5.00E E+03 - j 4.OOE+03. ft. 3 OOE+03 -\ 2.50E+03-1 'S 2.OOE+03. ö 1 OOE E+02

Size: px
Start display at page:

Download "5.00E+03. 4.50E+03 - j 4.OOE+03. ft. 3 OOE+03 -\ 2.50E+03-1 'S 2.OOE+03. ö 1 OOE+03-1 5.00E+02"

Transcription

1 Meetpunt 16 raai h Meetpunt 15 raai h 500E E+03 50E+03 50E+03 - j OOE+03 ; ;! ;, ; ~ " ~ - ; i r v ; ;; l i H I i i ; ; ; U 'MxSSm ïi ï' BH ";;;;! ft 3 OOE+03 -\ E+03 -vi;;-;;!!vi;;iv 2 O O E + 0 3, - - ; ;!-';,;,;-' 150E+O3--;i;;;;7 I 100E+03--; ;;^; i ; - 5OOE+O2 - \ - \ > ; ; j ;!! ;, ;' "-';\\0;'V" 3 i f i - f;' ;' 250E+03-1 'S 2OOE+03, ;,-;, ; r ; ; -';v; ; ; ; ; ; ; ; ; ( - ï N i L! - i ;-,5 * - ; / - - ö 1 OOE+03-1 l l i i l i i i l N ; = i ï l i ^ WïmmyWïÊÈÈ i j ;; 500E+02,; OOOE ; OOE+03 50E+03 -i 50E+03 I y ' i i y - h y h =;,, ;- -! - / " c 2OOE+03! / 13OOE ; I'SBOE+OS-r i q 3 OOE+03 fl '! > iiiilg 1 ;! 00E+03 -( ; v =, i \ -;;,!;;; Meetpunt 18 raai j Meetpunt 17 raai h ^3,50E+03 -f ; ; ; OOOE D OOE+03 OOE+03 -; ; - i i;'7;! ;, ; ; ; ; " ' - - ; / ; ; - I ; ;? ; r ; i - \ - ; ; ; ; ; ; 250E+03 - "e 2OOE+03 - I g 150E+03 ^ 150Ë+03 o 1OOE+03 o 1 OOE+03 - j -/, S00E OE+02-1 OOOE OOOE Meetpunt 20 raai j Meetpunt 19 raai j 500E+03 5OOE+03 50E+03 50E+03 00E+03 ^ OOE+03 -I 350E+03 C 350E+03! -! ' " " ' ' '! ' O 3,OOE+03 g-3ooe E+03 *; 250E+03-2OOE+03 c 2OOE+03 p 150E E+03 -f 1 OOE+03-8 ; g 1 OOE+03-5OOE+02 " 5 OOE+02 -p; OOOE simulatie 12b 000E simulatie r13 X simulatie 1b grootte zandtransport berekeningen van simulaties RI2, RI3 en RI, raaien H e n j Delft2D-MOR Morfodynamische runs DELFT HYDRAULICS Westerschelde I7/II98 Z289 Fig 65a

2 T (kg/ms) Raai H en J Diepte geïntegreerd zandtransport (T) AZTM GC = Tijd (uur) AZTM zandtransport metingen uit rapport van F Tank (1997) Westerschelde I7/II98 Z289 DELFT HYDRAULICS Fig 65b

3 386 3B <-IJ3«10"" <ÜDOO H<l0>10"' <2D>10" (n<qddi O >ooo i 3S6 3B5 L1 3S 383 3B2 3B \ " km 1 ^b-=»_ s* 5 f se to 62 6 CD <-!D"ID" <0 000 Q<0D01 >QQ0l vol concentratie suspensief materiaal R13 Maximale vloedstroming op 23/10/ (boven) en op 25/10/ (onder) Incl isolijnen diepte /12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig

4 3B B L 3B3 -z o 382 3S1 7 p/iv^' EO 62 6 I I n<ioicr' 386 3B5 10" 10"" <0001 vol concentratie suspensief materiaal 1b Maximale vloedstroming op 23/10/ (boven) en op 25/10/ (onder) Incl isolijnen diepte /12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig

5 3880 e* <0200 J<0500 sedimentatie (+) van 29 sep 5 oktober baggervak en diepteüjnen 0, 10, 20, 30 en 0 m totaal transport optie, run r12 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 67a

6 388OH 3860 U 380 'I e OH f-s 6 <-2500 <-1000 <-0500 <-0200 <0200 <0500 <1000 <2500 >2500 sedimentatie (+) van 5-12 oktober /12/98 + baggervak en dieptelijnen 0, 10, 20, 30 en 0 m totaal transport optie, run r 1 2 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 67b

7 sa <-2500 <-1000 <-0500 <-0200 <0200 <0500 <1000 <2500 >2500 sedimentotie (+) van oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m totaal transport optie, run r 12 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 67c

8 ) "O o i <-2500 <-1000 <-0500 <0500 <1000 <2500 >2500 sedimentatie (+) van oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m totaal transport optie, run r12 1/12/98 Westerschelde WL DELFT HYDRAUUCS Z 289 Fig 67d

9 388OH 3860 Sb380 o H <-2500 <-1000 <-0500 H]<0200 Q<0500 < 1000 <2500 >2500 sedimentatie (+) van 29/9/95 26/10/95 + baggervak en dieptelijnen 0, 10, 20, 30 en 0 m totaal transport optie, run r12 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 67e

10 388OH 3800-H <-2500 <-1000 <-0500 U <0-200 Q<0500 BD <1000 <2500 >25OO sedimentatie (+) van 29 sep - 5 oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r13 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 68a

11 388 OH 3800H 5B <-2500 <-1000 <-0500 <0200 <05O0 <1000 ;<250O >2500 sedimentatie (+) van 5-12 oktober baggervak en diepteüjnen 0, 10, 20, 30 en 0 m susp transport optie, run r13 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 68b

12 3880H <-2500 <-1000 <-0500 <0500 <1000 <2500,>2500 sedimentatie (+) van oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r13 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 68c

13 388CH 3800H <-2500 <-1000 <-0500 F]<0200 [3<0500 <1000 <2500 >2500 sedimentatie (+) van oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r13 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 68d

14 M3B <-2500 <-1000 <-0500 <1000 <2500 sedimentatie (+) van 29/9/95-26/10/95 + baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r 13 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 68e

