# Solution of some equations in Biochemistry

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Solution of some equations in Biochemistry J.P Bennett J.H. Davenport H.M. Sauro School of Mathematical Sciences Institue of Grassl Animal Production University of Bath Poultry Division Claverton Down Roslin, Bath BA2 7AY Midlothian Engl Scotl Abstract It is possible to write down the equations governing a one-stage enzyme-catalysed reaction (according to Michaelis-Menton kinetics quite easily, deduce information about the steady-state flow in such a system. The situation is somewhat more complicated if several such reactions form a linear chain. We have applied Gröber-basis techniques to solve such systems. Introduction. If we consider an enzyme-catalysed reaction in steady-state, such as (with the underlying first-order mechanism X 0 v X 1 X 0 + E k1 X 0 E k3 k2 k4 X 1 + E in which we have written K eq = k 1k 3 k 2 k 4 K m,f = k 2 + k 3 k 1 K m,r = k 2 + k 3 as is stard the rate of conversion of X 0 to X 1 (flux can be written as k 4 (overall equilibrium constant (forward Michaelis constant (reverse Michaelis constant V max = [E T OT ]k 3 (maximum flux [E T OT ] = [E] + [X 0 E] (conservation of enzyme v = V m Km ([X 0 ] [X 1 ]K eq 1 + [X 0] + [X. (1 1] K m,f K m,r When the reactions are more complex, e.g. X 0 v 1 S1 v 2 X2, it becomes harder to analyse the situation, even under the steady-state assumption that [S 1 ] is constant. We would like to eliminate [S 1 ] from the two equations (analogous to (1 which determine the fluxes in the two stages. This has been done [...], the result is that [S 1 ] satisfies a quadratic equation. As far as the authors are aware, the case of three-stage linear chains has not been solved. 1

2 Our solution. The three-stage chain is X 0 v 1 S1 v 2 S2 v 3 X3. From the point of view of Gröbner-bases, the problem is, in principle, trivial. We have the equation v 1 = v 2 = v 3 at steady state, all that is required is to eliminate the variables [S 1 ] [S 2 ] from this. We used REDUCE-3 [Hearn, 1983] running on a Sun 3/160 a Gröbner-basis package written by the second author. The only delicate point is the ring in which the Gröbner-basis is to be calculated: this is L[s 1, s 2 ] where s 1 s 2 are [S 1 ] [S 2 ] (trying to mix biochemical notation with that of modern algebra is confusing at best!, where L is the field generated over the rational by all the other indeterminates that appear in the equations. The REDUCE input to solve this problem is surprisingly simple: v1:=(v1m/k1mf*(x0-s1*k1eq/(1+x0/k1mf+s1/k1mr; grobner!-constant v1m,k1mf,k1mr,k1eq; v2:=(v2m/k2mf*(s1-s2*k2eq/(1+s1/k2mf+s2/k2mr; grobner!-constant v2m,k2mf,k2mr,k2eq; v3:=(v3m/k3mf*(s2-x3*k3eq/(1+s2/k3mf+x3/k3mr; grobner!-constant v3m,k3mf,k3mr,k3eq; grobner!-constant x0,x3; grobner(num(v1-v2,num(v1-v3; The calls to grobner!-constant declare that the indeterminates mentioned belong in L, rather than to the polynomial extension of L. The call to grobner passes in two polynomials (the numerators of v 1 v 2 v 1 v 3, computes a lexicographical-order Gröbner-basis for the resulting ideal of L[s 1, s 2 ]. The calculation took about five seconds, compared with one minute if all three equations are given to grobner (if only v 1 v 2 v 2 v 3 are given to grobner, the calculation runs for about 15 minutes before exceeding the 2Mb heap available in our version of REDUCE. It turns out that s 1 satisfies a cubic equation, reproduced in the appendix, s 2 is linear in s 1 (the details are also in the appendix. REDUCE is capable of generating equations in FORTRAN form, machine-readable copies of these equations are obtainable from the first author. Conclusions. Acknowledgements. The Gröbner-basis package used was written while the second author was visiting the Royal Technical Highschool, Stockholm, the author would like to acknowledge the hospitality helpful suggestions of Stefan Arnborg Ian Cohen. References Appendix. The cubic satisfied by s 1 can be written as as bs cs 1 + d = 0, where the coefficients are (in the order a, b, c, d v 3 max,1k 3 eq,1k 3 m,1,rk m,2,r k m,3,r v 2 max,1k m,1,f k 2 eq,1k 2 m,1,rv max,2 k m,2,r k m,3,r 2v 2 max,1k m,1,f k 2 eq,1k 2 m,1,rk m,2,r v max,3 k m,3,r 2v max,1 k 2 m,1,f k eq,1 k m,1,r v max,2 k m,2,r v max,3 k m,3,r v max,1 k 2 m,1,f k eq,1 k m,1,r k m,2,r v 2 max,3k m,3,r k 3 m,1,f v max,2 k m,2,r v 2 max,3k m,3,r, 2

