THE WHE TO PLAY. Teacher s Guide Getting Started. Shereen Khan & Fayad Ali Trinidad and Tobago

Save this PDF as:

Size: px
Start display at page:

Download "THE WHE TO PLAY. Teacher s Guide Getting Started. Shereen Khan & Fayad Ali Trinidad and Tobago"

Transcription

1 Teacher s Guide Getting Started Shereen Khan & Fayad Ali Trinidad and Tobago Purpose In this two-day lesson, students develop different strategies to play a game in order to win. In particular, they will develop a mathematical formula to calculate potential profits at strategic points in the game and revise strategies based on their predictions. Allow students to imagine that they are living in the twin islands of Trinidad and Tobago where a popular game called Play Whe is played everyday. They can think of the game as an investment opportunity and their goal is always to realize a profit. How can they devise a strategy so that their expenditure is always less than their potential winnings? Prerequisites Students should understand how to interpret graphs of linear and quadratic functions, how to generate number sequences, how to calculate simple probabilities, and have basic algebraic skills such as substitution and manipulation of symbols. Materials Required: Graph paper and scientific calculators. Suggested: Software for generating tables and graphs. Optional: Graphing calculators. Worksheet 1 Guide The first three pages of the lesson constitute the first day s work where students are first introduced to the traditional game from Trinidad and Tobago. Students analyze the gameplay and create a model to describe its profit. Then they revise that model to try to maximize their profit. Worksheet 2 Guide The fourth and fifth pages of the lesson constitute the second day s work and introduce students to arithmetic progressions in order to think of the problem algebraically. Upon examining their method from the first day, they are asked to observe what happens when different variables are altered in the formula. Students ultimately are led to question whether an ideal method of betting is possible. CCSSM Addressed F-BF.2: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. F-LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). 149

2 In Trinidad and Tobago there is a game called Play Whe, and great numbers of people play every day. In this game, players place any sum of money on one number from the set 1 to 36. Players can bet on only one number per day. Each day a number is drawn and winners receive 24 times the amount wagered. All other money is lost and there are no consolation prizes. If you wish to pick a number the next day, then you must bet again. PLAY Whe EVERY DAY A WHE TO WIN! Source: Play Whe (traditionally known as Whe Whe, an almost identical numbers game) was brought to Trinidad and Tobago by Chinese immigrants. At that time it was known as known as Chinapoo, and was a very popular game of chance. Leading Question What is the best strategy to maximize profit? Should you play the same number each day or should you vary the numbers? 150

3 1. Assuming you bet \$5 on the same number each day, calculate the amount spent on bets after 5 days. After 10 days? 20 days? 30 days? 2. Assuming that you win on the 5th day, will you make a profit? Use calculations to support your answer. Calculate the profit if you win on the 10th, 20th, or 30th plays. Represent your profit after each play in a table and draw a graph to determine if there is a trend. Using mathematical notation, create a mathematical model for calculating the profit after the nth play. 3. How long should you continue with this strategy if you always want to make a profit? Give reasons to support your answer. Analyze the model. What are its shortcomings? Should you continue with this strategy? 151

4 4. If you want to be assured of always making a profit, what changes would you make to your previous model? Predict what your graph will look like if profits are to increase with successive bets. 5. Devise a plan to increase your bet by the same amount each day. How much will you have spent after 5 days in this model? Is this a better method than the previous one from question 2? How much profit will you have if you win on that 5th day? 6. Investigate this plan over a series of successive bets by calculating and recording your profits in a table. If available, use a spreadsheet program to generate the table in which the profit is calculated each day for a period of 48 days. Plot the profit on a graph to observe any trend. 7. If you continue with this plan, will you always make a profit? Assuming you do not win, after how many plays will you choose to discontinue this plan? State why you may wish to stop. Would you stop sooner or later than with the first plan? 152

