Problem 1 (25 points)

Size: px
Start display at page:

Download "Problem 1 (25 points)"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2012 Exam Three Solutions Problem 1 (25 points) Question 1 (5 points) Consider two circular rings of radius R, each perpendicular to the axis of symmetry, with their centers located at z = ± l / 2. There is a steady current I flowing in the same direction around each coil, as shown in the figure below. A magnetic dipole, with dipole moment µ = µî where µ is a positive constant with units A m 2, is placed on the symmetry axis, at the position z = l / 4. The dipole will a) experience no force and no torque. b) align itself to point in the positive z -direction and experience a force in the positive z -direction. c) align itself to point in the positive z -direction and experience a force in the negative z -direction. d) align itself to point in the negative z -direction and experience a force in the positive z -direction. e) align itself to point in the negative z -direction and experience a force in the negative z -direction. f) align itself to point in the positive z -direction but feel no force. g) align itself to point in the negative z -direction but feel no force. The correct answer is b and f accepted as correct. 1

2 Question 2 (5 points) A square wire loop rotates in the direction shown (see sketch) in a magnetic field directed to the right. At the instant shown, when 0 < θ < π / 2, which of the figures below best describes the direction of current in the square wire loop and the direction of the magnetic torque on the square wire loop? The correct answer is c. At the instant shown the flux is increasing (in the ˆn -direction) so there is a clockwise induced current to oppose that change. Therefore the magnetic dipole vector points in the negative ˆn-direction. The torque τ = µ B ext is therefore in the positive z -direction. 2

3 Question 3 (5 points) A coil of wire with resistance R defines an open surface whose normal d A points upward, as shown in the sketch. The coil is below a magnet whose magnetic field lines and directions are shown in the figure above. If positive current is defined as counterclockwise as viewed from the top, and if we ignore any self-magnetic field generated by the induced current, then as the coil moves from well below the magnet to well above that magnet, the induced current through the coil will look like (a) (b) (c) (d) The correct answer is c. 3

4 Question 4 (5 points) The figure above on the left shows a side view of a section of a very long solenoid with radius R carrying current I with magnetic field pointing up at time t. The figure above on the right shows a top view of the electric field E inside the solenoid at a radius r and the direction of the magnetic field B at time t. In the solenoid, the current I is a) increasing in time. b) constant. c) decreasing in time. d) cannot tell without more information. The correct answer is c. 4

5 Question 5 (5 points) A very long solenoid consisting of n turns per unit length has radius R and length d ( d >> R ). Suppose the current running through the solenoid is doubled keeping all the other parameters fixed. You may neglect edge effects. Which of the following is true? a) The energy stored in the magnetic field and the self-inductance remain the same. b) The energy stored in the magnetic field doubles and the self-inductance remains the same. c) The energy stored in the magnetic field is four times as large and the selfinductance remains the same. d) The energy stored in the magnetic field remains the same and the self-inductance doubles. e) The energy stored in the magnetic field remains the same and the self-inductance is four times as large. f) None of the above. The correct answer is c. 5

6 Problem 2 (25 points) NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!) A very long coaxial cable consists of a solid cylindrical inner conductor of radius a, surrounded by a concentric cylindrical conducting shell of inner radius b and outer radius c. The inner conductor has a non-uniform current density J inner = αr ˆk (pointing to the left in the figure just below) where α is a positive constant with units A m -3. The outer conductor has a uniform current density J outer = β ˆk where β is a positive constant with units A m -2. The conductors carry equal and opposite currents of magnitude I 0. a) Find expressions for α and β in terms of a, b, c, and I 0. For current through 0 < r < a, For current through b< r < c, a J ˆn da = I o = 2πr dr αr S 0 ( ) c J ˆn da = I o = 2πr dr ( β ) = βπ c 2 b 2 S b = 2πα 3 a3 α = 3 I o 2π a 3 ( ) β = I o π c 2 b 2 ( ) b) Determine the magnitude and direction of the magnetic field for the regions (i) r < a, (ii) a < r < b, (iii) b < r < c, (iv) and r > c. For each region, redraw the coaxial cable clearly indicating your choice of Amperian loop and associated parameters. For r < a, loop is circle of radius r < a, and 6