3 x 3 vmax,1k 3 eq,1k 3 m,1,rk 3 m,2,f k m,3,f x 3 vmax,1k 2 m,1,f keq,1k 2 m,1,rv 2 max,2 k eq,2 k m,2,r k m,3,f +x 3 vmax,1k 2 m,1,f keq,1k 2 m,1,rk 2 m,2,f v max,3 k m,3,f x 3 vmax,1k 2 m,1,f keq,1k 2 m,1,rk 2 m,2,f v max,3 k eq,3 k m,3,r x 3 v max,1 km,1,f 2 k eq,1 k m,1,r v max,2 k eq,2 k m,2,r v max,3 k m,3,f +x 3 v max,1 km,1,f 2 k eq,1 k m,1,r v max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r x 3 v max,1 km,1,f 2 k eq,1 k m,1,r k m,2,f vmax,3k 2 eq,3 k m,3,r + x 3 km,1,f 3 v max,2 k eq,2 k m,2,r vmax,3k 2 eq,3 k m,3,r +2vmax,1x 3 0 keq,1k 2 m,1,rk 3 m,2,r k m,3,r vmax,1k 3 eq,1k 3 m,1,rk 3 m,2,f k m,2,r k m,3,r + vmax,1k 3 eq,1k 3 m,1,rk 3 m,2,f k m,3,f k m,3,r +vmax,1k 2 m,1,f x 0 k eq,1 km,1,rv 2 max,2 k m,2,r k m,3,r + 3vmax,1k 2 m,1,f x 0 k eq,1 km,1,rk 2 m,2,r v max,3 k m,3,r vmax,1k 2 m,1,f keq,1k 2 m,1,rv 3 max,2 k m,2,r k m,3,r vmax,1k 2 m,1,f keq,1k 2 m,1,rk 3 m,2,r v max,3 k m,3,r vmax,1k 2 m,1,f keq,1k 2 m,1,rv 2 max,2 k eq,2 k m,2,r k m,3,f k m,3,r 2vmax,1k 2 m,1,f keq,1k 2 m,1,rk 2 m,2,f k m,2,r v max,3 k m,3,r +vmax,1k 2 m,1,f keq,1k 2 m,1,rk 2 m,2,f v max,3 k m,3,f k m,3,r vmax,1x 2 0 keq,1k 2 m,1,rv 3 max,2 k m,2,r k m,3,r vmax,1x 2 0 keq,1k 2 m,1,rk 3 m,2,r v max,3 k m,3,r + v max,1 km,1,f 2 x 0 k m,1,r v max,2 k m,2,r v max,3 k m,3,r +v max,1 km,1,f 2 x 0 k m,1,r k m,2,r vmax,3k 2 m,3,r 3v max,1 km,1,f 2 k eq,1 km,1,rv 2 max,2 k m,2,r v max,3 k m,3,r v max,1 km,1,f 2 k eq,1 km,1,rk 2 m,2,r vmax,3k 2 m,3,r v max,1 km,1,f 2 k eq,1 k m,1,r v max,2 k eq,2 k m,2,r v max,3 k m,3,f k m,3,r v max,1 km,1,f 2 k eq,1 k m,1,r k m,2,f k m,2,r vmax,3k 2 m,3,r 3v max,1 k m,1,f x 0 k eq,1 km,1,rv 2 max,2 k m,2,r v max,3 k m,3,r v max,1 k m,1,f x 0 k eq,1 km,1,rk 2 m,2,r vmax,3k 2 m,3,r 2km,1,f 3 k m,1,r v max,2 k m,2,r vmax,3k 2 m,3,r 2km,1,f 2 x 0 k m,1,r v max,2 k m,2,r vmax,3k 2 m,3,r, 2x 3 vmax,1x 3 0 keq,1k 2 m,1,rk 3 m,2,f k m,3,f + x 3 vmax,1k 2 m,1,f x 0 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r k m,3,f 2x 3 vmax,1k 2 m,1,f x 0 k eq,1 km,1,rk 2 m,2,f v max,3 k m,3,f + x 3 vmax,1k 2 m,1,f