5 A sequence of numbers is said to be in an arithmetic progression if there is a common difference between consecutive numbers in the sequence. The sequences shown below follow this type of progression: 1, 4, 7, 10, 13, 16, 5, 10, 15, 20, 25, If a particular term needs to be predicted, say the 20th term, you do not have to list all the terms. This can be done by observing a pattern and deriving a rule. 8. Consider the first sequence above and observe the table below where T n is the nth term of the sequence. T 1 = 1 T 2 = 4 T 3 = 7 T 4 = 10 T 5 = 13 T 6 = (0) 1+3(1) 1+3(2) 1+3(3) 1+3(4) 1+3(5) a + d(0) a + d(1) a + d(2) a + d(3) a + d(4) a + d(5) Complete the table for the second sequence of numbers with your method for calculating how much you spent in question 5. S 1 = S 2 = S 3 = S 4 = S 5 = S 6 = 9. Use your knowledge of arithmetic progressions to calculate the 20th value in your model from question

6 10. Investigate the effect on the profit when increasing a) the amount of the initial play, a, and b) the fixed difference between successive plays, d. 11. What conclusions can you make when you increase only a while keeping d constant? Observe the trend by determining the profits graphically or algebraically. 12. What conclusions can you make when you vary both a and d? Observe the trend by graphing the profits. 13. What conclusions can you draw about the game? Is it desirable to arrive at a maximum profit quickly? 154

7 Pro it Pro it THE WHE TO PLAY Teacher s Guide Possible Solutions The solutions shown represent only some possible solution methods. Please evaluate students solution methods on the basis of mathematical validity. 1. \$25, \$50, \$100, and \$150 respectively. 2. Yes for the first three, but not if on the 30th day. Your profits will be \$95, \$70, and \$20 for the first three scenarios, and a loss of \$30 in the final scenario. On day n, a profit of \$5(24 n) should be expected. 3. Students must recognize that betting the same amount every day will only realize a profit if there is a win within 23 plays. On the 24th play the player breaks even. The scatter plot shows that the profit decreases in a linear fashion (negative slope) and after 24 days, an increase in lost profit will continue to occur. For an increasing profit, students must conclude that the linear model with negative slope is undesirable. 4. A new model must have a positive slope in order to realize an increasing profit with each additional play. A change in strategy must involve moving away from betting a constant amount to an increasing amount. A systematic, rather than random, increase in the amount will enable calculations to be readily made and a new mathematical model to evolve. 5. Answers will vary depending on the amount that students choose to increase their bet each day. If they choose to start with \$1 on the first day and increase their bet by \$1 each day they will have spent \$15 after 5 days. If they won on the fifth day their winnings would be \$120 with a profit of \$ In the new strategy, students must now investigate how to calculate the potential profit after any number of plays. They should recognize that a mathematical model can be derived to determine the amount of each successive bet At some point, the plan will have a loss. Depending on the student s model, it will vary The completed graph will vary with question 5, but a is their 200 starting value, and d is the amount that they increase their bet 150 each day. The bottom line of both tables should be the same, as 100 they are the variable representation of the arithmetic progression The answer should fit the formula a + d(19) Students may choose to increase a either minimally or substantially. This strategy will produce a model in which the initial profit is high but profits begin to decrease with successive bets (a quadratic function that starts at the maximum and decreases). Students may be questioned on the feasibility of this model. They should conclude that manipulating a is not the option for an increasing profit. In exercising the next option, students may increase d by varying amounts while increasing a by at least d. This strategy will give rise to a model in which the profit increases from the very first play of this phase, increases to a maximum, and then decreases to a point of breaking even before suffering a loss. The pattern is thus similar to earlier examples. Students can now investigate various values of d, while attempting to obtain the maximum profit at around the same value of n as in the earlier example. If a win does not occur before or upon reaching the maximum profit, then a similar exploratory method might need to be employed Number of Plays Number of Plays 155