15 388OH ÜD OH <-2500 <-1000 < <0200 <0, SI <1000 <2500 >2500 sedimentatie (+) van 29 sep - 5 oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r1 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 69a

16 ab 380 I c s <-2500 <-1000 <-0500 Q<0500 <1000 <2500 >2500 sedimentatie (+) van 5 12 oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r1 1/12/98 WesterscheSde WL DELFT HYDRAULICS Z 289 Fig 69b

17 388OH 3860 f I ' < i s 380 f H B<-0,200 [ïï]<0200 [J<0500 <1000 <2500 p>2500 sedimentatie (+) van oktober baqgervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r1 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 69c

18 Tl 380 O B <-2500 <-1000 <-0500 <-0200 LD <0-200 n< <1-000 g<2500 >2500 sedimentatie (+) van oktober baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r1 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 69d

19 <-2500 <-1000 <-0500 B<-0200 [ <0200 n<o5oo 6C 6' sedimentatie (+) van 29/9/95-26/10/95 + baggervak en dieptelijnen 0, 10, 20, 30 en 0 m susp transport optie, run r1 1/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 69e

20 57,0 5BO 60, , B8D B S B , Vakindeling morfologische z andbalans Drempel van Hansweert 2/12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 610a

21 5B ,5 61,5 S O , Lm B30 383,0-3B30 3B B B1D ,0-381, BO ,0 SB , , , ,0 385,0-3B B30 3B3O B B0O- 3B30-3B1O- 381,0 3B B0 0-3BDD ' S ,5 Morfologische zandbalans * 1000 m3 Drempel van Hansweert 29/9-26/ /12/98 Westerschelde WL I DELFT HYDRAULICS Z 289 Fig 610b

22 Ld Lü CO X co o Waterlevel simulated at Hansweert 2/12/98) Westerschelde WL DELFT HYDRAULICS Fig 610c

23 5B D B BD 380-3B30-3B B B2O B BD B2D- 3B , B B ,0 3B BO -3B S B1D B00-3BO B S Morfologische zandbalans * 1000 m3 Drempel van Hansweert 29/9-5/ /12/98 Westerschelde WL I DELFT HYDRAULICS Z 289 Fig 611a

24 3850-3B VJ 1 Simulatie R13 3B50 3B0- _ -3B ' B B2 0 3B2 0-3B \ T , \ Sfl B B ,5 5B S , B BO' 3BD 3330' -363, B ,0 3B10 3B1D- 3B1O B0D- 385,0-3B20-3B S S 615 5B Morfologische zondbolans * 1000 m3 Drempel van Hansweert 5/10-12/ /12/98 Westerschelde WL I DELFT HYDRAULICS Fig 611b

25 5BS SS B \ I \ Simulatie R13 ) 380 3B0-17 / ^-v V ^ \ < \ \ -5S\ \ /-3530 \ ,0- \ ^ \ \ \ '? -3B / \ -3B10 \?\ ^^OX \ \ V ,5 S S ,5 5B5 59S ,5-3B50 385,0-3B50 3B 0-3B B B2 0-3S2 0-3B10 3B10-3B ,0-3B1D S2D- 3B10-3BQ0-379,0-379, S Morfologische zandbalons * 1000 m3 Drempel van Hansweert 12/10-19/ /12/98 Westerschelde WL DELFT HYDRAULICS Z 289 Fig 611c

26 , B50-3B5 0-38, BO -3B B B B B0-3B D , B50-5B , 1,, J L i i i Simulatie R12-3B5D 3B5 0-5B S BO 383 0" D- \ 2 3\ V\ ' ' -i r r BDD L -1 ~> 1 r 5B5 S SBS B B10 3B Morfologische zandbolans * 1000 m3 Drempel van Hansweert 19/10-26/ /12/98 Westerschetde WL l DELFT HYDRAULICS Z 289 Fig 611d

27 Sedimanttrsnsport modellering Weswrsehelde ZÏ " "lanuari 199? A Invoerbestanden R02 en R08 wu detft hydrsullo

28 Sedimenttransport modellering Westerschelde Z289 januari 1999 Besturingsmodule R02 WL [ delft hydraulks

29 * General data * * Case Label Dummy1 Dummy2 'ro2' ' ' 'duml 1 p dum2' * Restart option 0 = new run, 0 * * 1 = restart Reference date and time yyyymmdd hhtnmss Starting time, time unit Backup option (always 0) 0 Number of modules called 3 Module Version Input file 2 1 'md-flowroa* 3 1 'md-tranroa 1 1 'md-bottr02' Cycle length of data on communication file 0000 Specification of process tree * * Number of branches Number of subprocesses 5 3 * Child-parent relations * Child node Parent node ********** Specification of controls **************** **** control no Stop crit Second par Third par 1 1 * Start type 1 **** Control no, 2 * Start type 1 **** Control no 3 * Start type 2 0 Start input 0 Stop crit 1 Start input 0 0 Update type Update input 3 Second par Third par 0 0 Update type Update input 3 Stop crit Second par Third par Start input Update type Update input 1 * node and subprocess from which time step is taken 3 **** Control no Stop crit Second par Third par * Start type Start input Update type Update input **** control no Stop crit Second par Third par * Start type Start input Update type Update input * Definition of elementary subprocesses (end nodes) **** End node no1 Wave Flow Tran Bott (0 = off, 1 = on) * Time intervals * Module Start time End time **** End node no2 Wave Flow Tran Bott {0 = off, 1 = on)

30 * Time intervals * Module Start time End time **** End node no3 Wave Flow Tran Bott (0 = off, 1 = on) * Time intervals * Module Start time End time * End of input

