Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study

Size: px
Start display at page:

Download "Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study"

Transcription

1 Eur J Nucl Med Mol Imaging (2009) 36: DOI /s ORIGINAL ARTICLE Effects of long-term practice and task complexity on brain activities when performing abacus-based mental calculations: a PET study Tung-Hsin Wu & Chia-Lin Chen & Yung-Hui Huang & Ren-Shyan Liu & Jen-Chuen Hsieh & Jason J. S. Lee Received: 7 December 2007 / Accepted: 23 August 2008 / Published online: 5 November 2008 # Springer-Verlag 2008 Abstract Purpose The aim of this study was to examine the neural bases for the exceptional mental calculation ability possessed by Chinese abacus experts through PET imaging. Methods We compared the different regional cerebral blood flow (rcbf) patterns using 15 O-water PET in 10 abacus T.-H. Wu : C.-L. Chen Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan Y.-H. Huang Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung County, Taiwan R.-S. Liu Department of Nuclear Medicine, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan R.-S. Liu Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan J.-C. Hsieh Brain Research Center and Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan J.-C. Hsieh Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan T.-H. Wu : J. J. S. Lee (*) Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Taipei, Taiwan112 experts and 12 non-experts while they were performing each of the following three tasks: covert reading, simple addition, and complex contiguous addition. All data collected were analyzed using SPM2 and MNI templates. Results For non-experts during the tasks of simple addition, the observed activation of brain regions were associated with coordination of language (inferior frontal network) and visuospatial processing (left parietal/frontal network). Similar activation patterns but with a larger visuospatial processing involvement were observed during complex contiguous addition tasks, suggesting the recruitment of more visuospatial memory for solving the complex problems. For abacus experts, however, the brain activation patterns showed slight differences when they were performing simple and complex addition tasks, both of which involve visuospatial processing (bilateral parietal/ frontal network). These findings supported the notion that the experts were completing all the calculation process on a virtual mental abacus and relying on this same computational strategy in both simple and complex tasks, which required almost no increasing brain workload for solving the latter. Conclusion In conclusion, after intensive training and practice, the neural pathways in an abacus expert have been connected more effectively for performing the number encoding and retrieval that are required in abacus tasks, resulting in exceptional mental computational ability. Keywords Mental calculation. Abacus. Brain activities. PET Introduction It is well known that practice and experience can result in substantial changes in the organization of the adult cerebral

2 Eur J Nucl Med Mol Imaging (2009) 36: cortex at multiple levels (from the molecular or synaptic level, to cortical maps and large-scale neural networks) of the central nervous system [1 3]. Modern neuroimaging methods such as positron emission tomography (PET) and functional magnetic resonance imaging (fmri) are excellent tools to study these changes, enabling examination of how practice in certain task affects the brain. Performing fast and accurate mental calculations which requires significant practice is a good example of high-level cognitive skill that involves the coordination of various basic and complex cognitive processes [4 6]. In our present study, we used PET imaging to investigate the neurophysiological mechanisms underlying superior mental computational ability of well-trained abacus experts. From the cognitive point of view, the mental solution of arithmetic problems requires integration of multiple cognitive functions, including recognizing and manipulating numbers in a working memory, temporarily storing and retrieving the intermediate results, and meanwhile applying basic arithmetical rules for sequential control of various steps. For solving more complex problems efficiently, one requires not only various working memories, but also dedicated resolution algorithms and long-term practice, and all of which are critical factors influencing calculation performance. This could suggest that brain activity during the performance of mental calculations will also depend on the complexity of arithmetic problems, the resolution algorithms applied, and the specific test groups (trained vs. not trained) recruited. Abacus-based mental calculation is a unique traditional Chinese cultural practice and in a broad sense is a special method for accomplishing mental calculations. A well-trained abacus expert can perform mental calculation, even very complex ones, exceptionally fast and with high accuracy. For example, abacus experts can quickly retrieve the answer to a problem with contiguous two-digit additions (nine problems), which is normally considered difficult for non-experts, with response latencies of 2 to 3 seconds and only require about 8 to 12 seconds to correctly answer more complex four-digit contiguous additions. According to previous studies of the processes in mental abacus calculations [7], the experts were able to mentally implement the abacus operations depicted in Fig. 1 by interiorizing the actual manipulations of the abacus beads through a particular algorithm on a virtual abacus after long practice. Because all the sequential arithmetic steps and intermediate results could be directly encoded and retrieved through this virtual abacus which circumvents the limited capacity and slowness of existing mental arithmetic strategies, abacus learners could circumvent the limited capacity and slowness of the existing mental arithmetic strategies to also achieve fast and accurate calculations. Similar computing mechanisms were observed in the non-experts on contiguous addition problems, which need (A) (B) upper deck lower deck 27+16=? 2 7 thousands hundreds tens ones 4 3 step 1. step 2. step 3. Fig. 1 Abacus introduction and operation. a The abacus is typically constructed of various parts. Each bead in the upper deck has a value of 5; each bead in the lower deck has a value of 1. Beads are considered counted, when moved towards the horizontal beam that separates the two decks. Once a specific column of beads is defined as the ones (right-most column), then the next adjacent column to the left is the tens, the next adjacent column the hundreds, and so on. b For example, when performing the addition 27+16, the numeric representation of the number 27 is first placed. The simple addition +10 is applied by moving one bead to the left column of the lower deck. Then 6 (10 5+1) is added by adding both one bead from the lower deck on the row directly to the left (+10) and one bead from the lower deck (+1) and removing one bead from the upper deck ( 5), which completes the operation to retrieve simple arithmetic and recollect intermediate results directly from short-term memory. However, contiguous two-digit number operations appeared to be more difficult, as the non-experts suffered from heavy workload while performing complex computations requiring recollection of intermediate results quickly in their working memory. Each intermediate result in computations could be divided into three steps: (1) perform second-digit addition, (2) perform first-digit addition, and (3) retrieve the first step result from the working memory and continue to perform the addition to the second step result. This type of number processing for complex calculations in non-experts was relatively complicated and time-consuming. Several functional neuroimaging studies have been carried out to explore neural correlates of mental calculation [4 6, 8 13]. Current cognitive models, supported by some, postulate at least two representational formats for number: language-based and language-independent representation. The former is used to store tables of exact arithmetic knowledge, and the latter is for quantity manipulation and approximation relying on visuospatial

