 6 'th edition Concepts INTERNATIONAL STUDENT VERSION CONTENTS PREFACE vii SPECIAL FEATURES xxviii chapter i INTRODUCTION 1 1.1 What Is Programming? 2 J.2 The Anatomy of a Computer 3 1.3 Translating

More information

Maintenance optimization in nuclear power plants modelling, analysis, and experimentation. Karin Kvickström

Maintenance optimization in nuclear power plants modelling, analysis, and experimentation. Karin Kvickström MASTER STHESIS Maintenance optimization in nuclear power plants modelling, analysis, and experimentation Karin Kvickström DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF

More information