31 Sedimentcransport modellering Wescerschelde Z289 anuari 1999 Invoerbestand FLOW R02 WL delft hydrauiics

32 IDENT RUNID PROCESS MAIN DOMAIN INPPAR NAMCONS GRID COMGRDF COMGRDI SPECIAL DEPTH DEFBNDF DEFBNDI ADDPROC NUM-PAR RUNTIME DlMENSI THICK DISTANC CURVI ORIËNT DISCH DRYF DRYI THNDAMF THNDAMI BARRIER WEIRLOS SPACEVA UNIFORM HEATMOD TURBMOD RGDWALL TIDFORCE USERDEF SPHERE UNIFORM Ident = DELFT3DUI Runid = ro2 Subl = Sub2 «Namcl = Name2 = Namc3 = Namc = Name5 = MNKmax= Thick = Filcco= triscalgrd Fmtcco= FR Sphere= N DxDy = [] [] Anglats Grdang= 0000 Filgrd= triscalenc Fmtgrd= FR MNgrd = [ ] [ ] Namdis= Disint= Y MNKdis= [ ] [ ] [ 3 Fildry= Fmtdry= FR MNdry = [ ] [ ] [ ] [ ] Filtd = triscalthd Fmttd = FR MNtd = [ ] [ ] [ ] [ ] Nambar= MNbar = [ ] [ ] MNwlos= [][] Fildep= b969510ddep Fmcdep= FR Depuni= [] Filbnd= triscalopn Fmtbnd= FR Nambnd= Typbnd= Datbnd= MNbnd = [ ] [ ] [ ] [ ] Alpha = [] ProfU = Uniform Label = Ktemp = 0 Fclou = [] Sarea = [j Tkemod= Irov = 0 ZOv - [] Tidfor= Nprcus= [ ] Prcusr= Nprinp= [ ] [ ] [ ] [ ] Eps = [] Iter = 2 Dryflp= MAX Dryflc= Itdate= Tunit = M Dt = 5000 Tstart= 2200 Tstop = u 1

33 INIR INIF ÏNII LEVEL OTHERS BNDCOND GENERAL SMOOTH HYDROAT HYDROHF HYDROHI FREQ HYDROTF HYDROTI PROCESF PROCESI PHYSCOF HYDRO CMPNENT THRLMAN GENERAL BEDSTR VIDIF WIND PROCESS DENSITY XYGEN XYVAR UNIFORM 2D-SPV 2D-UNIF 3D-UNIF Tzone = Restid= Filic = Fmtic = ZetaO = UO VO SO TO C01 C02 C03 C0 C05 10 Tlfsmo= Filana= Filcor= FilbcH= FmtbcH= Omega = Ampab = Phsab = FilbcT= FmtbcT= TsbcT = Ampab «= FilbcC= FmtbcC= TsbcC = Sab ProfC = Tab ProfC = Cabl = ProfC = Cab2 = ProfC = Cab3 = ProfC = Cab = ProfC = Cab5 = ProfC = Rettis= Rettib= Ag Rhow = Roumet= Filrgh= Fmtrghs= Ccofu = Ccofv = Filedy= Fmtedy= Vicouvs= Dicouv= Vicoww= Dicoww= Wstres= Rhoa = AlphO = Tempw = Salw = 0000 FR 5000 [ E] - EI FR 3000 [] [] [ J [ ] mor-tidervw FR [] [] E1 FR ] [] Uniform [] I] [J [] i] Uniform [] [] [] [] [] Uniform [] I] [] [] [] Uniform [] [] [] [] [] Uniform [] [] [] [] [] Uniform [3 [] [] [] E3 Uniform M triscalman FR FR [] E] [] E] E] E-]

34 DISCHF DISCHI METEO SPECIAL HEAT WIND USERDSF FILES SECFLOW ROUWAVE BARRIER WEIRLOS SERIESF TEMINT SERIES! SPACEVA SERIESF WINDINT SERIESI REALCONS INTCONS CHARCONS OUTPUT SITE STATION GROUPF QNTTY CROSS PARTICL PRINT PRINT STORE STORE GROUPI GROUPF GROUPI GROUPF GROUPI MAP HIS MAP HIS Betac = [] Equili= N Rouwav= GENERAL Ergcl = [] Cofbar= [] [] SERIESF Filbar= Fmtbar* UN [] SERIESI Tsbar = [] GENERAL Ticrou= [] [] [] Thetac= [] Rfelag= [] Rfelng= [] Lwdry = MEAN COEFF Hkruv = [] [ ] Crouvl= [] [] Crouv2 = [ ] [] Lwtype= Fildis= Fmtdis= FR Tsdis - [] [] Cqs = [] Cqt = [ ] CqcN = [] [] [] Filtmp= Fmttmp= FR Temint= Y Tstmp = [j [] Wnsvwp= N Filwnd= Fmtwnd= FR Wndint= Y Rcoüsr= [ ] Icousr= [] Tswnd = [] Filusr= [] [,] Ccouar= Filsta= triscalobs Fmtsta= FR Namst = MNst = [ ] [ ] Filcrs= triscalcrs Fmtcrs= FR Namcrss MNcrs = [ ] [ ] [ ] Filpar= Fmtpar= FR Nampar= Tpar = [] [] YXpar = [] [] Iparg - [ ] Npari = [ ] PMhydr= YYYYYN PMproc= NNNNNNNNNN PMderv= NNN PHhydr= YYYYYNtt PHproc= NNNN1WNNNN PHderv= NNN PHflux= YYNN SMhydr= YYYNN SMproc= NNNNNNNNNN SMderv= YYNNN SHhydr= YYYN SHproc= NNNNNNNNNN SHderv= YYNNN [ ] [ ] [] [ ] []

35 FILES FOURIER PRINT STORE MAP Hl STORY MAP HlSTORY COMM RESTART SHflux= Filfou= Prmap = Prhis = Flmap = Flhis = Flpp = Restrt= YYNN E) Y

36 Sedimenttransport modellering Westersehelde Z289 januari 1999 Invoerbestand TRAN R02 WL delft hydraulics

37 * Composition of the input file of the transport module * project Westerschelde, drempel van Hansweert * testl Trstot * datum *** Module options I -1- Transport option (l=total, 2=suspended, 3=bed+suspended) MODS * Bed cond (1 = gradiënt-type, 2= concentration), * integral/algebraic expression (0/1) true -3- Instationary/stationary flow (true/false) INST *true -- Instationary/stationary boundary cond (true/false) INS false -5- Wave effects included/not included (true/false) NWAV * If NWAVE Then *true -6- Instationary/stationary wave field (true/false) INST *** Memory use Maximum number of flow fields MAXF * If NWAVE Then -11- * Maximum number of wave fields MAXW *** Time parameters Time step, number of initial timesteps IDTS,NTS Cycle length flow ITPE * If NWAVE Then * Cycle length waves ITPE *** Specification spiral motion effects Spiral flow effect on bed load yes/no included (1/0) * If LSECBO Then LSEC *1-18- Correction coëfficiënt spiral motion effect on direction *l -19- Spiral flow effect on susp tr yes/no included tl/0) LSE Correction coëfficiënt for the shields number FYTA Coefficients slope effect ASHLD,BSHL *** Bed characteristics false -22- Fixed layers present/not present (true/,false) NVAST * non uniform distribution read from file * md-depthfx * * Initial concentration * *** Boundary conditions MODSDA = 1 or 3 * ïf MODSDA = 1 or 3 Then -31-(NTO-times) Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type Boundary number and type (number,0/1) IBNDNR,IBND (number,0/1) IBNDNR,IBND II Boundary number and type Boundary number and type (number,0/1) IBNDNR,IBND (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND

38 Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,o/l) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type Boundary number and type (number,0/1) IBNDNR,IBND (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type Boundary number and type (number,0/1) IBNDNR,IBND (number,0/1) IBNDNR,IBND Boundary number and type Boundary number and type (number,0/1) IBNDNR,IBND {number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1} IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type {number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type (number,0/1) IBNDNR,IBND Boundary number and type {number,0/1) IBNDNR,IBND Boundary number and type {number,0/1) IBNDNR,IBND Boundary number and type Boundary number and type - (number,o/l) IBNDNR,IBND (number,0/1) IBNDNR,IBND Boundary number and type *************************************** (number,0/1) IBNDNR,IBND *1-3- Option dispersion coëfficiënt (1 = specified, 2= computed) * Dispersion coëfficiënt * Fall velocity suspended sediment *** General sediment parameters Density of sediment RHOS loe-6-1- Kinematic viscosity of water RNU Grain size for transp rel D50 * a- ZA, ZB * If NWAVE Then * 20-5b- *** Sediment transport relation 7-6- Number of transport formula IPOR *_, 7 Van Rijn (198) ALP D RKSC WS * End of specification of transport relation * * If MODSDA * lor 3 Then Coëfficiënt bed slope effect, bottom ALFA *00-9- Coëfficiënt bed slope effect, susp ALF Option numerical scheme NSTA a Power of transport relation, porosity BBTRS,PORS * If NSTAB = 1 or 3 or or 6 Then Stability coëfficiënt ALFS Automatic timestep (1/0), maximum Courant number NTYDA,CRNM * If NSTAB > or NTYDA = 1 Then -5- *3-5- Time averaging option INT

39 * * * Output definition OUTPUT DATA -55- Prescribed string preceeding the output records Output option (0/1) MODD *** Time histories Extend/overwrite history file (0/1) NOUT Start,end,increment for history file ITHISA,ITHISB,IDTH Number of locations for output sx,sy,sr,stx,sty,str etc NOSED * If NOSED >0 Then -60- NOSED-times (),() I,MC(Ï),NC(I) I,MC(I),NC(I) Number of cross-sections of type ksi=constant NTRA * If NTRAU > 0 Then -62- NTRAU-times * I,MITX(I),NIT1(I),NI2T * I,MITX(I),NIT1(I),NI2T Number of cross-sectiona of type eta=constant NTRA * If NTRAV > 0 Then -6- NTRAV-times ************* *0 *0 *** Initial iraps Output of grain size distribution D50 (0/1) Output of grain size distribution D90 (0/1) *** Time dependent maps of non-time averaged functions--' Extend time dependent map file Start,end,increment for ng map file Output of CZU Output of GZV Output of RSP 1-7- Output of SX (bed load) Output of SY (bed load) *1-76- Output of SXS (suspended) *1-77- Output of SXY (suspended) *l -78- Output of r (susp sed concentration) *0-78b- Output of erosion or deposition rate *** Maps of integral and averaged sediment transports *0 *o *1 *1 *o -79- Extend averaged map file Start,end,increment avg map file b Output of TTXI (time integr ini bedload S) -82- Output of TTYI (time integr ini bedload S) -83- Output of TTXA (time integr interv bedload S) -8- Output of TTYA (time integr interv bedload S) -85- (sus ini) -86- (sus ini) -87- (sus interval) -88- (sus interval) -88a- End of input of the transport module TRSTOT/TRSSUS- WQUAL NQUAL (0/1) NOUT ITMPIA,ITMPIB,IDTMPI (0/1) NQUAL (0/1) NQUAL (0/1) NQUAL (0/1) NQUAL (0/1) NQUAL (0/1) NQUA (0/1) (0/1) NQUA NQUA (0/1) NQUA (0/1) NOUT ITMPAA,ITMPAB,IDTMPA (0/1) NQUALT3 (0/1) NQUALT3 (0/1) NQUALT3 (0/1) NQUALT3 (0/1) NQUALT (0/1) NQUALT (0/1) NQUALT (0/1) NQUALT

40 Sedimenttransport modellering Westerschelde Z289 januari 1999 Invoerbestand MORF R02 WL delft hydraulics

41 * (INORES(I),1=1,3),KWITS integers * INORES(l) = 1/0 The data module of TRISULA is_not/is memory resident * INORES(2) l/o - - -Idem - -for - -transport module * INORESO) 1/0 Idem for bottom module 1/0 Yes/no auxilliary output * KWITS 0 0 t * * * * l * POROSI IINTRA * POROSI * IINTRA Initial transport is/is_not taken into account * (ITIMPR(I),1=1,6),INTCOM integers ITIMFR{13) First Last Increment times for writing History file ITIMFR(6) Idem for Map file INTCOM 0 Bottom on COM file overwritten (also starting bottom) 1 As 0 but starting bottom will be kept 2 All new Bottoms stored ***********! * ILUST ILUEN ILUDP IAPPND integers * ILUST 1/0 Over 1 bottom time step integrated transports are/not * ILUEN * ILUDP 1/0 i/o written The entrainment is/not written Differences in depths in one time step are/not written Map and History files extended/updated * IAPPND 1/0 ************************************************************************** ************* i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * NOSTAB integer Number of stations/locations for History ************************************************************* ************* * NOSTAB records Station name (char*0), M, N (integers) 'mp27' 27,138 *'50, 2' 50,2 *'51, 2' 51,2 ************************************************************************** * * For non specified open boundary segments IBNDNR = Open boundary number {TRISULA number) * IBNDTP = 3 The bottom depth will be specified * (in this case extra records must follow) Bottom depth unchanged