x 0 k eq,1 km,1,rk 2 m,2,f v max,3 k eq,3 k m,3,r x 3 vmax,1k 2 m,1,f keq,1k 2 m,1,rv 3 max,2 k eq,2 k m,2,r k m,3,f x 3 vmax,1k 2 m,1,f keq,1k 2 m,1,rk 3 m,2,f v max,3 k eq,3 k m,3,r x 3 vmax,1x 2 0 keq,1k 2 m,1,rv 3 max,2 k eq,2 k m,2,r k m,3,f x 3 vmax,1x 2 0 keq,1k 2 m,1,rk 3 m,2,f v max,3 k eq,3 k m,3,r +x 3 v max,1 km,1,f 2 x 0 k m,1,r v max,2 k eq,2 k m,2,r v max,3 k m,3,f + x 3 v max,1 km,1,f 2 x 0 k m,1,r k m,2,f vmax,3k 2 eq,3 k m,3,r x 3 v max,1 km,1,f 2 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r v max,3 k m,3,f +2x 3 v max,1 km,1,f 2 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r x 3 v max,1 km,1,f 2 k eq,1 km,1,rk 2 m,2,f vmax,3k 2 eq,3 k m,3,r x 3 v max,1 k m,1,f x 0 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r v max,3 k m,3,f +2x 3 v max,1 k m,1,f x 0 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r x 3 v max,1 k m,1,f x 0 k eq,1 km,1,rk 2 m,2,f vmax,3k 2 eq,3 k m,3,r +2x 3 km,1,f 3 k m,1,r v max,2 k eq,2 k m,2,r vmax,3k 2 eq,3 k m,3,r + 2x 3 km,1,f 2 x 0 k m,1,r v max,2 k eq,2 k m,2,r vmax,3k 2 eq,3 k m,3,r vmax,1x 3 2 0k eq,1 km,1,rk 3 m,2,r k m,3,r + 2vmax,1x 3 0 keq,1k 2 m,1,rk 3 m,2,f k m,2,r k m,3,r 2vmax,1x 3 0 keq,1k 2 m,1,rk 3 m,2,f k m,3,f k m,3,r vmax,1k 2 m,1,f x 2 0km,1,rk 2 m,2,r v max,3 k m,3,r +vmax,1k 2 m,1,f x 0 k eq,1 km,1,rv 3 max,2 k m,2,r k m,3,r + vmax,1k 2 m,1,f x 0 k eq,1 km,1,rk 3 m,2,r v max,3 k m,3,r +vmax,1k 2 m,1,f x 0 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r k m,3,f k m,3,r +3vmax,1k 2 m,1,f x 0 k eq,1 km,1,rk 2 m,2,f k m,2,r v max,3 k m,3,r 2vmax,1k 2 m,1,f x 0 k eq,1 km,1,rk 2 m,2,f v max,3 k m,3,f k m,3,r vmax,1k 2 m,1,f keq,1k 2 m,1,rv 3 max,2 k eq,2 k m,2,r k m,3,f k m,3,r vmax,1k 2 m,1,f keq,1k 2 m,1,rk 3 m,2,f k m,2,r v max,3 k m,3,r + vmax,1x 2 2 0k eq,1 km,1,rv 3 max,2 k m,2,r k m,3,r +vmax,1x 2 2 0k eq,1 km,1,rk 3 m,2,r v max,3 k m,3,r vmax,1x 2 0 keq,1k 2 m,1,rv 3 max,2 k eq,2 k m,2,r k m,3,f k m,3,r vmax,1x 2 0 keq,1k 2 m,1,rk 3 m,2,f k m,2,r v max,3 k m,3,r + v max,1 km,1,f 2 x 0 km,1,rv 2 max,2 k m,2,r v max,3 k m,3,r 3