8 Teacher s Guide Extending the Model Since on average 1/3 of the money bet is lost, Play Whe is probably pretty profitable for the Agency (call it A) that runs it. Schemes that keep increasing the amount of money bet in order to (more than) overcome previous losses eventually flounder because A has greater resources than the individual bettor B. The small probability with which B may lose a huge amount tends to obscure that it is a losing game for B. It may be argued, especially if B bets only small amounts, that the utility of a potentially large win is greater than the utility of a stream of small losses. As many experiments have shown, human utility is not linear, as there is the thrill of participation and of the Hey, you never know type advertisement. It can also be argued that a stream of small bets with intermittent wins, such as on a slot machine, is a reasonable price for the diversion provided by the activity. Play Whe is characterized by being a losing game, although at first glance it looks like there is a winning strategy. The following is an example in the other direction: a winning game which at first glance looks like it must be a loser. You are given an urn which contains 2 red balls and 3 brown ones. If you draw a red ball, you win a dollar, and if you draw a brown ball, you lose a dollar. Do you want to play? Before you say No!, consider the precise rules: the drawing is done without replacement, and you may stop at any time you wish. The result is that you want to play, and with optimal strategy the expected outcome is 20 cents in your favor. 2/5 3/5 The strategy is as follows (depicted in the tree diagram to the right, where choosing a red ball is denoted by a move to the reader s left and a brown ball by a move to the reader s right). 2/4 2/4 1) If the first ball you draw is red (with p = 2/5), you win a dollar and stop. If the first ball is brown (with p = 3/5), you draw again. 2) If you now draw a red ball (with p = 2/4), you stop, and you have 2/3 1/3 broken even. If the second ball you draw is brown (also with p = 2/4), you now know that there are two red balls and one brown 1/2 1/2 ball left and continue. 2/2 3) If you now draw a red ball (with p = 2/3), draw again, and if this 1/1 fourth draw is red, you are even, and you stop. 4) In all other cases, draw all the balls, and lose one dollar. 1/1 The probabilities and payouts for this strategy are as follows. 1) Stopping here happens with probability 2/5, and you win one dollar. 2) Stopping here has probability (3/5)(2/4) = 3/10, and you break even. 3) Stopping here has probability (3/5)(2/4)(2/3)(1/2) = 1/10, and you break even. 4) The probability of the cases so far is 2/5 + 3/10 + 1/10 = 4/5, so the probability of the other cases, which are the ones in which you draw all five balls, is 1 4/5 = 1/5, and the outcome is a loss of 1 dollar. Therefore, the expected result of the optimal strategy is (2/5)(\$1)+(3/10)(0)+(1/10)(0)+(1/5)( \$1) = \$1/5, or 20 cents. The kind of reasoning in this problem has been adapted to find a strategy for deciding when to sell a bond. The key characteristic that a bond shares with the above problem is that there is a known fixed terminal value. If you play our game to the end, you lose a dollar. If you hold a bond to the end, you get its face value. Think of a curve such that if the price goes above that curve, you sell and take your profit. Think also of a second curve such that if the price goes below that curve, you sell and cut your losses. 156

Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

SEQUENCES ARITHMETIC SEQUENCES. Examples

SEQUENCES ARITHMETIC SEQUENCES An ordered list of numbers such as: 4, 9, 6, 25, 36 is a sequence. Each number in the sequence is a term. Usually variables with subscripts are used to label terms. For example,

\$2 4 40 + ( \$1) = 40

THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the

Current California Math Standards Balanced Equations

Balanced Equations Current California Math Standards Balanced Equations Grade Three Number Sense 1.0 Students understand the place value of whole numbers: 1.1 Count, read, and write whole numbers to 10,000.

Lesson 13: Games of Chance and Expected Value

Student Outcomes Students analyze simple games of chance. Students calculate expected payoff for simple games of chance. Students interpret expected payoff in context. esson Notes When students are presented

CHOOSING A COLLEGE. Teacher s Guide Getting Started. Nathan N. Alexander Charlotte, NC

Teacher s Guide Getting Started Nathan N. Alexander Charlotte, NC Purpose In this two-day lesson, students determine their best-matched college. They use decision-making strategies based on their preferences

Evaluating Trading Systems By John Ehlers and Ric Way

Evaluating Trading Systems By John Ehlers and Ric Way INTRODUCTION What is the best way to evaluate the performance of a trading system? Conventional wisdom holds that the best way is to examine the system

3.2 Roulette and Markov Chains

238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

How to Win the Stock Market Game

How to Win the Stock Market Game 1 Developing Short-Term Stock Trading Strategies by Vladimir Daragan PART 1 Table of Contents 1. Introduction 2. Comparison of trading strategies 3. Return per trade 4.