42 (

43 Sedimenttransport modellering Westerschelde Z289 januari 1999 Besturingsmodule R08 WL ddft hydraulics

44 * General data * * Case Label Dummy1 Dummy2 'ro8' ' ' 'duml' 'dum2' * Restart option 0 = new run, 1 = restart 0 * * Reference date and time yyyymmdd hhmmss Starting time, time unit Backup option (always 0) 0 Number of modules called 3 Module Version Input file 2 1 'md-flowr08' 3 3 'md-tranro8' 1 'md-bottr08' Cycle length of data on communication file 0000 * Specification of process tree * * Number of branches Number of subprocesses 5 3 * Child-parent relations * Child node Parent node ********** specification of controls **************** **** control no Stop crit Second par Third par Start input Update type Update input 0 3 Stop crit Second par Third par 0 0 Start input Update type Update input 0 3 * Start type 1 **** control no, 2 * Start type 1 **** Control no 3 * Start type 2 Stop crit Second par Third par Start input Update type Update input 1 * node and subprocess from which time step is taken 3 **** control no Stop crit Second par Third par * Start type 2 **** Control no 5 * Start type Start input Update type Update input Stop crit Second par Third par 0 o Start input Update type Update input 3 0 * Definition of elementary subprocesses (end nodes) **** End node no1 Wave Flow Tran Bott (0 = off, 1 = on) * Time intervals * Module Start time End time **** End node no2 Wave Flow Tran Bott {0 s off, 1 = on)

45 * Time intervals * Module Start time End time **** End node no3 Wave Flow Tran Bott * Time intervals (0 = off, 1 on) * Module Start time End time * End of input R08-I

46 Sedimenttransport modellering Westerschelde Z289 januari 1999 Invoerbestand FLOW R08 wi delft hydraulics

47 IDENT RUNID PROCESS MAIN NAMCONS DOMAIN GRID DlMENSI THICK DISTANC CURVI INPPAR COMGRDF ORIËNT COMGRDI SPECIAL DISCH DEPTH DEFBNDF DEFENDI DRYF DRYI THNDAMF THNDAMI BARRIER WEIRLOS SPACEVA UNIFORM ADDPROC HEATMOD NUM-PAR RUNTIME TURBMOD RGDWALL TIDFORCE USERDEF SPHERE UNIFORM Ident = Runid = Subl = Sub2 = Namcl = Natnc2 = Namc3 = Narac = Name5 = MNKmax= Thick - Filcco= Fmtcco= Sphere= DxDy = Anglat= Grdang= Filgrd= Fmtgrd= MNgrd = Namdis= Disint= MNKdis= Fildry= Fmtdry= MNdry = Filtd = Fmttd = MNtd = Nanibar= MNbar = MNwlos= Fildep= Fmtdep= Depuni= Filbnd= Fmtbnd= Natnbnd= Typbnd= Datbnd= MNbnd = Alpha = ProfU = Label = Ktemp = Fclou» Sarea = Tkemod= Irov = ZOv = Tidfor= Nprcus= Prcusr= Nprinp= Eps = Iter = Dryflp= Dryflc= Itdate= Tunit = Dt Tstart= Tstop = 8DELFT3DUT ro trisca'l grd FR N triscalenc FR Y [ ] [ [ 3 triscalthd FR [ ] [ ] b969510ddep FR tttriscalopn FR [ 1 E ] [ ] [ ] Uniform 0 2 MAX M U

48 INIR INIF INII LEVEL OTHERS BNDCOND GENERAL SMOOTH HYDROAT HYDROHF HYDROHI FREQ HYDROTF HYDROTI PROCESF PROCSSI PHYSCOF HYDRO CMPNENT THRLMAN GENERAL BEDSTR VIDIF WIND PROCESS DENSITY XYGEN XYVAR UNIFORM 2D-SPV 2D-UNIF 3D-UNIF Tzone = Restid= Filic = Fmtic = ZetaO = U0 = V0 = S0 = T0 = C01 = C02 = C03 = C0 = C05 = 10 = Tlfsmo= Filana= Filcor= FilbcH= FmtbcH= Omega = Ampab = Phsab = FilbcT= FmtbcT= TsbcT = Ampab = FilbcC= FmtbcC= TsbcC = Sab = ProfC = Tab = ProfC = Cabl = ProfC = Cab2 = ProfC = Cab3 = ProfC = Cab = ProfC = Cab5 = ProfC = Rettis= Rettib= Ag = Rhow = Roumet= Filrgh= Fmtrgh= Ccofu = Ccofv = Filedy= Fmtedy= Vicouv= Dicouv= Vicoww= Dicoww= Wstres= Rhoa = AlphO = Tempw = Salw = 0000 FR [3 {] [] [] [] [] [] [] [] [] 3000 FR [] [] [] [] [] mor-tidervw FR [] [] [] FR [] [][][] ] [] uniform [] [] [] EJ [] Uniform [] [] [] [] [] ttuniform [] I] [] [] [] Uniform [] [] [] [] [] tfuniform [] [] [] [] [] Uniform [] [] [] [] [] Uniform 98X M fttriscalman FR [] [] FR [] [ï []

49 DISCHF DISCHI METEO SPECIAL HEAT WIND USERDEF FILES REALCONS INT CONS CHARCONS OUTPUT SITE STATION QNTTY CROSS PARTICL PRINT PRINT STORE STORE SECFLOW ROUWAVE BARRIER WEIRLOS SERIESF TEMINT SERIESI SPACEVA SERIESF WINDINT SERIESI GROUPF GROUPI GROUPF GROUPI GROUPF GROUPI MAP HIS MAP HIS Betac = [] Equili= N Rouwav= GENERAL Ergcl = [] Cofbar= [] [] E] SERIESF Filbar= Fmtbar= UN SERIESI Tsbar = [] [] [] GENERAL Ticrou= [] Thetac= [] Rfelag= [] Rfelng= [] Lwdry = MEAN COEFF Hkruv = [] [] Crouvl= [] [] Crouv2= [) [] Lwtype= Fildis= Fmtdis= FR Tsdis = [] [] Cqs = [] Cqt B [] CqcN - [] [] [] Filtmp= Fmttmp= FR Temint= Y Tstmp = [] [] Wnsvwp= N Filwnd= Fmtwnd= FR Wndint= Y Tswnd = [] [] [] Filusr= Rcousr= [} Icousr= [] Ccousr= Filsta= fcriscalobs Fmtsta= FR Namst = MNst «[ ] E ] Filcrs= triscalcrs Fmtcrs= FR Namcrs= MNcrs = [ ] [ ] [ ] Filpar= Fmtpar= FR Nampar= Tpar = [] [] YXpar = [] [] Iparg = [ ] Npari = [ ] PMhydr= YYYYYN PMproc= NNNNNNNNNN PMderv= NNN PHhydr= YYYYYN PHproc= NNNNNNNNNN PHderv= NNN PHflux= YYNN SMhydr= YYYNN SMproc= NNNNNNNNNN SMderv= YYNNN SHhydr= YYYN SHproc= NNNNNNNNNN SHderv= YYNNN [] [] E] [] [] E1 t ]