4 +v max,1 km,1,f 2 x 0 km,1,rk 2 m,2,r vmax,3k 2 m,3,r + v max,1 km,1,f 2 x 0 k m,1,r v max,2 k eq,2 k m,2,r v max,3 k m,3,f k m,3,r +v max,1 km,1,f 2 x 0 k m,1,r k m,2,f k m,2,r vmax,3k 2 m,3,r v max,1 km,1,f 2 k eq,1 km,1,rv 3 max,2 k m,2,r v max,3 k m,3,r v max,1 km,1,f 2 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r v max,3 k m,3,f k m,3,r v max,1 km,1,f 2 k eq,1 km,1,rk 2 m,2,f k m,2,r vmax,3k 2 m,3,r +v max,1 k m,1,f x 2 0km,1,rv 2 max,2 k m,2,r v max,3 k m,3,r + v max,1 k m,1,f x 2 0km,1,rk 2 m,2,r vmax,3k 2 m,3,r 2v max,1 k m,1,f x 0 k eq,1 km,1,rv 3 max,2 k m,2,r v max,3 k m,3,r v max,1 k m,1,f x 0 k eq,1 km,1,rv 2 max,2 k eq,2 k m,2,r v max,3 k m,3,f k m,3,r v max,1 k m,1,f x 0 k eq,1 km,1,rk 2 m,2,f k m,2,r vmax,3k 2 m,3,r v max,1 x 2 0k eq,1 km,1,rv 3 max,2 k m,2,r v max,3 k m,3,r km,1,f 3 km,1,rv 2 max,2 k m,2,r vmax,3k 2 m,3,r 2km,1,f 2 x 0 km,1,rv 2 max,2 k m,2,r vmax,3k 2 m,3,r k m,1,f x 2 0km,1,rv 2 max,2 k m,2,r vmax,3k 2 m,3,r x 3 v 3 max,1x 2 0k eq,1 k 3 m,1,rk m,2,f k m,3,f + x 3 v 2 max,1k m,1,f x 2 0k 2 m,1,rk m,2,f v max,3 k m,3,f +x 3 v 2 max,1k m,1,f x 0 k eq,1 k 3 m,1,rv max,2 k eq,2 k m,2,r k m,3,f + x 3 v 2 max,1k m,1,f x 0 k eq,1 k 3 m,1,rk m,2,f v max,3 k eq,3 k m,3,r +x 3 v 2 max,1x 2 0k eq,1 k 3 m,1,rv max,2 k eq,2 k m,2,r k m,3,f + x 3 v 2 max,1x 2 0k eq,1 k 3 m,1,rk m,2,f v max,3 k eq,3 k m,3,r +x 3 v max,1 k 2 m,1,f x 0 k 2 m,1,rv max,2 k eq,2 k m,2,r v max,3 k m,3,f + x 3 v max,1 k 2 m,1,f x 0 k 2 m,1,rk m,2,f v 2 max,3k eq,3 k m,3,r +x 3 v max,1 k 2 m,1,f k eq,1 k 3 m,1,rv max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r +x 3 v max,1 k m,1,f x 2 0k 2 m,1,rv max,2 k eq,2 k m,2,r v max,3 k m,3,f +x 3 v max,1 k m,1,f x 2 0k 2 m,1,rk m,2,f v 2 max,3k eq,3 k m,3,r +2x 3 v max,1 k m,1,f x 0 k eq,1 k 3 m,1,rv max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r +x 3 v max,1 x 2 0k eq,1 k 3 m,1,rv max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r + x 3 k 3 m,1,f k 2 m,1,rv max,2 k eq,2 k m,2,r v 2 max,3k eq,3 k m,3,r +2x 3 k 2 m,1,f x 0 k 2 m,1,rv max,2 k eq,2 k m,2,r v 2 max,3k eq,3 k m,3,r + x 3 k m,1,f x 2 0k 2 m,1,rv max,2 k eq,2 k m,2,r v 2 max,3k eq,3 k m,3,r v 3 max,1x 2 0k eq,1 k 3 m,1,rk m,2,f k m,2,r k m,3,r + v 3 max,1x 2 0k eq,1 k 3 m,1,rk m,2,f k m,3,f k m,3,r v 2 max,1k m,1,f x 2 0k 2 m,1,rk m,2,f k m,2,r v max,3 k m,3,r +v 2 max,1k m,1,f x 2 0k 2 m,1,rk m,2,f v max,3 k m,3,f k m,3,r + v 2 max,1k m,1,f x 0 k eq,1 k 3 m,1,rv max,2 k eq,2 k m,2,r k m,3,f k m,3,r +v 2 max,1k m,1,f x 0 k eq,1 k 3 m,1,rk m,2,f k m,2,r v max,3 k m,3,r + v 2 max,1x 2 0k eq,1 k 3 m,1,rv max,2 k eq,2 k m,2,r k m,3,f k m,3,r +v 2 max,1x 2 0k eq,1 k 3 m,1,rk m,2,f k m,2,r v max,3 k m,3,r + v max,1 k 2 m,1,f x 0 k 2 m,1,rv max,2 k eq,2 k m,2,r v max,3 k m,3,f k m,3,r +v max,1 k 2 m,1,f x 0 k 2 m,1,rk m,2,f k m,2,r v 2 max,3k m,3,r + v max,1 k m,1,f x 2 0k 2 m,1,rv max,2 k eq,2 k m,2,r v max,3 k m,3,f k m,3,r +v max,1 k m,1,f x 2 0k 2 m,1,rk m,2,f k m,2,r v 2 max,3k m,3,r. When REDUCE is asked to factorise these expressions as much as possible (on factor, the results become somewhat more manageable, with a, b, c d becoming: (2v max,2 + v max,3 v max,1 k 2 m,1,f k eq,1 k m,1,r k m,2,r v max,3 k m,3,r (v max,2 + 2v max,3 v 2 max,1k m,1,f k 2 eq,1k 2 m,1,rk m,2,r k m,3,r v 3 max,1k 3 eq,1k 3 m,1,rk m,2,r k m,3,r k 3 m,1,f v max,2 k m,2,r v 2 max,3k m,3,r, ( ((((2km,2,r k m,3,f k m,2,f v max,3 + v max,2 k eq,2 k m,2,r k m,3,f + (vmax,2 + v max,3 k m,1,r k m,2,r k eq,1 4

