CHAPTER 4 GRID SCHEDULER WITH DEVIATION BASED RESOURCE SCHEDULING

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 4 GRID SCHEDULER WITH DEVIATION BASED RESOURCE SCHEDULING"

Transcription

1 46 CHAPTER 4 GRID SCHEDULER WITH DEVIATION BASED RESOURCE SCHEDULING 4.1 OUTLINE In this chapter, the significance of policy problem and its relationship with grid scheduling is explained in detail with the help of an example. Hence, to realize a controlled grid resource sharing, the grid environment must be equipped with resource usage policies and SLAs. In addition, they must be integrated with grid meta-schedulers. 4.2 DEVIATION BASED RESOURCE SCHEDULING Grid is highly dynamic with respect to user application requirements and grid is accessible for multiple users simultaneously. The existing grid infrastructure is rigid in nature it cannot satisfy all the user application requirements. In this situation, the grid scheduler fails to locate potential resources due to non-availability of execution environment. The emergence of virtualization technologies integrated with existing grid infrastructure addresses the above said issue by creating virtual resources in the potential resources and dynamically deploys the required execution environment. The virtualization technology integrated in the grid can customize user application requirements using the concept of on-demand provisioning of resources. To incorporate the virtualization technology with grid environment the grid scheduler needs the appropriate mechanisms for dynamic virtual machine creation and deletion. The existing grid schedulers do not have the mechanisms for dynamic creation of virtual grid resources in

2 47 remote physical resources to meet the application execution environment. The conventional grid schedulers fail to address the following scenarios: Application requires number of CPUs that shall be satisfied by a single cluster. Application requires number of CPUs that cannot be met by a single cluster, Application requires a completely different software environment that no cluster in the grid can provide, Application requires number of CPUs within a deadline. Hence, the grid scheduling mechanism has to consider both physical as well as virtual resources during the allocation of jobs. The proposed research work designs and implements an intelligent grid scheduling mechanism to prioritize the job requests for various scheduling scenarios and optimally allocate resources in an efficient and intelligent manner. The Integration of Virtualization technologies in grid infrastructure allows scheduling of user s application to the potential physical resources even if they do not possess the required application environment which will be provisioned using virtual resources. The performance of the negotiation algorithm mainly depends on the average negotiation time. The average negotiation time per SLA is mainly depends on the number of nodes selected for negotiation, which in turn depends on the order of available resources. The main drawback of the existing scheduling algorithms is that the resources are ordered against their own scheduling metrics (such as rank, budget, deadline etc) rather than against the job request. It leads to increase in the number of negotiation. Hence it is mandatory to deduce one resource ordering algorithm that

3 48 calculates the amount of deviation of resource parameters (should includes both positive and negative deviation) against the parameters specified in the job request. Here, the resource parameters are nothing but the parameters that are specified through resource usage policies in PMS. To calculate the deviation, the DRS has to identify the appropriate usage policy, gathers the resource parameters specified in that policy and compare it against the request. After calculating the deviation values, the scheduler orders the resources based on their deviation values. First, the pearson correlation coefficient is tried to identify the similarity between the available and the requested parameters. But it does not yield any fruitful solution. Next, the percentage deviation coefficient is applied that successfully computes the deviation in both directions (i.e. bipolar). The insight of computing the deviation coefficient is to order and select the resources based on their capability to fulfil the current request. This will automatically lead to reduction in the number of negotiations needed. With the resource back up support, the change of the resource at some providers during the calculation of the deviation coefficient does not affect the negotiation if it is not participate in the negotiation. Even though it is participating in negotiation, if it cannot provide the commitment, then the negotiation module switch the negotiation process to the next potential resource provider in the Meta scheduler s ordered host list. The proposed DRS algorithm calculates the percentage deviation of i th available resource (D ij ), each j th parameter specified in the request against the available resource s parameters using the equation specified in Figure 4.1. After calculating the D ij for every available resource, in order to scale down the percentage deviation between +1 and -1 (bipolar), divide all the D ij by the maximum or minimum deviation value in the Dij set(refer to Figure 4.1) for positive and negative region respectively.

4 49 Figure 4.1 Percentage deviation co-efficient and deviation values After calculating the deviation D, the DRS policy selects the resource based on the lollipop sequence (with modified ordering) of the deviation value. It starts to select the resource that have zero deviation value first, if not found then moved towards worst-case plug-in match (0+ t) travel along best-case plug-in match (+1), then shifted to best-case subsume match(0- t) and finally ends with worst-case subsume match(-1)(refer to Figure 4.2). (Here, t 0.001). The significance of lollipop sequence based resource selection is to identify the best fit resource for a job request. If a resource is available in the exact match region or in plug-in region for a request, the job should be scheduled to that resource in order to avoid complex negotiation process. If more than one matched resources are available for the request, then the scheduler selects the resource that it first sees while it walks through over the points from A to C(refer to Figure 4.2). If no match found in the region A to C, then SLA negotiation starts in the region D to E.