3 438 Eur J Nucl Med Mol Imaging (2009) 36: networks [4]. Dehaene and Cohen further proposed a triplecode model of number processing that suggests that numerical information can be manipulated mentally in three formats: an analogical representation of quantities, a verbal format, and a visual Arabic representation [10]. Specifically, the model also postulates the coordination of verbal processing and visuospatial strategies while performing multidigit operations in which rote knowledge and mental visualization of arithmetic procedure are required. However, little is known about the cognitive mechanisms involved in abacus-based mental calculation. To date, only a few research groups have investigated the underlying neural correlates of abacus-based mental calculations [14 16]. Tanaka et al. [15] and Hanakawa et al. [14] separately indicated that digital working memory and mental calculation in abacus experts are associated with enhanced involvement of neural resources in the frontalparietal circuit for visuospatial information processing. However, Chen et al. [16] pointed out underlying dissociated neural correlates (the frontotemporal and frontoparietal circuits) in child abacus experts. They all attempted to explore neural correlates and examine the effect of number size on mental operations, but their results were somehow inconsistent, including patterns of increasing and functional reorganization of regional activations. In this study, we measured the relative regional cerebral blood flow (rcbf) with 15 O-water PET in abacus experts and non-experts to investigate the neural processing bases of the cognitive ability. By comparing brain activation between the two groups during the processing of computational problems of different complexity, our study focused on the following unanswered questions: (1) what are the brain activation patterns in the abacus experts during calculation, (2) what are the neural processes shared with the non-experts, (3) what could be the cortical representation related to problem complexity, and (4) what activation areas in the abacus experts are unique and correlated with their exceptional computational ability. Materials and methods Subjects: abacus experts and non-experts The non-expert group comprised 12 right-handed subjects (6 male and 6 female; average age 25.8 years). All the subjects had received more than 14 years of formal education and had an average score for computational ability as tested by The College Entrance Exam in Mathematics. The expert group comprised ten right-handed abacus experts (five male and five female; average age 24.9 years) recommended by the Abacus Calculation Promoting Association. All experts were certified with at least fifth-level ability in both mental calculation and actual abacus operations. To be qualified as an expert (level 4 masters and above), one should be able to handle 5 10 digits per second and make few errors in mixed addition and subtraction problems. Most of the abacus experts began to develop their calculation ability at about the age of 10 years and continuously practised for 1 to 2 hours per day to maintain their exceptional ability in mental calculation. The initial test results for the two groups, with different types of calculation problems are given in Table 1. Both groups were situated free from anxiety and on the basis of their performance. We also contrasted problem-solving requirements with the response time and the correct rate to equalize problem complexity in the two groups. Answering nine contiguous addition problems with single-digit and two-digits, the experts performed nearly perfectly. In the four-digit calculations, the correct rate was down to 70%, and the response time was increased about fourfold compared to the single- and two-digit calculations. For the non-experts, similar results were observed for single- and two-digit calculations. The four-digit calculations were considered too difficult for the non-experts. Therefore, the simple calculations for the experts and non-experts were set to the two-digit and single-digit Table 1 Examples of mental calculations of different complexity performed by abacus experts and non-experts Type of problem Example Number of calculations Response latency (s) Correct answer (%) Non-experts Experts Non-experts Experts Single-digit addition a =? 5 48±11 10±3 94± Two-digit addition a =? 5 207±47 12±2 73± Four-digit addition a =? 5 47±10 78±18 Multiplication =? 5 21±3 88±13 Division =? 5 35±13 68±11 a Nine contiguous additions were performed.