5 (v max,2 + 3v max,3 x 0 k m,2,r k m,1,f + (v max,2 + v max,3 x 0 k eq,1 k m,1,r k m,2,r v 2 max,1k eq,1 k 2 m,1,rk m,3,r (((vmax,2 ( k eq,2 k m,3,f + k m,2,f v max,3 + (3v max,2 + v max,3 k m,1,r keq,1 (v max,2 + v max,3 x 0 k m,1,f +(3v max,2 + v max,3 x 0 k eq,1 k m,1,r v max,1 k m,1,f k m,1,r k m,2,r v max,3 k m,3,r ( (k m,2,r k m,3,f k eq,1 k m,2,f 2x 0 k m,2,r v 3 max,1 k 2 eq,1k 3 m,1,rk m,3,r +(v max,1 k eq,1 k m,1,r k m,2,f k m,1,f v max,2 k eq,2 k m,2,r (v max,1 k eq,1 k m,1,r k m,3,f k m,1,f v max,3 k eq,3 k m,3,r (v max,1 k eq,1 k m,1,r + k m,1,f v max,3 x 3 2k 3 m,1,f k m,1,r v max,2 k m,2,r v 2 max,3k m,3,r 2k 2 m,1,f x 0 k m,1,r v max,2 k m,2,r v 2 max,3k m,3,r, ( ((((3km,2,r 2k m,3,f k m,2,f v max,3 + v max,2k eq,2k m,2,rk m,3,f + (vmax,2 + v max,3 k m,1,r k m,2,r x 0 k eq,1 (v max,2 k eq,2 k m,3,f + k m,2,f v max,3 k 2 eq,1k m,1,r k m,2,r x 2 0k m,2,r v max,3 k m,1,f (v max,2 k eq,2 k m,3,f + k m,2,f v max,3 x 0 k 2 eq,1k m,1,r k m,2,r +(v max,2 + v max,3 x 2 0k eq,1 k m,1,r k m,2,r v 2 max,1k 2 m,1,rk m,3,r +( (((vmax,2 k eq,2 k m,3,f + k m,2,f v max,3 + (v max,2 + v max,3 k m,1,r x0 ( (v max,2 k eq,2 k m,3,f + k m,2,f v max,3 + k m,1,r v max,2 keq,1 k m,1,r k m,1,f 2 ( ((vmax,2 k eq,2 k m,3,f + k m,2,f v max,3 + 2k m,1,r v max,2 keq,1 (v max,2 + v max,3 x 0 k m,1,f x 0 k m,1,r x 2 0k eq,1 k 2 m,1,rv max,2 v max,1 k m,1,r k m,2,r v max,3 k m,3,r + ( 2(k m,2,r k m,3,f k eq,1 k m,2,f x 0 k m,2,r v 3 max,1 x 0 k eq,1 k 3 m,1,rk m,3,r (2v 2 max,1x 0 k eq,1 k m,1,r k m,2,f k m,3,f v max,1 k m,1,f x 0 v max,2 k eq,2 k m,2,r k m,3,f v max,1 k m,1,f x 0 k m,2,f v max,3 k eq,3 k m,3,r + v max,1 k m,1,f k eq,1 k m,1,r v max,2 k eq,2 k m,2,r k m,3,f +v max,1 k m,1,f k eq,1 k m,1,r k m,2,f v max,3 k eq,3 k m,3,r + v max,1 x 0 k eq,1 k m,1,r v max,2 k eq,2 k m,2,r k m,3,f +v max,1 x 0 k eq,1 k m,1,r k m,2,f v max,3 k eq,3 k m,3,r 2k 2 m,1,f v max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r 2k m,1,f x 0 v max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r (v max,1 k eq,1 k m,1,r + k m,1,f v max,3 x 3 k m,1,r k 3 m,1,f k 2 m,1,rv max,2 k m,2,r v 2 max,3k m,3,r 2k 2 m,1,f x 0 k 2 m,1,rv max,2 k m,2,r v 2 max,3k m,3,r k m,1,f x 2 0k 2 m,1,rv max,2 k m,2,r v 2 max,3k m,3,r ( ((vmax,2 k eq,2 k m,3,f + k m,2,f v max,3 k eq,1 k m,1,r k m,2,r (k m,2,r k m,3,f x 0 k m,2,f v max,3 km,1,f +(v max,2 k eq,2 k m,3,f + k m,2,f v max,3 x 0 k eq,1 k m,1,r k m,2,r v max,1x 2 0 km,1,rk 2 m,3,r +(v max,1 x 0 k m,2,f + k m,1,f v max,2 k eq,2 k m,2,r + x 0 v max,2 k eq,2 k m,2,r (v max,1 x 0 k m,3,f + k m,1,f v max,3 k eq,3 k m,3,r + x 0 v max,3 k eq,3 k m,3,r (v max,1 k eq,1 k m,1,r + k m,1,f v max,3 x 3 km,1,r 2 +(k m,1,f + x 0 (v max,2 k eq,2 k m,3,f + k m,2,f v max,3 v max,1 k m,1,f x 0 km,1,rk 2 m,2,r v max,3 k m,3,r (k m,2,r k m,3,f vmax,1x 3 2 0k eq,1 km,1,rk 3 m,2,f k m,3,r. 5