5 50 Figure 4.2 Lollipop sequence based resource selection The DRS resource selection procedure is explained with an example. In Table 4.1, R denotes the request posted by the user with specified parameters and A1, A2 specifies the resources with their capabilities that are available at that time. The illustration of DRS is explained with an example here. Table 4.1 contains the sample request that need to be scheduled along with the available resource parameters. Then the percentage deviation values that are computed using the equation in Figure 4.1 and is shown in Table 4.2. Finally, for all the resources the deviation values are computed using equation in Figure 4.1 and are given in Table 4.3. From Table 4.3, resource A1 in Red is in the exact region, A2 in yellow is in plug-in region, whereas all the other resources are in the subsume region colored in light blue. While ordering, the weightage can be set to any parameter. Here, the proposed approach gives more weightage to Number of CPUs (NCPU). So in subsume region, the resources are ordered based on their NCPU value. Hence the ordered resources are: A1, A2, A7, A8, A3, A4, A5 and A6. It is important to note that the DRS is accurate than the averaging (the deviation value) because the averaging method may select the resource which are not satisfying all the required parameters. But in DRS, the resources that the

6 51 Table 4.1 Sample request and available resource parameters Hardware Requirements (HR) NCPU RAM SS Speed (GHZ) Software requirements (SR) OS Software QoS Requirements BW (Mbps) R RHEL4 MATLAB A RHEL4 MATLAB A RHEL4 MATLAB A RHEL4 MATLAB A RHEL4 MATLAB A RHEL5 MATLAB A RHEL4 MATLAB A RHEL7 MATLAB A RHEL4 MATLAB Table 4.2 Percentage deviation co-efficient for the available hosts (D ij ) NCPU RAM HR SR QR SS Speed (GHZ) OS Software BW (Mbps) A A A A A A A A

7 52 Table 4.3 Deviation values for all the available hosts (D) NCPU RAM HR SR QR SS Speed (GHZ) OS Software BW (Mbps) A A A A A A A A resources having deviation value greater than zero in all the parameters (here CPU-count, RAM and CPU%) fall in the plug-in region. If a resource obtain deviation value less than zero in anyone of the parameters, it will automatically fall in the subsume region. CPU-count, RAM and CPU%) fall in the plug-in region. If a resource obtain deviation value less than zero in anyone of the parameters, it will automatically fall in the subsume region. In short, this chapter gives the detailed narration about deviation based resource scheduling and its significance.

Chapter 2: Getting Started

Chapter 2: Getting Started Chapter 2: Getting Started Once Partek Flow is installed, Chapter 2 will take the user to the next stage and describes the user interface and, of note, defines a number of terms required to understand

More information

OVERVIEW... 2 FEATURES... 5 DOCUMENTS... 7 SYSTEM REQUIREMENTS... 10 FAQ...

OVERVIEW... 2 FEATURES... 5 DOCUMENTS... 7 SYSTEM REQUIREMENTS... 10 FAQ... Table of Contents OVERVIEW... 2 FEATURES... 5 DOCUMENTS... 7 SYSTEM REQUIREMENTS... 10 FAQ... 11 Zoho Corporation 1 Overview Free ManageEngine XenServer Health Monitor tool ManageEngine Free XenServer

More information

Oracle Quality of Service Management - Meeting Availability and SLA Requirements in the Database Cloud

Oracle Quality of Service Management - Meeting Availability and SLA Requirements in the Database Cloud Oracle Quality of Service Management - Meeting Availability and SLA Requirements in the Database Cloud Mark V. Scardina Director of Product Management Oracle Quality of Service Management 1 Copyright 2013,

More information

A Study on Analysis and Implementation of a Cloud Computing Framework for Multimedia Convergence Services

A Study on Analysis and Implementation of a Cloud Computing Framework for Multimedia Convergence Services A Study on Analysis and Implementation of a Cloud Computing Framework for Multimedia Convergence Services Ronnie D. Caytiles and Byungjoo Park * Department of Multimedia Engineering, Hannam University

More information

vrealize Operations Manager User Guide

vrealize Operations Manager User Guide vrealize Operations Manager User Guide vrealize Operations Manager 6.0.1 This document supports the version of each product listed and supports all subsequent versions until the document is replaced by

More information

QoS & Traffic Management

QoS & Traffic Management QoS & Traffic Management Advanced Features for Managing Application Performance and Achieving End-to-End Quality of Service in Data Center and Cloud Computing Environments using Chelsio T4 Adapters Chelsio

More information

risks in the software projects [10,52], discussion platform, and COCOMO

risks in the software projects [10,52], discussion platform, and COCOMO CHAPTER-1 INTRODUCTION TO PROJECT MANAGEMENT SOFTWARE AND SERVICE ORIENTED ARCHITECTURE 1.1 Overview of the system Service Oriented Architecture for Collaborative WBPMS is a Service based project management

More information

A two-level scheduler to dynamically schedule a stream of batch jobs in large-scale grids

A two-level scheduler to dynamically schedule a stream of batch jobs in large-scale grids Managed by A two-level scheduler to dynamically schedule a stream of batch jobs in large-scale grids M. Pasquali, R. Baraglia, G. Capannini, L. Ricci, and D. Laforenza 7th Meeting of the Institute on Resource

More information

WORKFLOW ENGINE FOR CLOUDS

WORKFLOW ENGINE FOR CLOUDS WORKFLOW ENGINE FOR CLOUDS By SURAJ PANDEY, DILEBAN KARUNAMOORTHY, and RAJKUMAR BUYYA Prepared by: Dr. Faramarz Safi Islamic Azad University, Najafabad Branch, Esfahan, Iran. Workflow Engine for clouds