4 Eur J Nucl Med Mol Imaging (2009) 36: addition calculations, and the complex calculations were set to the four-digit and two-digit problems, respectively. Experimental tasks Covert reading condition To reveal the neural network specifically for the procedure of mental calculation, a covert reading paradigm was designed for subsequent statistical comparison. In the covert reading condition, the experimental arrangement was similar to the calculation condition in which ten stimulation slices including nine slices of Arabic digits for continuous additions and the last one for the report of their answers were presented to subjects, the difference being that the subjects were asked solely to read the number covertly during the first nine slice presentations without performing the calculation. Simple calculation condition All the non-experts were presented with nine contiguous one-digit additions, and asked to report the answers aloud. To minimize error rates in the non-experts, each addition was limited to a sum of less than 50. Similar arrangements were designed for the experts but with two-digit additions, and each addition was limited to a sum of 500. Complex calculation condition All the non-experts were presented with nine contiguous two-digit additions and asked to report the answers aloud. For the non-experts each addition was limited to a sum of less than 500. Four-digit additions problems were prepared for the experts with no limit to the sums. PET image acquisition Nine sequential rcbf PET measurements with 15 O-labelled water were obtained during the three conditions repeated three times in random order. Each rcbf measurement was acquired on a Scanditronix PC WB (Uppsala, Sweden) PET scanner using the interleaved scan technique comprising thirty contiguous brain images with a voxel size of mm. For each study, one set of static PET data were acquired in 2-D mode based on the following protocol: at time 0, PET data acquisition started and the subject presented one by one with a set of eight calculation tasks (30 s for each calculation for a total of 240 s); at 30 s (immediately after conclusion of the first calculation), intravenous bolus injection of 30 mci 15 O-labelled water; data acquisition stopped after conclusion of all eight tasks (i.e., 210 s data acquisition after tracer injection). The image was then reconstructed with correction for head attenuation using a measured transmission scan. During the experimental tasks, the Arabic number stimuli in black on a light-grey background were projected onto a 60-inch screen hanging from the ceiling such that the subjects could see the entire screen. Each task consisted of eight problems, and ten stimulation slices were presented at fixed time intervals of 3 s in a problem. A digital recorder was prepared to record the verbal answers from the subjects and was used for checking the accuracy of their answers. To effectively monitor the correct rate in the non-expert group, the problems were prolonged to 50 s for the complex calculation condition, and only six problems were given for an rcbf measurement. Image data analysis After PET acquisition, all imaging data were realigned with automated image realignment (AIR) software [17] using rigid body transformations (six degrees of freedom). The original images were then transformed onto a standardized stereotactic Talairach space using the SPM2 (Wellcome Department of Imaging Neuroscience, London, UK) and the MNI (Montreal Neurological Institute) templates, sampled at a voxel size of mm. The transformed images were further smoothed using a threedimensional 12-mm full-width at half-maximum (FWHM) Gaussian filter to compensate for intersubject differences and to suppress high-frequency noise in the images. Global differences in CBF within and between the subjects were removed by scaling. Statistical comparisons across conditions were made using a t test. Statistical parametric maps corresponding to comparisons between the simple and complex computational tasks were generated with SPM2 to identify voxels that showed a statistically significant change, implemented in Matlab (Mathworks, Sherborne, MA). Three main comparisons were carried out using cognitive subtraction analysis. Increases in brain activity were evaluated (1) during simple calculation minus covert reading, (2) during complex calculation minus covert reading, and (3) during complex calculation minus simple calculation in both the experts and the non-experts. For each comparison, the voxel amplitude t map was transformed into a Z volume with a threshold Z 0 =3.09, which corresponds to p (uncorrected for multiple comparisons). For the complex calculation versus simple calculation comparison, the simple calculation versus covert reading comparisons were masked (mask set at p<0.05) in order to avoid artificial differences due to decreases in simple calculation conditions. To explore the task-related interest in each group, within-group analysis was performed in terms of the conjoint effects across the subjects. The statistical threshold was set at p<0.001 (uncorrected for multiple comparisons). In addition, conjunction analyses using orthogonalized contrasts [18]