6 Once s 1 is determined, s 2 satisfies a linear equation in s 1, so we have s 2 = e/f where e f (in that order are: s 2 1k m,2,r k m,3,r (v 2 max,1k 2 eq,1k 2 m,1,r + v max,1 k m,1,f k eq,1 k m,1,r v max,2 + v max,1 k m,1,f k eq,1 k m,1,r v max,3 + k 2 m,1,f v max,2 v max,3 +s 1 ( x 3 v 2 max,1k 2 eq,1k 2 m,1,rk m,2,f k m,3,f + x 3 v max,1 k m,1,f k eq,1 k m,1,r v max,2 k eq,2 k m,2,r k m,3,f + x 3 v max,1 k m,1,f k eq,1 k m,1,r k m,2,f v max,3 k eq,3 k m,3,r x 3 k 2 m,1,f v max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r v 2 max,1x 0 k eq,1 k 2 m,1,rk m,2,r k m,3,r + v 2 max,1k 2 eq,1k 2 m,1,rk m,2,f k m,2,r k m,3,r v 2 max,1k 2 eq,1k 2 m,1,rk m,2,f k m,3,f k m,3,r v max,1 k m,1,f x 0 k m,1,r k m,2,r v max,3 k m,3,r + v max,1 k m,1,f k eq,1 k 2 m,1,rv max,2 k m,2,r k m,3,r + v max,1 k m,1,f k eq,1 k m,1,r v max,2 k eq,2 k m,2,r k m,3,f k m,3,r + v max,1 k m,1,f k eq,1 k m,1,r k m,2,f k m,2,r v max,3 k m,3,r + v max,1 x 0 k eq,1 k 2 m,1,rv max,2 k m,2,r k m,3,r + k 2 m,1,f k m,1,r v max,2 k m,2,r v max,3 k m,3,r + k m,1,f x 0 k m,1,r v max,2 k m,2,r v max,3 k m,3,r +k m,1,r (x 3 v 2 max,1x 0 k eq,1 k m,1,r k m,2,f k m,3,f x 3 v max,1 k m,1,f x 0 v max,2 k eq,2 k m,2,r k m,3,f + x 3 v max,1 k m,1,f k eq,1 k m,1,r k m,2,f v max,3 k eq,3 k m,3,r + x 3 v max,1 x 0 k eq,1 k m,1,r k m,2,f v max,3 k eq,3 k m,3,r x 3 k 2 m,1,f v max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r x 3 k m,1,f x 0 v max,2 k eq,2 k m,2,r v max,3 k eq,3 k m,3,r v 2 max,1x 0 k eq,1 k m,1,r k m,2,f k m,2,r k m,3,r + v 2 max,1x 0 k eq,1 k m,1,r k m,2,f k m,3,f k m,3,r v max,1 k m,1,f x 0 v max,2 k eq,2 k m,2,r k m,3,f k m,3,r v max,1 k m,1,f x 0 k m,2,f k m,2,r v max,3 k m,3,r v max,1 k m,1,r k m,3,r (k m,1,f x 0 v max,2 k eq,2 k m,2,r + k m,1,f x 0 k m,2,f v max,3 + k m,1,f k eq,1 k m,1,r v max,2 k eq,2 k m,2,r +k m,1,f k eq,1 k m,1,r k m,2,f v max,3 + x 0 k eq,1 k m,1,r v max,2 k eq,2 k m,2,r + x 0 k eq,1 k m,1,r k m,2,f v max,3. The results with on factor this time are (for e f ( (((vmax,2k eq,2k m,3,f + k m,2,f v max,3 + s 1 v max,3 x0 ( (v max,2 k eq,2 k m,3,f + k m,2,f v max,3 + k m,1,r v max,2 s1 k eq,1 (v max,2 + v max,3 s 2 1k eq,1 k m,1,f x 0 s 1 k eq,1 k m,1,r v max,2 v max,1 k m,1,r k m,2,r k m,3,r (v max,1 x 0 k m,1,r k m,3,f v max,1 s 1 k eq,1 k m,1,r k m,3,f + k m,1,f s 1 v max,3 k eq,3 k m,3,r + k m,1,f k m,1,r v max,3 k eq,3 k m,3,r + x 0 k m,1,r v max,3 k eq,3 k m,3,r (v max,1 k eq,1 k m,1,r k m,2,f k m,1,f v max,2 k eq,2 k m,2,r x 3 + (x 0 s 1 k eq,1 (s 1 k m,2,r + k m,2,f k m,2,r k m,2,f k m,3,f v 2 max,1k eq,1 k 2 m,1,rk m,3,r (s 1 + k m,1,r k 2 m,1,f s 1 v max,2 k m,2,r v max,3 k m,3,r k m,1,f x 0 s 1 k m,1,r v max,2 k m,2,r v max,3 k m,3,r ( (x0 + k eq,1 k m,1,r k m,1,f + x 0 k eq,1 k m,1,r (vmax,2 k eq,2 k m,2,r + k m,2,f v max,3 v max,1 k m,1,r k m,3,r. The advantages gained by partial factoring are quite evident in this formulation. 6