More information

RED HAT ENTERPRISE VIRTUALIZATION

RED HAT ENTERPRISE VIRTUALIZATION Giuseppe Paterno' Solution Architect Jan 2010 Red Hat Milestones October 1994 Red Hat Linux June 2004 Red Hat Global File System August 2005 Red Hat Certificate System & Dir. Server April 2006 JBoss April

More information

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Kurt Klemperer, Principal System Performance Engineer kklemperer@blackboard.com Agenda Session Length:

More information

JOB ORIENTED VMWARE TRAINING INSTITUTE IN CHENNAI

JOB ORIENTED VMWARE TRAINING INSTITUTE IN CHENNAI JOB ORIENTED VMWARE TRAINING INSTITUTE IN CHENNAI Job oriented VMWARE training is offered by Peridot Systems in Chennai. Training in our institute gives you strong foundation on cloud computing by incrementing

More information

P6 Analytics Reference Manual

P6 Analytics Reference Manual P6 Analytics Reference Manual Release 3.2 October 2013 Contents Getting Started... 7 About P6 Analytics... 7 Prerequisites to Use Analytics... 8 About Analyses... 9 About... 9 About Dashboards... 10 Logging

More information

High Availability and Clustering

High Availability and Clustering High Availability and Clustering AdvOSS-HA is a software application that enables High Availability and Clustering; a critical requirement for any carrier grade solution. It implements multiple redundancy

More information

Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers

Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers Dragon Medical Enterprise Network Edition Technical Note: Requirements for DMENE Networks with virtual servers This section includes system requirements for DMENE Network configurations that utilize virtual

More information

Chapter3: Understanding Cloud Computing

Chapter3: Understanding Cloud Computing Chapter3: Understanding Cloud Computing Nora Almezeini MIS Department, CBA, KSU A Brief History! The general public has been leveraging forms of Internetbased computer utilities since the mid-1990s.! In

More information

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS

CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS 133 CHAPTER 6 MAJOR RESULTS AND CONCLUSIONS The proposed scheduling algorithms along with the heuristic intensive weightage factors, parameters and ß and their impact on the performance of the algorithms

More information

Rackspace Cloud Databases and Container-based Virtualization

Rackspace Cloud Databases and Container-based Virtualization Rackspace Cloud Databases and Container-based Virtualization August 2012 J.R. Arredondo @jrarredondo Page 1 of 6 INTRODUCTION When Rackspace set out to build the Cloud Databases product, we asked many

More information

IOmark- VDI. HP HP ConvergedSystem 242- HC StoreVirtual Test Report: VDI- HC- 150427- b Test Report Date: 27, April 2015. www.iomark.

IOmark- VDI. HP HP ConvergedSystem 242- HC StoreVirtual Test Report: VDI- HC- 150427- b Test Report Date: 27, April 2015. www.iomark. IOmark- VDI HP HP ConvergedSystem 242- HC StoreVirtual Test Report: VDI- HC- 150427- b Test Copyright 2010-2014 Evaluator Group, Inc. All rights reserved. IOmark- VDI, IOmark- VM, VDI- IOmark, and IOmark

More information

JBoss Data Grid Performance Study Comparing Java HotSpot to Azul Zing

JBoss Data Grid Performance Study Comparing Java HotSpot to Azul Zing JBoss Data Grid Performance Study Comparing Java HotSpot to Azul Zing January 2014 Legal Notices JBoss, Red Hat and their respective logos are trademarks or registered trademarks of Red Hat, Inc. Azul

More information

The Best RDP One-to-many Computing Solution. Start

The Best RDP One-to-many Computing Solution. Start The Best RDP One-to-many Computing Solution Start NetPoint Sharing solution (with the new zero client model H4S) is the accelarated version of our earlier product NetPoint.0 (working with H4). The new

More information

International Journal of Computer & Organization Trends Volume20 Number1 May 2015

International Journal of Computer & Organization Trends Volume20 Number1 May 2015 Performance Analysis of Various Guest Operating Systems on Ubuntu 14.04 Prof. (Dr.) Viabhakar Pathak 1, Pramod Kumar Ram 2 1 Computer Science and Engineering, Arya College of Engineering, Jaipur, India.

More information

CHAPTER 5 IMPLEMENTATION OF THE PROPOSED GRID NETWORK MONITORING SYSTEM IN CRB

CHAPTER 5 IMPLEMENTATION OF THE PROPOSED GRID NETWORK MONITORING SYSTEM IN CRB 60 CHAPTER 5 IMPLEMENTATION OF THE PROPOSED GRID NETWORK MONITORING SYSTEM IN CRB This chapter discusses the implementation details of the proposed grid network monitoring system, and its integration with

More information

Why ClearCube Technology for VDI?