7 B d s = 2πrB θ = µ 0 J ˆn da closed path = µ 0 2π S r 0 r d r α r ( ) = 2π 3 αr 3 2 ˆ αr B = θ µ where ˆθ is a unit vector oriented counterclockwise. 0 3 For a<r < b, loop is circle of radius a<r < b, and B d s = 2πrB θ = µ 0 J ˆn da closed path where ˆθ is a unit vector oriented clockwise. = µ 0 I 0 S ˆ µ B = θ 2π r 0I o For b<r < c, loop is circle of radius b<r < c, and closed path B d s = 2πrB θ = µ 0 I o 1 β 2π I o ˆ µ 0I o β B = θ 1 π 2π r Io r b r d r = µ I 1 β π r 2 b 2 0 o ( ) I o 2 2 ( r b ) where ˆθ is a unit vector oriented counterclockwise. This can be written using the results above as For c<r, loop is circle of radius c<r, and 2 2 ( c r ) 2 2 ( ) ˆ µ 0Io B = θ 2π r c b B d s = 2πrB θ = 0 closed path c) Make a graph of the magnitude of the magnetic field as a function of the distance r from the central axis of symmetry. Clearly label each axis with any relevant values. 7

8 µ 0I The graph is a concave upward parabola from 0 to a, rising to a value of o at r = a. 2π a µ 0I Then it goes as inverse r from a to b, decreasing to o at r = b. Then it decreases from 2π b its value at r = b to 0 as we move from b to c. It is zero thereafter. 8

9 Problem 3 (25 points) NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!). Consider a slab that is infinite in the x and z directions that has thickness d in the y- direction. The slab has a time varying current with the current density as a function of time given by the following expression: 0; t 0 J = (J e t / T ) ˆk; 0 t T, J e ˆk; T t where J e is positive constant with units of amps per square meter and T is a constant with units of seconds. a) Find the direction and magnitude of the magnetic field for the interval 0 t T in the regions: (i) 0 y d / 2 ; (ii) y d / 2. Clearly show all your work. Answers without justification will receive no credit. 0 y d / 2 : By symmetry we argue that the field is zero at y = 0. We take an Amperean loop whose bottom is at y = 0 and whose top is at 0 y d / 2, of width w. We have closed path B d s = wb x = µ 0 J ˆn da = µ 0 wy(j e t / T ) B = ˆxµ 0 y(j e t / T ) S d /2 y: We take an Amperean loop whose bottom is at y = 0 and whose top is at d /2 y, of width w. We have closed path B d s = wb x ( y) = µ 0 J ˆn da = µ 0 w d 2 (J e t / T ) B = ˆxµ 0 S d 2 (J e t / T ) 9

10 Suppose a square conducting loop with resistance R, and side s is placed in the region y d / 2, at a height h above the top of the slab oriented as shown in the figure below. What is the induced current in the square loop for the time interval 0 t T? Draw the direction of the induced current on the figure. The direction of the current is counterclockwise when looking from the right. d Φ d d d = = dt dt dt µ 2 1 dφ d Js = =. R dt 2 RT 2 B 2 2 e s 0 ( Je t/ T) s I µ 0 b) What is the direction and magnitude of the force due to the induced current on the square loop during the time interval 0 t T? What is the direction and magnitude of the torque due to the induced current on the square loop during the time interval 0 t T? Since the loop is sitting in a uniform field, the force is zero. Since the loop has a magnetic dipole moment anti-parallel to the magnetic field, the torque τ = µ B ext is also zero. 10

11 Problem 4 (25 points) NOTE: YOU MUST SHOW WORK in order to get any credit for this problem. Make it clear to us that you understand what you are doing (use a few words!). A stretchable and flexible conducting band in the shape of a circle with radius r(t) has constant resistance R. It sits in a uniform magnetic field B that is directed out of the page (see figure). External agents distributed uniformly over the circumference of the ring exert radial outward forces that cause the ring to expand at a constant speed from radius a to a larger radius b over a time interval 0 t T, where T is a constant with units of seconds. Let v = dr / dt be the constant speed at which the ring expands. Express your answers to the following questions in terms of r, v, a, b, R, B = B, and T as needed. Note that in this problem R is a resistance, not a radius. a) Give an expression for the induced current I in the ring. Draw the direction of the induced current on the figure above. You may ignore any magnetic field generated by the induced current. The current flows clockwise in the band. d Φ d 2 r 2 r dr 1 dφ 2π rbv = B π = B π I = = dt dt dt R dt R b) What is the rate at which energy is dissipated (Joule heating) during the time interval 0 t T? πrBv 4π r B v I R= R= R R c) What is the direction and magnitude of the force per unit length that the external agents must apply to overcome the magnetic force per unit length on the conducting band due to the induced current?. 11