5 440 Eur J Nucl Med Mol Imaging (2009) 36: were performed to uncover the activated areas common to abacus experts and non-experts while performing complex calculation tasks. To further identify activities specific to the two groups during calculations, betweengroup analysis was performed using a two-sample Student s t test. We focused only on differences in brain activation during complex calculation versus covert reading. Analysis was performed using a threshold at p<0.001 (uncorrected for multiple comparisons). The statistical images were colour-coded and then overlaid onto the MNI MR template to produce a combined PET/ MR image suitable for visualization. Results a simple calculation vs. covert reading b complex calculation vs. covert reading Arithmetic skill Correct rate and response latencies for each subject group (non-expert and expert) in the initial test study (Table 1) were used to decide the experimental set-up for the simple and complex calculation paradigm. During experiment tasks, correct rates in solving the simple and complex calculations were 94% and 73% for the non-experts and 100% and 78% for the experts, respectively. Simple calculations were solved by both groups with very satisfactory accuracies (94% and 100%). However, computational performance was worse for complex calculations in both groups, confirming a certain degree of difficulty (73% and 78%) in the tasks, which allowed the neural correlates under states of higher loading to be investigated. During actual scanning, correct rates in solving simple and complex calculations were 98% and 67% for the nonexperts and 99% and 83% for the experts, respectively. Performances during simple calculations by both groups were similar to those of the initial test studies which both revealed very satisfactory accuracies (98% and 99%). However, the differences became more significant for complex computations compared to those for simple computations, confirming the existence of different arithmetical skills between the two groups (67% and 83%). PET results c complex calculation vs. simple calculation Fig. 2 PET activation patterns in non-experts during (a) simple calculation vs. covert reading task, (b) complex calculation vs. covert reading task, and (c) complex calculation task vs. simple calculation task are shown overlaid on a surface-rendered standard anatomical space, and representative coronal slices are chosen for display (p< 0.001, uncorrected for multiple comparisons) The brain activation patterns of the non-experts are shown in Fig. 2 and the activated areas are shown in Table 2. Simple and complex tasks induced almost the same activation areas with left-hemisphere predominance. Activities were found in the bilateral superior parietal lobule (SPL, BA 7), left precentral gyrus (premotor cortex) and right superior medial frontal gyrus (supplementary motor area, pre-sma) including the anterior cingulated cortex (ACC) for both simple calculation and complex calculation tasks. Moreover, significant activation was also found in the left inferior frontal gyrus (BA 9, 45, 46) for complex calculation tasks, and the region in the inferior parietal lobule (IPL, BA 40) including the intraparietal sulcus extending anteriorly to the postcentral gyrus and laterally into the angular gyrus (AG). The brain activation patterns of the abacus experts are shown in Fig. 3 and the areas are shown in Table 3. The simple calculation tasks induced activation in the in the left precentral gyrus and the right precentral gyrus (premotor cortex). Activation in the bilateral precuneus and the left IPL (BA 40) was also found. In addition, there was activation in the right cingulate gyrus (BA 31). The complex calculation tasks induced more focused and symmetric activation patterns in the precentral gyrus (premotor cortex), and SPL (BA 7). Activation extending from the left precuneus (BA 7) through the SPL laterally to the IPL (BA 40) was also observed. No activation was observed in classical language areas of the left hemisphere. Finally, activation was observed in the right medulla and cerebellum. During complex calculation versus simple calculation tasks, the non-experts and experts (Figs. 2c and 3c) showed activation areas primarily in the medial frontal gyrus and SPL (including in the vicinity of the precuneus). However, the ACC and pre-sma showed increasing activation in the non-experts.

6 Eur J Nucl Med Mol Imaging (2009) 36: Table 2 Foci of significant rcbf increases in non-experts between different tasks Task Region Coordinates (mm) Z score x y z Simple calculation versus covert reading Frontal lobe Right pre-sma (BA 6) Left precentral gyrus (BA 6) Right precentral gyrus (BA 6) Parietal lobe Left postcentral gyrus (BA 4) Left inferior parietal lobe (BA 40) Temporal Left fusiform gyrus (BA 37) cortex Right fusiform gyrus (BA 37) Complex calculation versus covert reading Frontal lobe Right anterior cingulated cortex (BA 24/ ) Right superior medial frontal gyrus (BA 6) Left precentral gyrus (BA 6) Left middle frontal gyrus (BA 45/46) Left inferior frontal gyrus (BA 6/9) Parietal lobe Left superior parietal lobe (BA 7) Right superior parietal lobe (BA 7) Left inferior parietal lobe (BA 40) Right inferior parietal lobe (BA 40) Complex calculation versus simple calculation Frontal lobe Right anterior cingulated cortex (BA 32) Left pre-sma (BA 6) Left precentral gyrus (BA 6) Parietal lobe Right superior parietal lobe (BA 7) Left inferior parietal lobe (BA 40) Note: Within these regions, the anatomical localization of the extrema was based on MNI template anatomical analysis. The Z map was obtained using a threshold Z 0 =3.09 (BA Brodmann area; p<0.001, uncorrected for multiple comparisons). Brain activities specific to the non-expert and expert groups, and areas common to the two groups during calculation are depicted in Fig. 4 and details are shown in Table 4. The non-expert group showed hyperactivity in the superior frontal and left frontal areas (Fig. 4a). It has been suggested that these areas are associated with executive functions such as the ability to plan, initiate, coordinate a sequence of processes and place them in appropriate orders [13]. On the other hand, activity in the left IPL (BA 40) was greater in the experts than the non-experts (Fig. 4b). This area is considered to be involved in the storage of immediate results on the virtual abacus image. The Fig. 4c also shows that there were similarities in the activation areas involved in visuospatial processing between the two groups. Discussion In the non-expert group (Fig. 2), activation areas in the prefrontal, premotor and parietal cortices, and the ACC with a tendency toward left lateralization, which have been often indicated as neural substrates constituting verbal and visuospatial strategy, were observed in both simple and complex tasks. Overall, our results are generally consistent with those of previous work [4, 6, 8, 9, 12, 19, 20] in which these activation regions reveal coordination of verbal processing for retrieving rote arithmetic facts, and back-up visuospatial strategy for mental visualization of the arithmetic procedure when rote knowledge is not available [21]. We also observed that the calculation procedure adopted by the non-experts facing difficult tasks was mediated by coordination of several neural networks with different weights. Thus, comparing the results with complex calculation conditions, the non-experts tended to shift to a visuospatial strategy (left precentral gyrus and right SPL) to attempt to solve increasingly complicated problems. We therefore postulate that there is greater involvement of a verbal strategy for simple calculations and of a visuospatial strategy for complex problems. Moreover, involvement of the ACC and superior frontal gyrus may imply that neural networks are not effectively connected resulting in the need for more effort to coordinate a sequence of processes and place them in an appropriate order for higher weighted computation loadings. While examining the patterns of cerebral activation in the experts (Fig. 3), we observed comparable results in nonexperts and experts especially in the left hemispheric parietal areas, showing that both groups used visuospatial processes during mental calculation, whereas the non-