Why ClearCube Technology for VDI? Why ClearCube Technology for VDI? January 2014 2014 ClearCube Technology, Inc. All Rights Reserved 1 Why ClearCube for VDI? There are many VDI platforms to choose from. Some have evolved inefficiently

More information

Identify and control performance and capacity risks. Introduction... 2

Identify and control performance and capacity risks. Introduction... 2 Application performance testing in VMware environments Identify and control performance and capacity risks Table of contents Introduction... 2 Performance and capacity planning techniques... 2 Rough sizing

More information

DELL. Virtual Desktop Infrastructure Study END-TO-END COMPUTING. Dell Enterprise Solutions Engineering

DELL. Virtual Desktop Infrastructure Study END-TO-END COMPUTING. Dell Enterprise Solutions Engineering DELL Virtual Desktop Infrastructure Study END-TO-END COMPUTING Dell Enterprise Solutions Engineering 1 THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL

More information

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads G. Suganthi (Member, IEEE), K. N. Vimal Shankar, Department of Computer Science and Engineering, V.S.B. Engineering College,

More information

SolarWinds Comparison of Monitoring Techniques. On both. Target Server & Polling Engine

SolarWinds Comparison of Monitoring Techniques. On both. Target Server & Polling Engine SolarWinds Comparison of Monitoring Techniques On both Target Server & Polling Engine Contents Executive Summary... 3 Why Should You Keep Reading (ie: why do I care?)... 4 SNMP polling (as compared to

More information

Virtual Appliance Setup Guide

Virtual Appliance Setup Guide Virtual Appliance Setup Guide 2015 Bomgar Corporation. All rights reserved worldwide. BOMGAR and the BOMGAR logo are trademarks of Bomgar Corporation; other trademarks shown are the property of their respective

More information

Is my site ready for upgrade to v7.6?

Is my site ready for upgrade to v7.6? Is my site ready for upgrade to v7.6? 6 answers in 6 minutes Web Filter and Web Security Web Security Gateway Web Security Gateway Anywhere web security data security email security 2011 Websense, Inc.

More information

ASCETiC Whitepaper. Motivation. ASCETiC Toolbox Business Goals. Approach

ASCETiC Whitepaper. Motivation. ASCETiC Toolbox Business Goals. Approach ASCETiC Whitepaper Motivation The increased usage of ICT, together with growing energy costs and the need to reduce greenhouse gases emissions call for energy-efficient technologies that decrease the overall

More information

1. Simulation of load balancing in a cloud computing environment using OMNET

1. Simulation of load balancing in a cloud computing environment using OMNET Cloud Computing Cloud computing is a rapidly growing technology that allows users to share computer resources according to their need. It is expected that cloud computing will generate close to 13.8 million

More information

An Oracle White Paper July 2014. Oracle Database 12c: Meeting your Performance Objectives with Quality of Service Management

An Oracle White Paper July 2014. Oracle Database 12c: Meeting your Performance Objectives with Quality of Service Management An Oracle White Paper July 2014 Oracle Database 12c: Meeting your Performance Objectives with Quality of Service Management Introduction... 1 Overview of Oracle Database QoS Management... 1 Benefits of

More information

Cloud Computing with Red Hat Solutions. Sivaram Shunmugam Red Hat Asia Pacific Pte Ltd. sivaram@redhat.com

Cloud Computing with Red Hat Solutions. Sivaram Shunmugam Red Hat Asia Pacific Pte Ltd. sivaram@redhat.com Cloud Computing with Red Hat Solutions Sivaram Shunmugam Red Hat Asia Pacific Pte Ltd sivaram@redhat.com Linux Automation Details Red Hat's Linux Automation strategy for next-generation IT infrastructure

More information

Efficient Load Balancing using VM Migration by QEMU-KVM

Efficient Load Balancing using VM Migration by QEMU-KVM International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 49 ISSN 2047-3338 Efficient Load Balancing using VM Migration by QEMU-KVM Sharang Telkikar 1, Shreyas Talele

More information

Data Mining 5. Cluster Analysis

Data Mining 5. Cluster Analysis Data Mining 5. Cluster Analysis 5.2 Fall 2009 Instructor: Dr. Masoud Yaghini Outline Data Structures Interval-Valued (Numeric) Variables Binary Variables Categorical Variables Ordinal Variables Variables

More information

Self-Adaptive Service Level Agreement Monitoring in Cloud Environments

Self-Adaptive Service Level Agreement Monitoring in Cloud Environments Self-Adaptive Service Level Agreement Monitoring in Cloud Environments Kassidy P. Clark Martijn Warnier Frances M.T. Brazier Delft University of Technology, Faculty of Technology, Policy and Management,

More information

IT-ADVENTURES PLAYGROUND (ISERINK) Remote Setup Guide IOWA STATE UNIVERSITY INFORMATION ASSURANCE CENTER

IT-ADVENTURES PLAYGROUND (ISERINK) Remote Setup Guide IOWA STATE UNIVERSITY INFORMATION ASSURANCE CENTER IT-ADVENTURES PLAYGROUND (ISERINK) Remote Setup Guide IOWA STATE UNIVERSITY INFORMATION ASSURANCE CENTER Spring 2014 Gaining access to your systems Since ISERink runs on a simulated internet provided by

More information

Energy Constrained Resource Scheduling for Cloud Environment

Energy Constrained Resource Scheduling for Cloud Environment Energy Constrained Resource Scheduling for Cloud Environment 1 R.Selvi, 2 S.Russia, 3 V.K.Anitha 1 2 nd Year M.E.(Software Engineering), 2 Assistant Professor Department of IT KSR Institute for Engineering