12 At any given point on the band, the Id s B ext force is radially inward, and therefore at that point the external agents must exert a force per unit length given by df agents ds = I B ext = ˆrIB = ˆrIB = ˆr 2πrB2 v R d) Based on your result for the force per unit length in part c), what power do the external agents provide during the time interval 0 t T? Is this the same as your answer to part b)? If yes, explain why; if no, explain why not. Be sure to give your reasoning. An external agent at a given point on the band exerting a force on that ds section of the band does work at a rate given by F v = ds ˆr 2πrB2 v v = 2πrB2 v 2 ds. R R The power from all the agents is found by integrating the above over the circumference, giving 4π 2 r 2 B 2 v 2 / R, the same as above. They are the same because of conservation of energy. 12

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P

Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P r + v r A. points in the same direction as v. B. points from point

More information

Physics 2212 GH Quiz #4 Solutions Spring 2015

Physics 2212 GH Quiz #4 Solutions Spring 2015 Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. 8.02 Spring 2013 Conflict Exam Two Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 802 Spring 2013 Conflict Exam Two Solutions Problem 1 (25 points): answers without work shown will not be given any credit A uniformly charged

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings

Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings 1 of 11 9/7/2012 1:06 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

More information

Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

More information

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius? CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

More information

Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

More information

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H). INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

More information

Faraday s Law of Induction

Faraday s Law of Induction Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...10-10.1.1 Magnetic Flux...10-3 10.1. Lenz s Law...10-5 10. Motional EMF...10-7 10.3 Induced Electric Field...10-10 10.4 Generators...10-1

More information

CET Moving Charges & Magnetism

CET Moving Charges & Magnetism CET 2014 Moving Charges & Magnetism 1. When a charged particle moves perpendicular to the direction of uniform magnetic field its a) energy changes. b) momentum changes. c) both energy and momentum

More information

RUPHYS ( MPCIZEWSKI15079 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman

RUPHYS ( MPCIZEWSKI15079 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272014 ( MPCIZEWSKI15079 ) My Courses Course Settings University Physics with Modern Physics, 13e Young/Freedman Course Home Assignments Roster

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

More information

VIII. Magnetic Fields - Worked Examples

VIII. Magnetic Fields - Worked Examples MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 003 VIII. Magnetic Fields - Worked Examples Example : Rolling rod A rod with a mass m and a radius R is mounted on two parallel rails

More information

Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

More information

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

Phys102 Lecture 18/19 Ampere's Law

Phys102 Lecture 18/19 Ampere's Law Phys102 Lecture 18/19 Ampere's Law Key Points Ampère s Law Magnetic Field Due to a Straight Wire B Magnetic Field of a Solenoid and a Toroid References SFU Ed: 28-1,2,3,4,5. 6 th Ed: 20-5,6,7. Ampère s

More information

Lecture 22. Inductance. Magnetic Field Energy. Outline:

Lecture 22. Inductance. Magnetic Field Energy. Outline: Lecture 22. Inductance. Magnetic Field Energy. Outline: Self-induction and self-inductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.

More information

Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F

Exercises on Voltage, Capacitance and Circuits. A d = (8.85 10 12 ) π(0.05)2 = 6.95 10 11 F Exercises on Voltage, Capacitance and Circuits Exercise 1.1 Instead of buying a capacitor, you decide to make one. Your capacitor consists of two circular metal plates, each with a radius of 5 cm. The

More information

PH 212 07-31-2015 Physics 212 Exam-3 Solution NAME: Write down your name also on the back of the package of sheets you turn in.

PH 212 07-31-2015 Physics 212 Exam-3 Solution NAME: Write down your name also on the back of the package of sheets you turn in. PH 1 7-31-15 Physics 1 Exam-3 Solution NAME: Write down your name also on the back of the package of sheets you turn in. SIGNATURE and ID: Return this hard copy exam together with your other answer sheets.

More information

Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields

Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the

More information

Chapter 22: Electric Flux and Gauss s Law

Chapter 22: Electric Flux and Gauss s Law 22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we

More information

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 5: Magnetic Force, Torque, and Magnetic Moments OBJECTIVES 1. To start with the magnetic force on a moving charge q and derive

More information

Module 22: Inductance and Magnetic Field Energy

Module 22: Inductance and Magnetic Field Energy Module 22: Inductance and Magnetic Field Energy 1 Module 22: Outline Self Inductance Energy in Inductors Circuits with Inductors: RL Circuit 2 Faraday s Law of Induction dφ = B dt Changing magnetic flux

More information

Chapter 14 Magnets and

Chapter 14 Magnets and Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

More information

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW6 Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 22.P.053 The figure below shows a portion of an infinitely