7 442 Eur J Nucl Med Mol Imaging (2009) 36: a simple calculation vs. covert reading b complex calculation vs. covert reading c complex calculation vs. simple calculation Fig. 3 PET activation patterns in abacus experts during (a) simple calculation vs. covert reading task, (b) complex calculation vs. covert reading task, and(c) complex calculation task vs. simple calculation task are shown overlaid on a surface-rendered standard anatomical space, and representative coronal slices are chosen for display (p<0.001, uncorrected for multiple comparisons) experts relied more on verbal strategies. Our results also showed that brain activation patterns in the experts during mental calculation were more focally and symmetrically distributed than those in the non-experts, in which the activities were more extensive. These dissimilar brain activation patterns during mental calculation probably reflect different cognitive strategies adopted by the two groups, accounting for discrepancies in their computation ability. Looking further into cortical activation in the abacus experts, their calculation networks were much more symmetrically distributed in the precentral gyrus at the levels of middle frontal gyrus and parietal lobe. Participation of the right hemisphere indicates that visuospatial information processing is involved in mental calculation [14], because the posterior superior parietal cortex is responsible for generation of mental numerical images (precuneus) [22]. Also these visual images can be transferred to the right parietal cortex (precuneus) for further manipulation and comparison [23]. These results possibly suggest that the abacus experts had developed a spatial representation of numbers as bead positions on a virtual abacus in their mind (left parietal cortex) and performed all computation steps through rule-based visuomotor processing of the abacus beads (right precentral gyrus and right parietal cortex) [24, 25]. In conclusion, mental calculation by the abacus experts was likely associated with enhanced involvement of neural resources for visuospatial information processing in a two- Table 3 Foci of significant rcbf increases in abacus experts between different tasks Task Region Coordinates (mm) Z score x y z Simple calculation versus covert reading Frontal lobe Left precentral gyrus (BA 6) Right precentral gyrus (BA 6) Parietal lobe Left precuneus (BA 7) Right precuneus (BA 7) Left inferior parietal lobe (BA 40) Right cingulate gyrus (BA 31) Complex calculation versus covert reading Frontal lobe Left precentral gyrus (BA 6) Right precentral gyrus (BA 6) Parietal lobe Left superior parietal lobe (BA 7) Right superior parietal lobe (BA 7) Left precuneus Left inferior parietal lobe (BA 40) Temporal cortex Left superior temporal gyrus (BA 22) Cerebellum Right cerebellum (anterior part) Brainstem Right medulla Complex calculation versus simple calculation Frontal lobe Left precentral gyrus (BA 6) Parietal lobe Left superior parietal lobe (BA 7) Right superior parietal lobe (BA 7) Note: Within these regions, the anatomical localization of the extrema was based on MNI template anatomical analysis. The Z map was obtained using a threshold Z 0 =3.09 (BA Brodmann area; p<0.001, uncorrected for multiple comparisons).

8 Eur J Nucl Med Mol Imaging (2009) 36: a Non-expert > Expert the same activation clusters in the visuospatial network, suggesting that both simple and complex tasks are relying on the same computational strategy. Specifically, additional activation was found in the right precentral gyrus, and this may be the reason why the abacus experts found simple calculation tasks too easy needing few actual calculation operations. These areas similarly constitute a circuit involved in visuospatial-dependent encoding and retrieval of the imaginary abacus. However, more complex operb Expert > Non-expert c Common area shared by Non-expert and Expert Fig. 4 Between-group comparison. a, b PET activation difference map between the two subject groups during the complex calculation task relative to the simple calculation task: a activation areas that the expert group recruited more than the non-expert group; b activation areas that the non-expert group recruited more than the expert group. c Overlap of areas in the two subject groups exhibiting significant activity during the complex calculation task relative to the covert reading task overlaid on a surface-rendered standard anatomical image (p<0.0001, uncorrected) dimensional space. This result shows that the abacus experts mainly utilized visuospatial strategy for computation through extensive abacus training, and this strategy increased their computational ability and accuracy because it may be more efficient to mentally manipulate large numbers using a spatial representation than a sequentially organized phonological representation. Comparing the differences between complex and simple calculations in the expert group (Table 3), one can observe Table 4 Between-group comparisons during complex calculation versus covert reading tasks Comparison Region Coordinates (mm) Z score x y z Non-expert > expert Frontal lobe Left pre-sma (BA 6) Left precentral gyrus (BA 6/9) Left precentral gyrus (BA 6) Parietal lobe Left inferior parietal lobe (BA 40) Left postcentral gyrus (BA 5) Temporal lobe Right middle temporal gyrus (BA 19/39) Expert > non-expert Parietal lobe Left inferior parietal lobe (BA 40) Areas common to non-experts and experts Frontal lobe Left precentral gyrus (BA 6) Parietal lobe Left superior parietal lobe (BA 7) Right superior parietal lobe (BA 7) Left inferior parietal lobe (BA 40) Note: Within these regions, the anatomical localization of the extrema was based on MNI template anatomical analysis. The Z map was obtained using a threshold Z 0 =3.09 (BA Brodmann area; p<0.0001, uncorrected)