More information

Case Study I: A Database Service

Case Study I: A Database Service Case Study I: A Database Service Prof. Daniel A. Menascé Department of Computer Science George Mason University www.cs.gmu.edu/faculty/menasce.html 1 Copyright Notice Most of the figures in this set of

More information

Document downloaded from: http://hdl.handle.net/10251/35748. This paper must be cited as:

Document downloaded from: http://hdl.handle.net/10251/35748. This paper must be cited as: Document downloaded from: http://hdl.handle.net/10251/35748 This paper must be cited as: García García, A.; Blanquer Espert, I.; Hernández García, V. (2014). SLA-driven dynamic cloud resource management.

More information

Oracle Linux Support and Oracle VM Support Global Price List

Oracle Linux Support and Oracle VM Support Global Price List Oracle Linux Support and Oracle VM Support Global List December 1, 2014 For educational purposes only. Subject to change without notice. 1 of 8 Oracle Linux Support s in USA (Dollar) License Support Licensing

More information

The VMware Administrator s Guide to Hyper-V in Windows Server 2012. Brien Posey Microsoft MVMP @Veeam

The VMware Administrator s Guide to Hyper-V in Windows Server 2012. Brien Posey Microsoft MVMP @Veeam The VMware Administrator s Guide to Hyper-V in Windows Server 2012 Brien Posey Microsoft MVMP @Veeam About today s webinar Thought leadership content from an industry expert This webinar is recorded and

More information

SLA BASED SERVICE BROKERING IN INTERCLOUD ENVIRONMENTS

SLA BASED SERVICE BROKERING IN INTERCLOUD ENVIRONMENTS SLA BASED SERVICE BROKERING IN INTERCLOUD ENVIRONMENTS Foued Jrad, Jie Tao and Achim Streit Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany {foued.jrad, jie.tao, achim.streit}@kit.edu

More information

Virtualizing Business Applications on SAP

Virtualizing Business Applications on SAP Virtualizing Business Applications on SAP Andre Kemp Sr. Product Marketing Manager APAC Certified SAP Basis and Supply Chain Consultant Certified Migration Consultant 1 Enterprise Workloads Run the SAP

More information

Load Balancing in Cellular Networks with User-in-the-loop: A Spatial Traffic Shaping Approach

Load Balancing in Cellular Networks with User-in-the-loop: A Spatial Traffic Shaping Approach WC25 User-in-the-loop: A Spatial Traffic Shaping Approach Ziyang Wang, Rainer Schoenen,, Marc St-Hilaire Department of Systems and Computer Engineering Carleton University, Ottawa, Ontario, Canada Sources

More information

Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm

Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Energy Conscious Virtual Machine Migration by Job Shop Scheduling Algorithm Shanthipriya.M 1, S.T.Munusamy 2 ProfSrinivasan. R 3 M.Tech (IT) Student, Department of IT, PSV College of Engg & Tech, Krishnagiri,

More information

DESIGN OF A PLATFORM OF VIRTUAL SERVICE CONTAINERS FOR SERVICE ORIENTED CLOUD COMPUTING. Carlos de Alfonso Andrés García Vicente Hernández

DESIGN OF A PLATFORM OF VIRTUAL SERVICE CONTAINERS FOR SERVICE ORIENTED CLOUD COMPUTING. Carlos de Alfonso Andrés García Vicente Hernández DESIGN OF A PLATFORM OF VIRTUAL SERVICE CONTAINERS FOR SERVICE ORIENTED CLOUD COMPUTING Carlos de Alfonso Andrés García Vicente Hernández 2 INDEX Introduction Our approach Platform design Storage Security

More information

Environments, Services and Network Management for Green Clouds

Environments, Services and Network Management for Green Clouds Environments, Services and Network Management for Green Clouds Carlos Becker Westphall Networks and Management Laboratory Federal University of Santa Catarina MARCH 3RD, REUNION ISLAND IARIA GLOBENET 2012

More information

Integrated Performance Management for Physical, Virtual and Cloud Infrastructure

Integrated Performance Management for Physical, Virtual and Cloud Infrastructure Integrated Performance Management for Physical, Virtual and Cloud Infrastructure White Paper from ManageEngine Web: Email: appmanager-support@manageengine.com Table of Contents 1. Introduction 2. New application

More information

Cloud Computing Capacity Planning. Maximizing Cloud Value. Authors: Jose Vargas, Clint Sherwood. Organization: IBM Cloud Labs

Cloud Computing Capacity Planning. Maximizing Cloud Value. Authors: Jose Vargas, Clint Sherwood. Organization: IBM Cloud Labs Cloud Computing Capacity Planning Authors: Jose Vargas, Clint Sherwood Organization: IBM Cloud Labs Web address: ibm.com/websphere/developer/zones/hipods Date: 3 November 2010 Status: Version 1.0 Abstract:

More information

Newsletter 4/2013 Oktober 2013. www.soug.ch

Newsletter 4/2013 Oktober 2013. www.soug.ch SWISS ORACLE US ER GRO UP www.soug.ch Newsletter 4/2013 Oktober 2013 Oracle 12c Consolidation Planer Data Redaction & Transparent Sensitive Data Protection Oracle Forms Migration Oracle 12c IDENTITY table