Mathematics and Computation of Sediment Transport in Open Channels

Mathematics and Computation of Sediment Transport in Open Channels Mathematics and Computation of Sediment Transport in Open Channels Junping Wang Division of Mathematical Sciences National Science Foundation May 26, 2010 Sediment Transport and Life One major problem

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

Simulating Sedimentation Model in Balarood Dam Reservoir Using CCHE2D Software

Simulating Sedimentation Model in Balarood Dam Reservoir Using CCHE2D Software Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 4 [1] December 2014: 67-72 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

Topic 8: Open Channel Flow

Topic 8: Open Channel Flow 3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,

More information

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York 1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

More information

Assessment of hydropower resources

Assessment of hydropower resources Assessment of hydropower resources Oliver Froend Assessment of hydropower resources Relevance of surveys, data assessment and analyses to the success of the project. Required data and field survey. Key

More information

Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

More information

Design rules for bridges in Eurocode 3

Design rules for bridges in Eurocode 3 Design rules for bridges in Eurocode 3 Gerhard Sedlacek Christian üller Survey of the Eurocodes EN 1991 EN 1990 Eurocode: Basis of Design EN 1992 to EN 1996 Eurocode 1: Actions on Structures Eurocode 2:

More information

To define concepts such as distance, displacement, speed, velocity, and acceleration.

To define concepts such as distance, displacement, speed, velocity, and acceleration. Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at

More information

Package rivr. October 16, 2015

Package rivr. October 16, 2015 Type Package Package rivr October 16, 2015 Title Steady and Unsteady Open-Channel Flow Computation Version 1.1 Date 2015-10-15 Author Michael C Koohafkan [aut, cre] Maintainer Michael C Koohafkan

More information

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA Xu Jianmin Zhang Qisong Satellite Meteorological Center Beijing 100081, China ABSTRACT With GMS-5 images, cloud motion wind was calculated. For

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

ALL GROUND-WATER HYDROLOGY WORK IS MODELING. A Model is a representation of a system.

ALL GROUND-WATER HYDROLOGY WORK IS MODELING. A Model is a representation of a system. ALL GROUND-WATER HYDROLOGY WORK IS MODELING A Model is a representation of a system. Modeling begins when one formulates a concept of a hydrologic system, continues with application of, for example, Darcy's

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

ci-il => -8 =-9+3Vg =) 3Vs= -*... Vg't ft-s vft.4 ln.^$ ger - Lxln SxL+ Ln-6 = Lr-Z+ 3V6 2Vn = -tf

ci-il => -8 =-9+3Vg =) 3Vs= -*... Vg't ft-s vft.4 ln.^$ ger - Lxln SxL+ Ln-6 = Lr-Z+ 3V6 2Vn = -tf Ht MftY 2ot3 rneenfrrtonr\l 1. Two particles I and B, of mass 2 kg and 3 kg respectively, are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface.

More information

OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW. Free surface. P atm OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.

VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus

More information

Chapter 9. Steady Flow in Open channels

Chapter 9. Steady Flow in Open channels Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

More information

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

More information

Riprap-lined Swale (RS)

Riprap-lined Swale (RS) Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This

More information

WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST. Which graph best shows the relative stream velocities across the stream from A to B?

WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST. Which graph best shows the relative stream velocities across the stream from A to B? NAME DATE WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST 1. The diagram below shows a meandering stream. Measurements of stream velocity were taken along straight line AB. Which graph best shows the

More information

Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

More information

Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs)

Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs) Field Data Recovery in Tidal System Using Artificial Neural Networks (ANNs) by Bernard B. Hsieh and Thad C. Pratt PURPOSE: The field data collection program consumes a major portion of a modeling budget.

More information

MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING

MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING 1 MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING This note is intended as a general guideline to setting up a standard MIKE 21 model for applications

More information

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION 2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION A world-coordinate area selected for display is called a window. An area on a display device to which a window is mapped is called a viewport. The window

More information

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

More information

Multiphase Flow - Appendices

Multiphase Flow - Appendices Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume

More information

Nautische bodem en toegankelijkheid in Zeebrugge en andere havens

Nautische bodem en toegankelijkheid in Zeebrugge en andere havens Nautische bodem en toegankelijkheid in Zeebrugge en andere havens Studiedag Zee en waterbouw in en rond Vlaanderen IE NET 4 juni 2015, Antwerpen Thomas Van Hoestenberghe (Fluves) Joris Vanlede (Waterbouwkundig

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

More information

Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient

Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient Open Channel Flow 1. Uniform flow - Manning s Eqn in a prismatic channel - Q, V, y, A, P, B, S and roughness are all constant

More information

Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs

Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs Copyright 013 Tech Science Press SL, vol.9, no., pp.105-117, 013 Investigation of the Effect of Dynamic Capillary Pressure on Waterflooding in Extra Low Permeability Reservoirs Tian Shubao 1, Lei Gang

More information

Presentation of problem T1 (9 points): The Maribo Meteorite

Presentation of problem T1 (9 points): The Maribo Meteorite Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground

More information

RISH CON - Hz. Salient Features : Application : Product Features: FREQUENCY TRANSDUCER

RISH CON - Hz. Salient Features : Application : Product Features: FREQUENCY TRANSDUCER Application : The RISH CON - Hz transducer is used for frequency measurement. The output signal is proportional to measured frequency and is either load independent DC Current or load independent DC Voltage.