TABLE OF CONTENTS. ROULETTE FREE System #1 ------------------------- 2 ROULETTE FREE System #2 ------------------------- 4 ------------------------- 5

IMPORTANT: This document contains 100% FREE gambling systems designed specifically for ROULETTE, and any casino game that involves even money bets such as BLACKJACK, CRAPS & POKER. Please note although

Lotto Master Formula (v1.3) The Formula Used By Lottery Winners

Lotto Master Formula (v.) The Formula Used By Lottery Winners I. Introduction This book is designed to provide you with all of the knowledge that you will need to be a consistent winner in your local lottery

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

THE WINNING ROULETTE SYSTEM by http://www.webgoldminer.com/

THE WINNING ROULETTE SYSTEM by http://www.webgoldminer.com/ Is it possible to earn money from online gambling? Are there any 100% sure winning roulette systems? Are there actually people who make a living

VIRAL MARKETING. Teacher s Guide Getting Started. Benjamin Dickman Brookline, MA

Teacher s Guide Getting Started Benjamin Dickman Brookline, MA Purpose In this two-day lesson, students will model viral marketing. Viral marketing refers to a marketing strategy in which people pass on

RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY

RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY I. INTRODUCTION According to the Common Core Standards (2010), Decisions or predictions are often based on data numbers

CORE Assessment Module Module Overview

CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve real-life and mathematical problems

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

3 Introduction to Assessing Risk

3 Introduction to Assessing Risk Important Question. How do we assess the risk an investor faces when choosing among assets? In this discussion we examine how an investor would assess the risk associated

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.

Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

DELAWARE MATHEMATICS CONTENT STANDARDS GRADES 9-10. PAGE(S) WHERE TAUGHT (If submission is not a book, cite appropriate location(s))

Prentice Hall University of Chicago School Mathematics Project: Advanced Algebra 2002 Delaware Mathematics Content Standards (Grades 9-10) STANDARD #1 Students will develop their ability to SOLVE PROBLEMS

High School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.

Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations

Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

To represent mathematical relationships using graphs. 4-1 Activity: Relating Quantities See Department Chair for File 1 day A.REI.10, F.IF.

CCSS for Mathematical Practice: 1. Make sense of problems and persevere in solving them 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4. Model

Gaming the Law of Large Numbers

Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.

Algebra I Credit Recovery

Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

Probability and Expected Value

Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

Chapter 5 End of Chapter Review Question KEY

Chapter End of Chapter Review Question KEY - (Key Question) Complete the following table and answer the questions below: Units consumed Total utility Marginal utility 0 0 0 0 0 a. At which rate is total

Probability Using Dice

Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you

Expected Value and the Game of Craps

Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

High School Functions Interpreting Functions Understand the concept of a function and use function notation.

Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.

9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay \$ to play. A penny and a nickel are flipped. You win \$ if either

(a) FLORIDA LOTTO is a lottery online terminal game in which players select six (6) numbers from a field of

53ER14-18 FLORIDA LOTTO. (1) How to Play FLORIDA LOTTO. (a) FLORIDA LOTTO is a lottery online terminal game in which players select six (6) numbers from a field of one (1) to fifty-three (53). (b) Players

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

Balanced Assessment Test Algebra 2008

Balanced Assessment Test Algebra 2008 Core Idea Task Score Representations Expressions This task asks students find algebraic expressions for area and perimeter of parallelograms and trapezoids. Successful

Betting with the Kelly Criterion

Betting with the Kelly Criterion Jane June 2, 2010 Contents 1 Introduction 2 2 Kelly Criterion 2 3 The Stock Market 3 4 Simulations 5 5 Conclusion 8 1 Page 2 of 9 1 Introduction Gambling in all forms,