More information

Managing Capacity Using VMware vcenter CapacityIQ TECHNICAL WHITE PAPER

Managing Capacity Using VMware vcenter CapacityIQ TECHNICAL WHITE PAPER Managing Capacity Using VMware vcenter CapacityIQ TECHNICAL WHITE PAPER Table of Contents Capacity Management Overview.... 3 CapacityIQ Information Collection.... 3 CapacityIQ Performance Metrics.... 4

More information

VMware Infrastructure 3 Pricing, Packaging and Licensing Overview W H I T E P A P E R

VMware Infrastructure 3 Pricing, Packaging and Licensing Overview W H I T E P A P E R VMware Infrastructure 3 Pricing, Packaging and Licensing Overview W H I T E P A P E R Table of Contents Introduction................................................................ 3 Summary...................................................................3

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Visualization Cluster Getting Started

Visualization Cluster Getting Started Visualization Cluster Getting Started Contents 1 Introduction to the Visualization Cluster... 1 2 Visualization Cluster hardware and software... 2 3 Remote visualization session through VNC... 2 4 Starting

More information

Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS

Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS Resource Allocation Avoiding SLA Violations in Cloud Framework for SaaS Shantanu Sasane Abhilash Bari Kaustubh Memane Aniket Pathak Prof. A. A.Deshmukh University of Pune University of Pune University

More information

VMware for your hosting services

VMware for your hosting services VMware for your hosting services Anindya Kishore Das 2009 VMware Inc. All rights reserved Everybody talks Cloud! You will eat your cloud and you will like it! Everybody talks Cloud - But what is it? VMware

More information

Capacity planning with Microsoft System Center

Capacity planning with Microsoft System Center Capacity planning with Microsoft System Center Mike Resseler Veeam Product Strategy Specialist, MVP, Microsoft Certified IT Professional, MCSA, MCTS, MCP Modern Data Protection Built for Virtualization

More information

High Performance Computing Cloud Computing. Dr. Rami YARED

High Performance Computing Cloud Computing. Dr. Rami YARED High Performance Computing Cloud Computing Dr. Rami YARED Outline High Performance Computing Parallel Computing Cloud Computing Definitions Advantages and drawbacks Cloud Computing vs Grid Computing Outline

More information

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers

Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Multifaceted Resource Management for Dealing with Heterogeneous Workloads in Virtualized Data Centers Íñigo Goiri, J. Oriol Fitó, Ferran Julià, Ramón Nou, Josep Ll. Berral, Jordi Guitart and Jordi Torres

More information

Aras Innovator 11. Platform Specifications

Aras Innovator 11. Platform Specifications Document #: 11.0.02014120801 Last Modified: 12/30/2014 Copyright Information Copyright 2014 Aras Corporation. All Rights Reserved. Aras Corporation 300 Brickstone Square Suite 700 Andover, MA 01810 Phone:

More information

VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES

VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES U.P.B. Sci. Bull., Series C, Vol. 76, Iss. 2, 2014 ISSN 2286-3540 VIRTUAL RESOURCE MANAGEMENT FOR DATA INTENSIVE APPLICATIONS IN CLOUD INFRASTRUCTURES Elena Apostol 1, Valentin Cristea 2 Cloud computing

More information

Dr Markus Hagenbuchner markus@uow.edu.au CSCI319. Introduction to Cloud Computing

Dr Markus Hagenbuchner markus@uow.edu.au CSCI319. Introduction to Cloud Computing Dr Markus Hagenbuchner markus@uow.edu.au CSCI319 Introduction to Cloud Computing CSCI319 Chapter 1 Page: 1 of 10 Content and Objectives 1. Introduce to cloud computing 2. Develop and understanding to how

More information

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background

More information

White Paper. Recording Server Virtualization

White Paper. Recording Server Virtualization White Paper Recording Server Virtualization Prepared by: Mike Sherwood, Senior Solutions Engineer Milestone Systems 23 March 2011 Table of Contents Introduction... 3 Target audience and white paper purpose...

More information

Citrix XenApp Server Deployment on VMware ESX at a Large Multi-National Insurance Company

Citrix XenApp Server Deployment on VMware ESX at a Large Multi-National Insurance Company Citrix XenApp Server Deployment on VMware ESX at a Large Multi-National Insurance Company June 2010 TECHNICAL CASE STUDY Table of Contents Executive Summary...1 Customer Overview...1 Business Challenges...1

More information

A Trust Evaluation Model for QoS Guarantee in Cloud Systems *

A Trust Evaluation Model for QoS Guarantee in Cloud Systems * A Trust Evaluation Model for QoS Guarantee in Cloud Systems * Hyukho Kim, Hana Lee, Woongsup Kim, Yangwoo Kim Dept. of Information and Communication Engineering, Dongguk University Seoul, 100-715, South

More information

Power Consumption Based Cloud Scheduler

Power Consumption Based Cloud Scheduler Power Consumption Based Cloud Scheduler Wu Li * School of Software, Shanghai Jiaotong University Shanghai, 200240, China. * Corresponding author. Tel.: 18621114210; email: defaultuser@sjtu.edu.cn Manuscript

More information

Cisco Unified Computing Remote Management Services

Cisco Unified Computing Remote Management Services Cisco Unified Computing Remote Management Services Cisco Remote Management Services are an immediate, flexible management solution that can help you realize the full value of the Cisco Unified Computing

More information

An Oracle White Paper July 2011. Oracle Primavera Contract Management, Business Intelligence Publisher Edition-Sizing Guide

An Oracle White Paper July 2011. Oracle Primavera Contract Management, Business Intelligence Publisher Edition-Sizing Guide Oracle Primavera Contract Management, Business Intelligence Publisher Edition-Sizing Guide An Oracle White Paper July 2011 1 Disclaimer The following is intended to outline our general product direction.