### is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### Calculus for the Life Sciences I

Calculus for the Life Sciences I es Joseph M. Mahaffy, mahaffy@math.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

### Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

### 3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Partial Fraction Decomposition for Inverse Laplace Transform

Partial Fraction Decomposition for Inverse Laplace Transform Usually partial fractions method starts with polynomial long division in order to represent a fraction as a sum of a polynomial and an another

7 Quadratic Expressions A quadratic expression (Latin quadratus squared ) is an expression involving a squared term, e.g., x + 1, or a product term, e.g., xy x + 1. (A linear expression such as x + 1 is

### For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### is identically equal to x 2 +3x +2

Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

### SOLUTION OF A AN EQUATION IN ONE VARIABLE

SOLUTION OF A AN EQUATION IN ONE VARIABLE Summary 1 Solution of linear equations in one variable... 4 1.1. Solution method... 4 2 Exercises Solutions of linear equations... 7 An equation is a propositional

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.

### Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

### To add fractions we rewrite the fractions with a common denominator then add the numerators. = +

Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### Florida Department of Education/Office of Assessment January 2012. Algebra 1 End-of-Course Assessment Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012 Algebra 1 End-of-Course Assessment Achievement Level Descriptions Algebra 1 EOC Assessment Reporting Category Functions, Linear Equations,

### Analyzing Enzyme Kinetic Data with a Graphing Calculator PART A: LINEWEAVER-BURK PLOTS

Analyzing Enzyme Kinetic Data with a Graphing Calculator PART A: LINEWEAVER-BURK PLOTS In discussing the properties of an enzyme, certain values, or parameters are determined experimentally under steady

### First Degree Equations First degree equations contain variable terms to the first power and constants.

Section 4 7: Solving 2nd Degree Equations First Degree Equations First degree equations contain variable terms to the first power and constants. 2x 6 = 14 2x + 3 = 4x 15 First Degree Equations are solved

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### not to be republished NCERT QUADRATIC EQUATIONS CHAPTER 4 (A) Main Concepts and Results

QUADRATIC EQUATIONS (A) Main Concepts and Results Quadratic equation : A quadratic equation in the variable x is of the form ax + bx + c = 0, where a, b, c are real numbers and a 0. Roots of a quadratic

### 1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### Polynomials. Teachers Teaching with Technology. Scotland T 3. Teachers Teaching with Technology (Scotland)

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T Scotland Polynomials Teachers Teaching with Technology (Scotland) POLYNOMIALS Aim To demonstrate how the TI-8 can be used

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### Algorithms. CS 2233 Discrete Mathematical Structures Algorithms 1

Algorithms On two occasions I have been asked, Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?... I am not able rightly to apprehend the kind of confusion

### CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.

SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real

### Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

### 10 Irreversible reactions in metabolic simulations: how reversible is irreversible?

Irreversible reactions in metabolic simulations: how reversible is irreversible? A. Cornish-Bowden and M.L. Cárdenas CNRS-BIP, chemin oseph-aiguier, B.P. 7, 4 Marseille Cedex, France Mathematically and

### An Insight into Division Algorithm, Remainder and Factor Theorem

An Insight into Division Algorithm, Remainder and Factor Theorem Division Algorithm Recall division of a positive integer by another positive integer For eample, 78 7, we get and remainder We confine the

### Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

### Factoring Cubic Polynomials

Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than

### Solving Equilibrium Problems. AP Chemistry Ms. Grobsky

Solving Equilibrium Problems AP Chemistry Ms. Grobsky Types of Equilibrium Problems A typical equilibrium problem involves finding the equilibrium concentrations (or pressures) of reactants and products

### is the degree of the polynomial and is the leading coefficient.

Property: T. Hrubik-Vulanovic e-mail: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...

### Fundamentals of Enzyme Kinetics

Fundamentals of Enzyme Kinetics Third edition by Athel Cornish-Bowden Universitats-und Landesbibliothek Bibliothek Biologie Schnittspahnstr. 10, 64287 Darmstadt lnv,nr. PORTLAND PRESS Preface to the Third

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### Week 3: Monopoly and Duopoly

EC202, University of Warwick, Term 2 1 of 34 Week 3: Monopoly and Duopoly Dr Daniel Sgroi Reading: 1. Osborne Sections 3.1 and 3.2; 2. Snyder & Nicholson, chapters 14 and 15; 3. Sydsæter & Hammond, Essential

### West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12

West Windsor-Plainsboro Regional School District Algebra I Part 2 Grades 9-12 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative

### Key. Introduction. What is a Quadratic Equation? Better Math Numeracy Basics Algebra - Rearranging and Solving Quadratic Equations.

Key On screen content Narration voice-over Activity Under the Activities heading of the online program Introduction This topic will cover: the definition of a quadratic equation; how to solve a quadratic

### Using Microsoft Excel to Plot and Analyze Kinetic Data

Entering and Formatting Data Using Microsoft Excel to Plot and Analyze Kinetic Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure 1). Type

### ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### #6 Opener Solutions. Move one more spot to your right. Introduce yourself if needed.

1. Sit anywhere in the concentric circles. Do not move the desks. 2. Take out chapter 6, HW/notes #1-#5, a pencil, a red pen, and your calculator. 3. Work on opener #6 with the person sitting across from

### Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

### Chapter 1 Quadratic Equations in One Unknown (I)

Tin Ka Ping Secondary School 015-016 F. Mathematics Compulsory Part Teaching Syllabus Chapter 1 Quadratic in One Unknown (I) 1 1.1 Real Number System A Integers B nal Numbers C Irrational Numbers D Real

ALGEBRA MODULE 8 QUADRATIC EQUATIONS GRADE 9 TEACHER DOCUMENT Malati staff involved in developing these materials: Rolene Liebenberg Liora Linchevski Marlene Sasman Alwyn Olivier Richard Bingo Lukhele

Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### MBA Jump Start Program

MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

### South Carolina College- and Career-Ready (SCCCR) Algebra 1

South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### CHEM-UA 652: Thermodynamics and Kinetics

1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 21 I. COMPLEX REACTION MECHANISMS A major goal in chemical kinetics is to determine the sequence of elementary reactions, or the reaction mechanism,

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### Find all of the real numbers x that satisfy the algebraic equation:

Appendix C: Factoring Algebraic Expressions Factoring algebraic equations is the reverse of expanding algebraic expressions discussed in Appendix B. Factoring algebraic equations can be a great help when

### 1. Students will demonstrate an understanding of the real number system as evidenced by classroom activities and objective tests

MATH 102/102L Inter-Algebra/Lab Properties of the real number system, factoring, linear and quadratic equations polynomial and rational expressions, inequalities, systems of equations, exponents, radicals,

### Lia Leon Margolin, Ph.D. No human endeavor can be called science if it cannot be demonstrated mathematically. Leonardo da Vinci ( )

Lia Leon Margolin, Ph.D. Marymount Manhattan College, New York, NY How to Improve Quantitative and Analytical Skills of Life Science Undergraduates No human endeavor can be called science if it cannot

### Chapter 12 - Reaction Kinetics

Chapter 12 - Reaction Kinetics In the last chapter we looked at enzyme mechanisms. In this chapter we ll see how enzyme kinetics, i.e., the study of enzyme reaction rates, can be useful in learning more

### LEAST SQUARES APPROXIMATION

LEAST SQUARES APPROXIMATION Another approach to approximating a function f(x) on an interval a x b is to seek an approximation p(x) with a small average error over the interval of approximation. A convenient

### The degree of a polynomial function is equal to the highest exponent found on the independent variables.

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH.

SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH. CONTENTS: AP calculus credit and Math Placement levels. List of semester math courses. Student pathways through the semester math courses Transition

### AN EASY LOOK AT THE CUBIC FORMULA

1 AN EASY LOOK AT THE CUBIC FORMULA Thomas J. Osler Mathematics Department Rowan University Glassboro NJ 0808 Osler@rowan.edu Introduction All students learn the quadratic formula for finding the roots

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chemical reactions can reach a state of dynamic equilibrium. Similar to the equilibrium states reached in evaporation of a liquid in a closed container or the dissolution

Factoring A Quadratic Polynomial If we multiply two binomials together, the result is a quadratic polynomial: This multiplication is pretty straightforward, using the distributive property of multiplication

### Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Three functions of importance in business are cost functions, revenue functions and profit functions. Cost functions

### a = x 1 < x 2 < < x n = b, and a low degree polynomial is used to approximate f(x) on each subinterval. Example: piecewise linear approximation S(x)

Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x) = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 ) and P 8 (x) and P

### ON THE CASUS IRREDUCIBILIS OF SOLVING THE CUBIC EQUATION. Jay Villanueva Florida Memorial University Miami, FL

ON THE CASUS IRREDUCIBILIS OF SOLVING THE CUBIC EQUATION Jay Villanueva Florida Memorial University Miami, FL 33055 jvillanu@fmuniv.edu I. Introduction II. III. IV. Cardan s formulas A. 1 real, 2 complex

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### Unit 3 Polynomials Study Guide

Unit Polynomials Study Guide 7-5 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial

### Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula

Lecture 5 : Solving Equations, Completing the Square, Quadratic Formula An equation is a mathematical statement that two mathematical expressions are equal For example the statement 1 + 2 = 3 is read as

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### 3.6. The factor theorem

3.6. The factor theorem Example 1. At the right we have drawn the graph of the polynomial y = x 4 9x 3 + 8x 36x + 16. Your problem is to write the polynomial in factored form. Does the geometry of the

### Integration of Rational Expressions by Partial Fractions

Integration of Rational Epressions by Partial Fractions INTRODUTION: We start with a few definitions rational epression is formed when a polynomial is divided by another polynomial In a proper rational

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### Partial Fractions: Undetermined Coefficients

1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the

### The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

### Piecewise Cubic Splines

280 CHAP. 5 CURVE FITTING Piecewise Cubic Splines The fitting of a polynomial curve to a set of data points has applications in CAD (computer-assisted design), CAM (computer-assisted manufacturing), and

### Solving Equations with One Variable

Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Solve linear equations in one variable

### Enzyme Kinetics: Velocity

ENZYME KINETICS: The rate of the reaction catalyzed by enzyme E A + B P is defined as -Δ[A] or -Δ[B] or Δ[P] Δt Δt Δt A and B changes are negative because the substrates are disappearing P change is positive

### Section 2.3. Learning Objectives. Graphing Quadratic Functions

Section 2.3 Quadratic Functions Learning Objectives Quadratic function, equations, and inequities Properties of quadratic function and their graphs Applications More general functions Graphing Quadratic

### a) Three faces? b) Two faces? c) One face? d) No faces? What if it s a 15x15x15 cube? How do you know, without counting?

Painted Cube (Task) Imagine a large 3x3x3 cube made out of unit cubes. The large cube falls into a bucket of paint, so that the faces of the large cube are painted blue. Now suppose you broke the cube

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### LINEAR EQUATIONS 7YEARS. A guide for teachers - Years 7 8 June The Improving Mathematics Education in Schools (TIMES) Project

LINEAR EQUATIONS NUMBER AND ALGEBRA Module 26 A guide for teachers - Years 7 8 June 2011 7YEARS 8 Linear Equations (Number and Algebra : Module 26) For teachers of Primary and Secondary Mathematics 510

### Modelling cellular processes with Python and Scipy

Modelling cellular processes with Python and Scipy B.G. Olivier (bgoli@sun.ac.za), J.M. Rohwer (jr@sun.ac.za) and J.-H.S. Hofmeyr (jhsh@sun.ac.za) Dept. of Biochemistry, University of Stellenbosch, Private

### Teacher Guide for Scorable epats ITEM SAMPLERS. Tennessee End of Course Assessment Algebra I. Algebra I

Teacher Guide for Scorable epats 2012 ITEM SAMPLERS Tennessee End of Course Assessment Algebra I Algebra I Table of Contents Teacher Guide for Scorable epats... 3 Getting Started... 3 Taking the Test...