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

COMMON CORE STATE STANDARDS FOR

COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in

Georgia Standards of Excellence 2015-2016 Mathematics

Georgia Standards of Excellence 2015-2016 Mathematics Standards GSE Coordinate Algebra K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical

In the situations that we will encounter, we may generally calculate the probability of an event

What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12

This lesson plan is from the Council for Economic Education's publication: Mathematics and Economics: Connections for Life 9-12 To purchase Mathematics and Economics: Connections for Life 9-12, visit:

Pearson Algebra 1 Common Core 2015

A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks

Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

KENO TRAINING MANUAL

KENO TRAINING MANUAL 1 Contents I. How to play Keno Pg 3 1. Keno Menu Pg 3 2. Keno Kwikfacts Pg 3 3. Keno Pg 4 4. Kwikpicks Pg 8 5. Jackpots Pg 10 6. Keno Bonus Pg 10 7. Lucky Last Pg 10 8. Heads or Tails

What is the purpose of this document? What is in the document? How do I send Feedback?

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Statistics

Secondary Mathematics I: An Integrated Approach Module 4 Linear and Exponential Functions

1 Secondary Mathematics I: An Integrated Approach Module 4 Linear and Exponential Functions By The Mathematics Vision Project: Scott Hendrickson, Joleigh Honey, Barbara Kuehl, Travis Lemon, Janet Sutorius

Automatic Bet Tracker!

Russell Hunter Street Smart Roulette Automatic Bet Tracker! Russell Hunter Publishing, Inc. Street Smart Roulette Automatic Bet Tracker 2015 Russell Hunter and Russell Hunter Publishing, Inc. All Rights

Clovis Community College Core Competencies Assessment 2014 2015 Area II: Mathematics Algebra

Core Assessment 2014 2015 Area II: Mathematics Algebra Class: Math 110 College Algebra Faculty: Erin Akhtar (Learning Outcomes Being Measured) 1. Students will construct and analyze graphs and/or data

We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is

Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 1-36, and there are two compartments labeled 0 and 00. Half of the compartments numbered 1-36

"TWO DOLLARS TO SHOW ON NUMBER

How Does it Work? Horse owners, trainers, and drivers race horses for the purse (prize money). Fans bet for the thrill and reward of winning. At Rideau Carleton Raceway we have hundreds of winners every

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

Factoring Quadratic Trinomials Student Probe Factor Answer: Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials Part 1 of the lesson consists of circle puzzles

a) Three faces? b) Two faces? c) One face? d) No faces? What if it s a 15x15x15 cube? How do you know, without counting?

Painted Cube (Task) Imagine a large 3x3x3 cube made out of unit cubes. The large cube falls into a bucket of paint, so that the faces of the large cube are painted blue. Now suppose you broke the cube

arxiv:1112.0829v1 [math.pr] 5 Dec 2011

How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

Chapter 2: Systems of Linear Equations and Matrices:

At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

Polynomial Operations and Factoring

Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.

Optimal Drawing Strategy for Deuces Wild Video Poker Stephen Jensen

Optimal Drawing Strategy for Deuces Wild Video Poker Stephen Jensen Abstract Video poker, an extremely popular computerized version of the traditional game of poker, offers many opportunities for mathematical

The time value of money: Part II

The time value of money: Part II A reading prepared by Pamela Peterson Drake O U T L I E 1. Introduction 2. Annuities 3. Determining the unknown interest rate 4. Determining the number of compounding periods

Financial Literacy in Grade 11 Mathematics Understanding Annuities

Grade 11 Mathematics Functions (MCR3U) Connections to Financial Literacy Students are building their understanding of financial literacy by solving problems related to annuities. Students set up a hypothetical

Grade 6 Grade-Level Goals. Equivalent names for fractions, decimals, and percents. Comparing and ordering numbers

Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

Algebra 1 Course Objectives

Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in

Collatz Sequence. Fibbonacci Sequence. n is even; Recurrence Relation: a n+1 = a n + a n 1.