More information

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis

Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Dynamic Resource Allocation in Software Defined and Virtual Networks: A Comparative Analysis Felipe Augusto Nunes de Oliveira - GRR20112021 João Victor Tozatti Risso - GRR20120726 Abstract. The increasing

More information

Cisco Prime Home 5.0 Minimum System Requirements (Standalone and High Availability)

Cisco Prime Home 5.0 Minimum System Requirements (Standalone and High Availability) White Paper Cisco Prime Home 5.0 Minimum System Requirements (Standalone and High Availability) White Paper July, 2012 2012 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public

More information

Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network

Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network Lutando Ngqakaza ngqlut003@myuct.ac.za UCT Department of Computer Science Abstract:

More information

Social Media Mining. Network Measures

Social Media Mining. Network Measures Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

More information

Paul Brebner, Senior Researcher, NICTA, Paul.Brebner@nicta.com.au

Paul Brebner, Senior Researcher, NICTA, Paul.Brebner@nicta.com.au Is your Cloud Elastic Enough? Part 2 Paul Brebner, Senior Researcher, NICTA, Paul.Brebner@nicta.com.au Paul Brebner is a senior researcher in the e-government project at National ICT Australia (NICTA,

More information

HP Intelligent Management Center Standard Software Platform

HP Intelligent Management Center Standard Software Platform Data sheet HP Intelligent Management Center Standard Software Platform Key features Highly flexible and scalable deployment Powerful administration control Rich resource management Detailed performance

More information

Software Define Storage (SDs) and its application to an Openstack Software Defined Infrastructure (SDi) implementation

Software Define Storage (SDs) and its application to an Openstack Software Defined Infrastructure (SDi) implementation Software Define Storage (SDs) and its application to an Openstack Software Defined Infrastructure (SDi) implementation This paper discusses how data centers, offering a cloud computing service, can deal

More information

Virtualized Security: The Next Generation of Consolidation

Virtualized Security: The Next Generation of Consolidation Virtualization. Consolidation. Simplification. Choice. WHITE PAPER Virtualized Security: The Next Generation of Consolidation Virtualized Security: The Next Generation of Consolidation As we approach the

More information

A.Prof. Dr. Markus Hagenbuchner markus@uow.edu.au. CSCI319 A Brief Introduction to Cloud Computing. CSCI319 Page: 1

A.Prof. Dr. Markus Hagenbuchner markus@uow.edu.au. CSCI319 A Brief Introduction to Cloud Computing. CSCI319 Page: 1 A.Prof. Dr. Markus Hagenbuchner markus@uow.edu.au CSCI319 A Brief Introduction to Cloud Computing CSCI319 Page: 1 Content and Objectives 1. Introduce to cloud computing 2. Develop and understanding to

More information

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com

Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com Global Headquarters: 5 Speen Street Framingham, MA 01701 USA P.508.872.8200 F.508.935.4015 www.idc.com W H I T E P A P E R O r a c l e V i r t u a l N e t w o r k i n g D e l i v e r i n g F a b r i c

More information

Cloud Infrastructure Licensing, Packaging and Pricing

Cloud Infrastructure Licensing, Packaging and Pricing Cloud Infrastructure Licensing, Packaging and Pricing ware, August 2011 2009 ware Inc. All rights reserved On July 12 2011 ware is Introducing a Major Upgrade of the Entire Cloud Infrastructure Stack vcloud

More information

Expert Reference Series of White Papers. Visions of My Datacenter Virtualized

Expert Reference Series of White Papers. Visions of My Datacenter Virtualized Expert Reference Series of White Papers Visions of My Datacenter Virtualized 1-800-COURSES www.globalknowledge.com Visions of My Datacenter Virtualized John A. Davis, VMware Certified Instructor (VCI),

More information

Server Virtualization with Windows Server Hyper-V and System Center

Server Virtualization with Windows Server Hyper-V and System Center Course 20409B: Server Virtualization with Windows Server Hyper-V and System Center Course Details Course Outline Module 1: Evaluating the Environment for Virtualization This module provides an overview

More information

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,

More information

Becoming a Cloud Services Broker. Neelam Chakrabarty Sr. Product Marketing Manager, HP SW Cloud Products, HP April 17, 2013

Becoming a Cloud Services Broker. Neelam Chakrabarty Sr. Product Marketing Manager, HP SW Cloud Products, HP April 17, 2013 Becoming a Cloud Services Broker Neelam Chakrabarty Sr. Product Marketing Manager, HP SW Cloud Products, HP April 17, 2013 Hybrid delivery for the future Traditional IT Evolving current state Future Information