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

PHY2049 Exam #2 Solutions Fall 2012

PHY2049 Exam #2 Solutions Fall 2012 PHY2049 Exam #2 Solutions Fall 2012 1. The diagrams show three circuits consisting of concentric circular arcs (either half or quarter circles of radii r, 2r, and 3r) and radial segments. The circuits

More information

5.Magnetic Fields due to Currents( with Answers)

5.Magnetic Fields due to Currents( with Answers) 5.Magnetic Fields due to Currents( with Answers) 1. Suitable units for µ. Ans: TmA -1 ( Recall magnetic field inside a solenoid is B= µ ni. B is in tesla, n in number of turn per metre, I is current in

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

Exam 2 Solutions. PHY2054 Spring Prof. P. Kumar Prof. P. Avery March 5, 2008

Exam 2 Solutions. PHY2054 Spring Prof. P. Kumar Prof. P. Avery March 5, 2008 Prof. P. Kumar Prof. P. Avery March 5, 008 Exam Solutions 1. Two cylindrical resistors are made of the same material and have the same resistance. The resistors, R 1 and R, have different radii, r 1 and

More information

Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

More information

Question Details C14: Magnetic Field Direction Abbott [ ]

Question Details C14: Magnetic Field Direction Abbott [ ] Phys 1114: Assignment 9 Abbott (5420633) Due: Mon Apr 7 2014 11:59 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 1. Question Details C14: Magnetic Field Direction Abbott [2861537] a) A wire is oriented horizontally

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Lecture 29: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Mutual Inductance In the last lecture, we enunciated the Faraday s law according to

More information

Exercises on the Magnetic Interaction

Exercises on the Magnetic Interaction Exercises on the Magnetic Interaction Exercise 1.1 Consider two infinitely long conducting wires that are parallel to each other and lie in the x-z plane. The wires are parallel to the z-axis, and are

More information

Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

More information

Exam 1 Practice Problems Solutions

Exam 1 Practice Problems Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8 Spring 13 Exam 1 Practice Problems Solutions Part I: Short Questions and Concept Questions Problem 1: Spark Plug Pictured at right is a typical

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Inductance. Motors. Generators

Inductance. Motors. Generators Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

PHY114 S11 Term Exam 3

PHY114 S11 Term Exam 3 PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.

More information

Profs. A. Petkova, A. Rinzler, S. Hershfield. Exam 2 Solution

Profs. A. Petkova, A. Rinzler, S. Hershfield. Exam 2 Solution PHY2049 Fall 2009 Profs. A. Petkova, A. Rinzler, S. Hershfield Exam 2 Solution 1. Three capacitor networks labeled A, B & C are shown in the figure with the individual capacitor values labeled (all units

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

MAGNETISM MAGNETISM. Principles of Imaging Science II (120) Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

CHAPTER 24 GAUSS S LAW

CHAPTER 24 GAUSS S LAW CHAPTER 4 GAUSS S LAW 4. The net charge shown in Fig. 4-40 is Q. Identify each of the charges A, B, C shown. A B C FIGURE 4-40 4. From the direction of the lines of force (away from positive and toward

More information

Magnetic fields of charged particles in motion

Magnetic fields of charged particles in motion C H A P T E R 8 Magnetic fields of charged particles in motion CONCEPTS 8.1 Source of the magnetic field 8. Current loops and spin magnetism 8.3 Magnetic moment and torque 8.4 Ampèrian paths QUANTTATVE

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Chapter 10. Faraday s Law of Induction

Chapter 10. Faraday s Law of Induction 10 10 10-0 Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction... 10-3 10.1.1 Magnetic Flux... 10-5 10.2 Motional EMF... 10-5 10.3 Faraday s Law (see also Faraday s Law Simulation in

More information

Physics 104 Exam 2 Name

Physics 104 Exam 2 Name 1. An electron moves with a velocity of 7.0 x 10 6 m/s due west in a uniform magnetic field of magnitude 4.0 T at an angle of 30 ast of orth. At the same point an electric field of magnitude 9.0 x 10 6

More information

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Chapter 20 Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Introduction The motion of a magnet can induce current in practical ways. If a credit card has a magnet strip on its

More information

Inductance and Magnetic Energy

Inductance and Magnetic Energy Chapter 11 Inductance and Magnetic Energy 11.1 Mutual Inductance... 11-3 Example 11.1 Mutual Inductance of Two Concentric Coplanar Loops... 11-5 11. Self-Inductance... 11-5 Example 11. Self-Inductance

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

Direction of Induced Current

Direction of Induced Current Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