9 444 Eur J Nucl Med Mol Imaging (2009) 36: ations must be recapitulated by visualizing a series of movements or visuospatial relationships, and to some degree this is an action-oriented object representation [26] of the imaginary abacus, which may explain the activation of the right precentral gyrus. In addition, previous studies [24, 25] have shown an increased right precentral activation known to play a role in attention, when subjects use a visual strategy during calculation. This finding suggests heavier computational loading would be needed to sustain selective attention to mental numerical images generated in the left medial parietal cortex (precuneus). In general, abacus experts can perform complex computations mentally with exceptional speed and accuracy since they only need to read answers from bead positions on a virtual abacus, just like using a calculator. However, complex problems involve relatively long numerical strings, and such long strings of digits must be memorized for further calculation, and hence temporary storage of results during mental calculation via a virtual abacus is crucial (left IPL, BA 40; Fig. 4b). The ability to record digits from the string shown on the virtual abacus seems to be a critical step in determining how many digits the experts can manipulate and hence the complexity of the problems they can accurately solve. Comparison of brain activation between the two groups showed greater involvement of the superior frontal and left frontal areas in the non-expert group (Fig. 4a). Involvement of these areas is related to the global workspace executive function, suggesting that these areas may play an important role in launching fairly time-consuming sequentially organized processes, including coordination of verbal processing and back-up visuospatial strategies. These activations during complex calculation tasks in the non-experts may be interpreted as deactivations in the abacus experts. Such pruning of attention and control ( scaffolding ) areas may be a general result of increasing familiarity with the tasks, and the final cleaner functional map of the processes, implying that exceptional speed and high accuracy in computation was due to increased activation of task-related neural systems and decreased activation of those implicated in attention, retrieval and monitoring. We have observed that intensive practice of cognitive tasks increases the efficiency of the distributed task network, and that this increased efficiency is observed as changes in size within separate areas as these areas become more efficient at performing their particular function. Conclusion The present results confirm the notion that through extensive training, abacus experts build up an effective computational pathway to circumvent an original relatively slow computational strategy enabling a further reduction in computation times. Coordination of a visuospatial network (bilateral frontal parietal network) facilitates number representation and operation by reassigning numbers onto a virtual abacus, which allows the whole calculation process to be retrieved and visualized directly from positions of the beads in this virtual abacus, not surprisingly shortening computation times significantly. Acknowledgements This study was financially supported from Ministry of Education (Promote Academic to Excellency Project, 89-B- FA22-1-4) and National Science Council (NSC B MY3; B MY2) of Taiwan. The project was conducted in the campus of NYMU/TVGH. References 1. Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci USA 1998;95: Kolb B, Whishaw IQ. Brain plasticity and behavior. Annu Rev Psychol 1998;49: Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci 1998;21: Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 1999;284: PesentiM,ZagoL,CrivelloF,MelletE,SamsonD,DurouxB, et al. Mental calculation in a prodigy is sustained by right prefrontal and medial temporal area. Nat Neurosci 2001;4: Zago L, Pesenti M, Mellet E, Crivello F, Mazoyer B, Tzourio- Mazoyer N. Neural correlates of simple and complex mental calculation. Neuroimage 2001;13: Hatano G. Becoming an expert in mental abacus operation: a case of routine expertise. Adv Jpn Cogn Sci 1983;1: Burbaud P, Camus O, Guehl D, Bioulac B, Caille JM, Allard M. A functional magnetic resonance imaging study of mental subtraction in human subjects. Neurosci Lett 1999;273: Burbaud P, Camus O, Guehl D, Bioulac B, Caille JM, Allard M. Influence of cognitive strategies on the pattern of cortical activation during mental subtraction. A functional imaging study in human subjects. Neurosci Lett 2000;287: Dehaene S, Cohen L. Towards an anatomical and functional model of number processing. Math Cogn 1995;1: Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cogn Neuropsychol 2003;20: Kawashima R, Taira M, Okita K, Inoue K, Tajima N, Yoshida H, et al. A functional MRI study of simple arithmetic a comparison between children and adults. Brain Res Cogn Brain Res 2004;18: Rickard TC, Romero SG, Basso G, Wharton C, Flitman S, Grafman J. The calculating brain: an fmri study. Neuropsychologia 2000;38: Hanakawa T, Honda M, Okada T, Yonekura Y, Fukuyama H, Shibasaki H. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study. Neuroimage 2003;19:

10 Eur J Nucl Med Mol Imaging (2009) 36: Tanaka S, Michimata C, Kaminaga T, Honda M, Sadato N. Superior digit memory of abacus experts: an event-related functional MRI study. Neuroreport 2002;13: Chen F, Hu Z, Zhao X, Wang R, Yang Z, Wang X, et al. Neural correlates of serial abacus mental calculation in children: a functional MRI study. Neurosci Lett 2006;403: Woods RP, Grafton ST, Holmes CJ, Cherry SR, Maziotta JC. Automated image registration: I. General methods and intrasubject validation. J Comput Assist Tomogr 1997;22: Price CJ, Friston KJ. Cognitive conjunctions: a new approach to brain activation experiments. Neuroimage 1997;5: Dehaene S, Tzourio N, Frak V, Raynaud L, Cohen L, Mehler J, et al. Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia 1996;34: Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature 1993;362: Molko N, Cachia A, Rivière D, Mangin JF, Bruandet M, Le Bihan D, et al. Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron 2003;40: Mellet E, Tzourio N, Crivello F, Joliot M, Denis M, Mazoyer B. Functional anatomy of spatial imagery generated from verbal instructions. J Neurosci 1996;16: Formisano E, Linden DE, Di Salle F, Trojano L, Esposito F, Sack AT, et al. Tracking the mind s image in the brain I: timeresolved fmri during visuospatial mental imagery. Neuron 2002;35: Wise SP, Boussaoud D, Johnson PB, Caminiti R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu Rev Neurosci 1997;20: Courtney SM, Petit L, Maisong JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science 1998;279: Jancke L, Loose R, Lutz K, Specht K, Shah NJ. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res 2000;10:51 66.

11

Nonlinear Regression in Parametric Activation Studies

Nonlinear Regression in Parametric Activation Studies NEUROIMAGE 4, 60 66 (1996) ARTICLE NO. 0029 Nonlinear Regression in Parametric Activation Studies C. BÜCHEL, R. J. S. WISE, C. J. MUMMERY, J.-B. POLINE, AND K. J. FRISTON The Wellcome Department of Cognitive

More information

Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain).

Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain). Functional neuroimaging Imaging brain function in real time (not just the structure of the brain). The brain is bloody & electric Blood increase in neuronal activity increase in metabolic demand for glucose

More information

An fmri study on reading Hangul and Chinese Characters by Korean Native Speakers

An fmri study on reading Hangul and Chinese Characters by Korean Native Speakers 언 어 치 료 연 구, 제14 권 제4호 Journal of Speech & Hearing Disorders 2005, Vol.14, No.4, 29 ~ 36 An fmri study on reading Hangul and Chinese Characters by Korean Native Speakers Hyo-Woon Yoon(Brain Science Research

More information

Components of verbal working memory: Evidence from neuroimaging

Components of verbal working memory: Evidence from neuroimaging Proc. Natl. Acad. Sci. USA Vol. 95, pp. 876 882, February 1998 Colloquium Paper This paper was presented at a colloquium entitled Neuroimaging of Human Brain Function, organized by Michael Posner and Marcus

More information

Subjects: Fourteen Princeton undergraduate and graduate students were recruited to

Subjects: Fourteen Princeton undergraduate and graduate students were recruited to Supplementary Methods Subjects: Fourteen Princeton undergraduate and graduate students were recruited to participate in the study, including 9 females and 5 males. The mean age was 21.4 years, with standard

More information

How are Parts of the Brain Related to Brain Function?

How are Parts of the Brain Related to Brain Function? How are Parts of the Brain Related to Brain Function? Scientists have found That the basic anatomical components of brain function are related to brain size and shape. The brain is composed of two hemispheres.

More information

A Data-Driven Mapping of Five ACT-R Modules on the Brain

A Data-Driven Mapping of Five ACT-R Modules on the Brain A Data-Driven Mapping of Five ACT-R Modules on the Brain Jelmer P. Borst (jelmer@cmu.edu) 1,2 Menno Nijboer (m.nijboer@rug.nl) 2 Niels A. Taatgen (n.a.taatgen@rug.nl) 2 John R. Anderson (ja+@cmu.edu) 1

More information

Obtaining Knowledge. Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology.

Obtaining Knowledge. Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology. Lecture 7 Methods of Scientific Observation and Analysis in Behavioral Psychology and Neuropsychology 1.Obtaining Knowledge 1. Correlation 2. Causation 2.Hypothesis Generation & Measures 3.Looking into

More information

Cognitive Neuroscience. Questions. Multiple Methods. Electrophysiology. Multiple Methods. Approaches to Thinking about the Mind

Cognitive Neuroscience. Questions. Multiple Methods. Electrophysiology. Multiple Methods. Approaches to Thinking about the Mind Cognitive Neuroscience Approaches to Thinking about the Mind Cognitive Neuroscience Evolutionary Approach Sept 20-22, 2004 Interdisciplinary approach Rapidly changing How does the brain enable cognition?