More information

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 013 http://acousticalsociety.org/ ICA 013 Montreal Montreal, Canada - 7 June 013 Underwater Acoustics Session 1pUW: Seabed Scattering: Measurements and Mechanisms

More information

Numerical investigation of aerodynamic action on track vicinity within the electric locomotive operation

Numerical investigation of aerodynamic action on track vicinity within the electric locomotive operation Applied and Computational Mechanics 1 (2007) 215-224 Numerical investigation of aerodynamic action on track vicinity within the electric locomotive operation J. Novák a, * a Department of Fluid Mechanics,

More information

Exercise (4): Open Channel Flow - Gradually Varied Flow

Exercise (4): Open Channel Flow - Gradually Varied Flow Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches

More information

PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE

PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE K. ASANO, S. NUNOMURA, T. MISAWA, N. OHNO and S. TAKAMURA Department of Energy Engineering and Science, Graduate School

More information

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Storm Drainage Systems 11.9-1

Storm Drainage Systems 11.9-1 Storm Drainage Systems 11.9-1 11.9 Gutter Flow Calculations 11.9.1 Introduction Gutter flow calculations are necessary in order to relate the quantity of flow (Q) in the curbed channel to the spread of

More information

SIMULATION OF SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY CHANGE IN LARGE RIVER SYSTEMS. Stephen H. Scott 1 and Yafei Jia 2

SIMULATION OF SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY CHANGE IN LARGE RIVER SYSTEMS. Stephen H. Scott 1 and Yafei Jia 2 US-CHINA WORKSHOP ON ADVANCED COMPUTATIONAL MODELLING IN HYDROSCIENCE & ENGINEERING September 19-21, Oxford, Mississippi, USA SIMULATION OF SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY CHANGE IN LARGE RIVER

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

COMBINED PHYSICAL AND NUMERICAL MODELLING OF AN ARTIFICIAL COASTAL REEF

COMBINED PHYSICAL AND NUMERICAL MODELLING OF AN ARTIFICIAL COASTAL REEF COMBINED PHYSICAL AND NUMERICAL MODELLING OF AN ARTIFICIAL COASTAL REEF Valeri Penchev and Dorina Dragancheva, Bulgarian Ship Hydrodynamics Centre, 9003 Varna, Bulgaria Andreas Matheja, Stephan Mai and

More information

Using CFD to improve the design of a circulating water channel

Using CFD to improve the design of a circulating water channel 2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

CFD software overview comparison, limitations and user interfaces

CFD software overview comparison, limitations and user interfaces CFD software overview comparison, limitations and user interfaces Daniel Legendre Introduction to CFD Turku, 05.05.2015 Åbo Akademi University Thermal and Flow Engineering Laboratory 05.05.2015 1 Some

More information

How To Define Tss

How To Define Tss Demonstration of the Effect of Particle Size on Design & Performance of Stormwater Quality Systems nd National Low Impact Development Conference, March 1-14, 7 Scott Perry Stormwater Specialist Imbrium

More information

NAMA FILM Aleksinackih rudara 39A 11070 Beograd, Serbia Tel/Fax:+381 11 2 603 762 Mobile: +381 63 206440 princip@eunet.rs www.goranradovanovic.

NAMA FILM Aleksinackih rudara 39A 11070 Beograd, Serbia Tel/Fax:+381 11 2 603 762 Mobile: +381 63 206440 princip@eunet.rs www.goranradovanovic. SYNOPSIS T h e A m b u l a n c e i s a c o n t e m p o r a r y h i s t o r i c a l f i l m r e f l e c t i n g t h e d r a m a o f t h e p r o f o u n d s o c i a l c h a n g e s t h a t t h e S e r b

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator Kenji MAWATARI, Koich SAMESHIMA, Mitsuyoshi MIYAI, Shinya MATSUDA Abstract We developed a new inkjet head by applying MEMS

More information

Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains

Module 7: Hydraulic Design of Sewers and Storm Water Drains. Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 1 P age Module 7: Hydraulic Design of Sewers and Storm Water Drains Lecture 7 : Hydraulic Design of Sewers and Storm Water Drains 2 P age 7.1 General Consideration Generally, sewers are laid at steeper

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Optimization of electronic devices placement on printed circuit board

Optimization of electronic devices placement on printed circuit board Optimization of electronic devices placement on printed circuit board Abstract by M. Felczak, T.Wajman and B. Więcek Technical University of Łódź, Wólczańska 211/215, 90-924 Łódź, Poland Power densities

More information

Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057

Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057 Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057 To: Mr. J. A. Mesmason, Crew Chief Nautilus Salvage, Inc., 20000 Buena Vista Avenue, Vulcania, Hawaii 96807 From: J. Liu, T.

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t. . The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

More information

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) Problem (Q1): Evaluate each of the following to three significant figures and express each answer in SI units: (a) (0.631 Mm)/(8.60 kg) 2 (b) (35 mm) 2 *(48 kg) 3 (a) 0.631 Mm / 8.60 kg 2 6 0.631 10 m

More information

Scour and Scour Protection

Scour and Scour Protection Design of Maritime Structures Scour and Scour Protection Steven A. Hughes, PhD, PE Coastal and Hydraulics Laboratory US Army Engineer Research and Development Center Waterways Experiment Station 3909 Halls

More information

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

More information

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao. x x. x x. Figure 10: Cross sectional view

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao. x x. x x. Figure 10: Cross sectional view 4 Armature Windings Main field Commutator & Brush Compole field haft v Compensating winding Armature winding Yoke Figure 10: Cross sectional view Fig. 10 gives the cross sectional view of a modern d.c.

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by:

Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506. Presented by: Sharp-Crested Weirs for Open Channel Flow Measurement, Course #506 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com A weir is basically an obstruction in an open channel

More information

CS408 Animation Software Design Sample Exam Questions (Second Half)

CS408 Animation Software Design Sample Exam Questions (Second Half) CS408 Animation Software Design Sample Exam Questions (Second Half) 42. NEW QUESTION Consider the starting position of the following objects, and their desired end position and orientation as part of the

More information

G d y n i a U s ł u g a r e j e s t r a c j i i p o m i a r u c z a s u u c z e s t n i k ó w i m p r e z s p o r t o w y c h G d y s k i e g o O r o d k a S p o r t u i R e k r e a c j i w r o k u 2 0

More information

Meteo Dashboard a decision support system for offshore wind farms. Delft Software Days Jan-Joost Schouten Harbour, Coastal and Offshore Engineering

Meteo Dashboard a decision support system for offshore wind farms. Delft Software Days Jan-Joost Schouten Harbour, Coastal and Offshore Engineering Meteo Dashboard a decision support system for offshore wind farms Delft Software Days Jan-Joost Schouten Harbour, Coastal and Offshore Engineering Content: Objective Intro offshore wind System components

More information

Future Trends in Airline Pricing, Yield. March 13, 2013

Future Trends in Airline Pricing, Yield. March 13, 2013 Future Trends in Airline Pricing, Yield Management, &AncillaryFees March 13, 2013 THE OPPORTUNITY IS NOW FOR CORPORATE TRAVEL MANAGEMENT BUT FIRST: YOU HAVE TO KNOCK DOWN BARRIERS! but it won t hurt much!