More information

PEPPERDATA IN MULTI-TENANT ENVIRONMENTS

PEPPERDATA IN MULTI-TENANT ENVIRONMENTS ..................................... PEPPERDATA IN MULTI-TENANT ENVIRONMENTS technical whitepaper June 2015 SUMMARY OF WHAT S WRITTEN IN THIS DOCUMENT If you are short on time and don t want to read the

More information

Monitoring Databases on VMware

Monitoring Databases on VMware Monitoring Databases on VMware Ensure Optimum Performance with the Correct Metrics By Dean Richards, Manager, Sales Engineering Confio Software 4772 Walnut Street, Suite 100 Boulder, CO 80301 www.confio.com

More information

Analysis of Issues with Load Balancing Algorithms in Hosted (Cloud) Environments

Analysis of Issues with Load Balancing Algorithms in Hosted (Cloud) Environments Analysis of Issues with Load Balancing Algorithms in Hosted (Cloud) Environments Branko Radojević *, Mario Žagar ** * Croatian Academic and Research Network (CARNet), Zagreb, Croatia ** Faculty of Electrical

More information

AT&T Connect Video Conferencing Functional and Architectural Overview. v9.5 October 2012

AT&T Connect Video Conferencing Functional and Architectural Overview. v9.5 October 2012 AT&T Connect Video Conferencing Functional and Architectural Overview v9.5 October 2012 Video Conferencing Functional and Architectural Overview Published by: AT&T Intellectual Property Product: AT&T Connect

More information

Hardware/Software Guidelines

Hardware/Software Guidelines There are many things to consider when preparing for a TRAVERSE v11 installation. The number of users, application modules and transactional volume are only a few. Reliable performance of the system is

More information

Virtualization of CBORD Odyssey PCS and Micros 3700 servers. The CBORD Group, Inc. January 13, 2007

Virtualization of CBORD Odyssey PCS and Micros 3700 servers. The CBORD Group, Inc. January 13, 2007 Virtualization of CBORD Odyssey PCS and Micros 3700 servers January 13, 2007 61 Brown Road Ithaca, NY 14850 (607) 257-2410 Document Revision: 2 Last revised: January 13, 2007 Changes are periodically made

More information

Virtual Network Provisioning and Fault-Management across Multiple Domains

Virtual Network Provisioning and Fault-Management across Multiple Domains Virtual Network Provisioning and Fault-Management across Multiple Domains Distinguished Speaker Series Democritus University of Thrace, Greece Panagiotis Papadimitriou November 2010 Introduction The Internet

More information

Best Practices for Monitoring Databases on VMware. Dean Richards Senior DBA, Confio Software

Best Practices for Monitoring Databases on VMware. Dean Richards Senior DBA, Confio Software Best Practices for Monitoring Databases on VMware Dean Richards Senior DBA, Confio Software 1 Who Am I? 20+ Years in Oracle & SQL Server DBA and Developer Worked for Oracle Consulting Specialize in Performance

More information

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida

Power Management in Cloud Computing using Green Algorithm. -Kushal Mehta COP 6087 University of Central Florida Power Management in Cloud Computing using Green Algorithm -Kushal Mehta COP 6087 University of Central Florida Motivation Global warming is the greatest environmental challenge today which is caused by

More information

StACC: St Andrews Cloud Computing Co laboratory. A Performance Comparison of Clouds. Amazon EC2 and Ubuntu Enterprise Cloud

StACC: St Andrews Cloud Computing Co laboratory. A Performance Comparison of Clouds. Amazon EC2 and Ubuntu Enterprise Cloud StACC: St Andrews Cloud Computing Co laboratory A Performance Comparison of Clouds Amazon EC2 and Ubuntu Enterprise Cloud Jonathan S Ward StACC (pronounced like 'stack') is a research collaboration launched

More information

Auto-Scaling Model for Cloud Computing System

Auto-Scaling Model for Cloud Computing System Auto-Scaling Model for Cloud Computing System Che-Lun Hung 1*, Yu-Chen Hu 2 and Kuan-Ching Li 3 1 Dept. of Computer Science & Communication Engineering, Providence University 2 Dept. of Computer Science

More information

Manjrasoft Market Oriented Cloud Computing Platform

Manjrasoft Market Oriented Cloud Computing Platform Manjrasoft Market Oriented Cloud Computing Platform Innovative Solutions for 3D Rendering Aneka is a market oriented Cloud development and management platform with rapid application development and workload

More information

Cisco Application Networking Manager Version 2.0

Cisco Application Networking Manager Version 2.0 Cisco Application Networking Manager Version 2.0 Cisco Application Networking Manager (ANM) software enables centralized configuration, operations, and monitoring of Cisco data center networking equipment

More information

Two-Level Cooperation in Autonomic Cloud Resource Management

Two-Level Cooperation in Autonomic Cloud Resource Management Two-Level Cooperation in Autonomic Cloud Resource Management Giang Son Tran, Laurent Broto, and Daniel Hagimont ENSEEIHT University of Toulouse, Toulouse, France Email: {giang.tran, laurent.broto, daniel.hagimont}@enseeiht.fr

More information