Fibonacci Roulette In this game you will be constructing a recurrence relation, that is, a sequence of numbers where you find the next number by looking at the previous numbers in the sequence. Your job

Week 4: Gambler s ruin and bold play

Week 4: Gambler s ruin and bold play Random walk and Gambler s ruin. Imagine a walker moving along a line. At every unit of time, he makes a step left or right of exactly one of unit. So we can think that

An Unconvered Roulette Secret designed to expose any Casino and make YOU MONEY spin after spin! Even in the LONG Run...

An Unconvered Roulette Secret designed to expose any Casino and make YOU MONEY spin after spin! Even in the LONG Run... The UNFAIR Casino advantage put BACK into the HANDS of every Roulette player! INTRODUCTION...2

4.3. Addition and Multiplication Laws of Probability. Introduction. Prerequisites. Learning Outcomes. Learning Style

Addition and Multiplication Laws of Probability 4.3 Introduction When we require the probability of two events occurring simultaneously or the probability of one or the other or both of two events occurring

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

6.042/18.062J Mathematics for Computer Science. Expected Value I

6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

CHICAGO PUBLIC SCHOOLS (ILLINOIS) MATH & SCIENCE INITIATIVE COURSE FRAMEWORK FOR ALGEBRA Course Framework: Algebra

Chicago Public Schools (Illinois) Math & Science Initiative Course Framework for Algebra Course Framework: Algebra Central Concepts and Habits of Mind The following concepts represent the big ideas or

Overview of Math Standards

Algebra 2 Welcome to math curriculum design maps for Manhattan- Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

Estimating the Frequency Distribution of the. Numbers Bet on the California Lottery

Estimating the Frequency Distribution of the Numbers Bet on the California Lottery Mark Finkelstein November 15, 1993 Department of Mathematics, University of California, Irvine, CA 92717. Running head:

Statistics 100A Homework 3 Solutions

Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win \$ for each black ball selected and we

Problem of the Month: Double Down

Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core

Copyright (c) 2015 Christopher Small and The Art of Lawyering. All rights reserved. 1 In this special report, I ll be sharing with you the ten biggest mistakes that lawyers make when marketing their law

Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

You can place bets on the Roulette table until the dealer announces, No more bets.

Roulette Roulette is one of the oldest and most famous casino games. Every Roulette table has its own set of distinctive chips that can only be used at that particular table. These chips are purchased

Video Poker in South Carolina: A Mathematical Study

Video Poker in South Carolina: A Mathematical Study by Joel V. Brawley and Todd D. Mateer Since its debut in South Carolina in 1986, video poker has become a game of great popularity as well as a game

Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas:

Unit #3: Investigating Quadratics (9 days + 1 jazz day + 1 summative evaluation day) BIG Ideas: Developing strategies for determining the zeroes of quadratic functions Making connections between the meaning

CONNECTICUT LOTTERY CORPORATION OFFICIAL GAME RULES "Connecticut PLAY4 Night"

CONNECTICUT LOTTERY CORPORATION OFFICIAL GAME RULES "Connecticut PLAY4 Night" Please take notice that the Connecticut Lottery Corporation duly adopted, with the advice and consent of the Board of Directors,

College Algebra. Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1

College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides

DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

Factoring Quadratic Trinomials Student Probe Factor x x 3 10. Answer: x 5 x Lesson Description This lesson uses the area model of multiplication to factor quadratic trinomials. Part 1 of the lesson consists

Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

The program also provides supplemental modules on topics in geometry and probability and statistics.

Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

Introduction to Quadratic Functions

Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

Sport Hedge Millionaire s Guide to a growing portfolio. Sports Hedge

Sports Hedge Sport Hedging for the millionaire inside us, a manual for hedging and profiting for a growing portfolio Congratulations, you are about to have access to the techniques sports books do not

CONNECTICUT LOTTERY CORPORATION OFFICIAL GAME RULES "Connecticut PLAY3 Night"

CONNECTICUT LOTTERY CORPORATION OFFICIAL GAME RULES "Connecticut PLAY3 Night" Please take notice that the Connecticut Lottery Corporation duly adopted, with the advice and consent of the Board of Directors,