More information

Seismic Waves Practice

Seismic Waves Practice 1. Base your answer to the following question on the diagram below, which shows models of two types of earthquake waves. Model A best represents the motion of earthquake waves called 1) P-waves (compressional

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

SEDIMENT TRANSPORT CAPACITY OF PRESSURE FLOW AT BRIDGES

SEDIMENT TRANSPORT CAPACITY OF PRESSURE FLOW AT BRIDGES SDIMNT TRANSORT CAACITY OF RSSUR FLOW AT BRIDGS Martin N.R. Jaeggi Consulting river engineer, Bergholzweg 22, 8123 bmatingen, Switzerland phone +41 44 980 36 26, fax +41 44 980 36 30, e-mail: jaeggi@rivers.ch

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge

Programme Discussions Wissenschaftstag Braunschweig 2015 Laminarität für zukünftige Verkehrsflugzeuge Programme Discussions Wissenschaftstag Braunschweig 2015 Kevin Nicholls, EIVW Prepared by Heinz Hansen TOP-LDA Leader, ETEA Presented by Bernhard Schlipf, ESCRWG Laminarität für zukünftige Verkehrsflugzeuge

More information

proxy cert request dn, cert, Pkey, VOMS cred. (short lifetime) certificate: dn, ca, Pkey mod_ssl pre-process: parameters->

proxy cert request dn, cert, Pkey, VOMS cred. (short lifetime) certificate: dn, ca, Pkey mod_ssl pre-process: parameters-> Overview of the New S ec u rity M od el WP6 Meeting V I D t G R I D C o nf er enc e B r c el o ne, 1 2-1 5 M y 2 0 0 3 Overview focus is on VOMS C A d e t il s r e in D 7. 6 Se cur it y D e sig n proxy

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

72-2 Sasamori, Ukai, Takizawa-mura, Iwate 020-01, JAPAN (original affiliation : Japan Metals and Chemicals Co., Ltd.)

72-2 Sasamori, Ukai, Takizawa-mura, Iwate 020-01, JAPAN (original affiliation : Japan Metals and Chemicals Co., Ltd.) PROCEEDINGS, Seventeenth Workshop on Geothennal Reservoir Engineering Stanford University, Stanford, California, January 2931, 1992 SGPm141 PREDICTION OF EFFECTS OF HYDRAULIC FRACTURING USING RESERVOIR

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

Computational Physics

Computational Physics Computational Physics Sheet 6, Computational Physics Course 17105 Professor: H. Ruhl, Exercises: N. Moschüring and N. Elkina Discussion of Solutions: Dec 03, 01, Room A49 Problem 1: Yee solver for Schrödinger

More information

L r = L m /L p. L r = L p /L m

L r = L m /L p. L r = L p /L m NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

More information

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

More information

NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS

NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS TASK QUARTERLY 15 No 3 4, 317 328 NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS WOJCIECH ARTICHOWICZ Department of Hydraulic Engineering, Faculty

More information

QoS-driven Web Services Selection in Autonomic Grid Environments. Danilo Ardagna Gabriele Giunta Nunzio Ingraffia Raffaela Mirandola Barbara Pernici

QoS-driven Web Services Selection in Autonomic Grid Environments. Danilo Ardagna Gabriele Giunta Nunzio Ingraffia Raffaela Mirandola Barbara Pernici QoS-driven Web Services Selection in Autonomic Grid Environments Danilo Ardagna Gabriele Giunta Nunzio Ingraffia Raffaela Mirandola Barbara Pernici Introduction In SOA, complex applications can be composed

More information

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James

More information

Documentation. M-Bus 130-mbx

Documentation. M-Bus 130-mbx Documentation M-Bus 130-mbx Introduction The mx M-Bus module is part of the mx Smart Slot communications family. With the integrated SmartSlot technology, mx systems ag offers automatic consumer data read-out

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

Frederikshavn kommunale skolevæsen

Frederikshavn kommunale skolevæsen Frederikshavn kommunale skolevæsen Skoleåret 1969-70 V e d K: Hillers-Andersen k. s k o l e d i r e k t ø r o g Aage Christensen f u l d m æ g t i g ( Fr e d e rik sh av n E k sp r e s- T ry k k e rie

More information

12.307. 1 Convection in water (an almost-incompressible fluid)

12.307. 1 Convection in water (an almost-incompressible fluid) 12.307 Convection in water (an almost-incompressible fluid) John Marshall, Lodovica Illari and Alan Plumb March, 2004 1 Convection in water (an almost-incompressible fluid) 1.1 Buoyancy Objects that are

More information

GROUNDWATER FLOW NETS Graphical Solutions to the Flow Equations. One family of curves are flow lines Another family of curves are equipotential lines

GROUNDWATER FLOW NETS Graphical Solutions to the Flow Equations. One family of curves are flow lines Another family of curves are equipotential lines GROUNDWTER FLOW NETS Graphical Solutions to the Flow Equations One family of curves are flow lines nother family of curves are equipotential lines B C D E Boundary Conditions B and DE - constant head BC

More information

BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW

BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW ABSTRACT by Anthony J.Grass* and Ragaet N.M.Ayoub** An experimental study is described in which the rate of transport of fine sand over a flat

More information

Green Gas Test Centre and Distribution of renewable gases

Green Gas Test Centre and Distribution of renewable gases and Distribution of renewable gases Jan K. Jensen (jkj@dgc.dk) Danish Gas Technology Centre Nordic Baltic Bioenergy 2013, Oslo Danish Gas Technology Centre Consultancy, R&D, measurements (field and lab.)

More information