More information

Exam 2 Practice Problems Part 1 Solutions

Exam 2 Practice Problems Part 1 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Exam Practice Problems Part 1 Solutions Problem 1 Electric Field and Charge Distributions from Electric Potential An electric potential V ( z

More information

Clicker Question. A) Orientation A B) Orientation B

Clicker Question. A) Orientation A B) Orientation B The circuit shown is constructed on a horizontal table and a compass is placed on top of the circuit as shown. Which way should the battery be placed in the circuit so when the switch is closed, the compass

More information

Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Physics 212 Lecture 15

Physics 212 Lecture 15 Your Comments Prof, before you get too disappointed by the number of people who, "didn't think about this," understand that don't find value in completing the prelecture pre-lecture. t's much more useful

More information

Physics 2220 Module 09 Homework

Physics 2220 Module 09 Homework Physics 2220 Module 09 Homework 01. A potential difference of 0.050 V is developed across the 10-cm-long wire of the figure as it moves though a magnetic field perpendicular to the page. What are the strength

More information

Quiz: Work and Energy

Quiz: Work and Energy Quiz: Work and Energy A charged particle enters a uniform magnetic field. What happens to the kinetic energy of the particle? (1) it increases (2) it decreases (3) it stays the same (4) it changes with

More information

NAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o

NAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o (1) Two long wires carry magnetic fields I o and 2I o, where I o is a constant. The two wires cross at the origin (but without making any electrical connection), and lie in the x-y plane. (a) Find the

More information

MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2

MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF3a RT1: Charged Particle and a Straight Current-Carrying Wire... 3 MFF3a RT2: Charged Particle and a Straight Current-Carrying Wire...

More information

Chapter 31: Induction and Inductance

Chapter 31: Induction and Inductance Chapter 31: Induction and Inductance In Ch 30 we learned the following about magnetic fields: a) A magnetic field can exert a force on a current carrying wire b) If the wire is a closed loop then the magnetic

More information

Experiment 7: Forces and Torques on Magnetic Dipoles

Experiment 7: Forces and Torques on Magnetic Dipoles MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy

The Electric Field. Electric Charge, Electric Field and a Goofy Analogy . The Electric Field Concepts and Principles Electric Charge, Electric Field and a Goofy Analogy We all know that electrons and protons have electric charge. But what is electric charge and what does it

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

IMPORTANT NOTE ABOUT WEBASSIGN:

IMPORTANT NOTE ABOUT WEBASSIGN: Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Lecture 14. Magnetic Forces on Currents.

Lecture 14. Magnetic Forces on Currents. Lecture 14. Magnetic Forces on Currents. Outline: Hall Effect. Magnetic Force on a Wire Segment. Torque on a Current-Carrying Loop. Lecture 13: Magnetic Forces on Moving Charges - we considered individual

More information

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No. * Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying

More information

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic

More information

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

More information

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 10 Solutions by P. Pebler

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 10 Solutions by P. Pebler University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 10 Solutions by P Pebler 1 Purcell 66 A round wire of radius r o carries a current I distributed uniformly

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

More information

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( )

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION ( ) a. Using Faraday s law: Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field SOLUTION The overall sign will not be graded. For the current, we use the extensive hints in the

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and self-inductance. An inductor is formed by taken

More information

Magnetic electro-mechanical machines

Magnetic electro-mechanical machines Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity

More information

Physics 9 Fall 2009 Homework 7 - Solutions

Physics 9 Fall 2009 Homework 7 - Solutions Physics 9 Fall 009 Homework 7 - s 1. Chapter 33 - Exercise 10. At what distance on the axis of a current loop is the magnetic field half the strength of the field at the center of the loop? Give your answer

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman

RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Signed in as Jolie Cizewski, Instructor Help Sign Out RUPHYS2272015 ( RUPHY227F2015 ) My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Course Home Assignments Roster

More information

Physics 6C, Summer 2006 Homework 1 Solutions F 4

Physics 6C, Summer 2006 Homework 1 Solutions F 4 Physics 6C, Summer 006 Homework 1 Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter Conceptual Questions 18. Consider the four wires shown

More information

Gauss s Law for Gravity

Gauss s Law for Gravity Gauss s Law for Gravity D.G. impson, Ph.D. Department of Physical ciences and Engineering Prince George s Community College December 6, 2006 Newton s Law of Gravity Newton s law of gravity gives the force

More information

Chapter 4. Magnetic Materials and Circuits

Chapter 4. Magnetic Materials and Circuits Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the right-hand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive

More information

F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3)

F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3) MATH 255 FINAL NAME: Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use exact arithmetic. Write neatly, please, and show all steps. Scientists

More information