More information

Effects of Achievement Goals on Challenge Seeking and Feedback Processing: Behavioral and fmri Evidence

Effects of Achievement Goals on Challenge Seeking and Feedback Processing: Behavioral and fmri Evidence on Challenge Seeking and Feedback Processing: Behavioral and fmri Evidence Woogul Lee, Sung-il Kim* Department of Education and bmri (Brain and Motivation Research Institute), Korea University, Seoul,

More information

Recoding, storage, rehearsal and grouping in verbal short-term memory: an fmri study p

Recoding, storage, rehearsal and grouping in verbal short-term memory: an fmri study p Neuropsychologia 38 (2000) 426±440 www.elsevier.com/locate/neuropsychologia Recoding, storage, rehearsal and grouping in verbal short-term memory: an fmri study p R.N.A. Henson a, b, *, N. Burgess b, c,

More information

Central Itching Modulation : A Human PET Study

Central Itching Modulation : A Human PET Study CYRIC Annual Report 2003 VIII. 1. Central Itching Modulation : A Human PET Study Mochizuki. H, Tashiro M., Kano M., Sakurada Y., Itoh M. *, and Yanai K. Department of Pharmacology, Tohoku University School

More information

The Effects of Musical Training on Structural Brain Development

The Effects of Musical Training on Structural Brain Development THE NEUROSCIENCES AND MUSIC III: DISORDERS AND PLASTICITY The Effects of Musical Training on Structural Brain Development A Longitudinal Study Krista L. Hyde, a Jason Lerch, b Andrea Norton, c Marie Forgeard,

More information

2 Neurons. 4 The Brain: Cortex

2 Neurons. 4 The Brain: Cortex 1 Neuroscience 2 Neurons output integration axon cell body, membrane potential Frontal planning control auditory episodes soma motor Temporal Parietal action language objects space vision Occipital inputs

More information

Therapy software for enhancing numerical cognition

Therapy software for enhancing numerical cognition Therapy software for enhancing numerical cognition T. Käser 1, K. Kucian 2,3, M. Ringwald 5, G. Baschera 1, M. von Aster 3,4, M. Gross 1 1 Computer Graphics Laboratory, ETH Zurich, Zurich, Switzerland

More information

Learning with Your Brain. Teaching With the Brain in Mind

Learning with Your Brain. Teaching With the Brain in Mind Learning with Your Brain Should what (and how) we teach be associated with what we know about the brain and the nervous system? Jonathan Karp, Ph.D. Dept of Biology 5/20/2004 Teaching With the Brain in

More information

The neural origins of specific and general memory: the role of the fusiform cortex

The neural origins of specific and general memory: the role of the fusiform cortex Neuropsychologia 43 (2005) 847 859 The neural origins of specific and general memory: the role of the fusiform cortex Rachel J. Garoff, Scott D. Slotnick, Daniel L. Schacter Department of Psychology, Harvard

More information

Planning is ubiquitous in our daily lives: we plan our workday,

Planning is ubiquitous in our daily lives: we plan our workday, Neural mechanisms of planning: A computational analysis using event-related fmri Jon M. Fincham, Cameron S. Carter, Vincent van Veen, V. Andrew Stenger, and John R. Anderson Department of Psychology, Carnegie

More information

Education and the Brain: A Bridge Too Far John T. Bruer. Key Concept: the Human Brain and Learning

Education and the Brain: A Bridge Too Far John T. Bruer. Key Concept: the Human Brain and Learning Education and the Brain: A Bridge Too Far John T. Bruer Key Concept: the Human Brain and Learning John T. Bruer Scholar in cognitivist approaches to human learning and instruction. His argument refers

More information

NEURO M203 & BIOMED M263 WINTER 2014

NEURO M203 & BIOMED M263 WINTER 2014 NEURO M203 & BIOMED M263 WINTER 2014 MRI Lab 1: Structural and Functional Anatomy During today s lab, you will work with and view the structural and functional imaging data collected from the scanning

More information

Auditory memory and cerebral reorganization in post-linguistically deaf adults

Auditory memory and cerebral reorganization in post-linguistically deaf adults Auditory memory and cerebral reorganization in post-linguistically deaf adults Implications for cochlear implantation outcome D Lazard, HJ Lee, E Truy, AL Giraud Ecole Normale Supérieure, Inserm U960,

More information

Activation neuroimaging studies - GABA receptor function - alcohol cues in alcoholism

Activation neuroimaging studies - GABA receptor function - alcohol cues in alcoholism Activation neuroimaging studies - GABA receptor function A - alcohol cues in alcoholism Professor David Nutt Psychopharmacology Unit, University of Bristol. MRC Clinical Sciences Centre, London. Study

More information

Integration and Visualization of Multimodality Brain Data for Language Mapping

Integration and Visualization of Multimodality Brain Data for Language Mapping Integration and Visualization of Multimodality Brain Data for Language Mapping Andrew V. Poliakov, PhD, Kevin P. Hinshaw, MS, Cornelius Rosse, MD, DSc and James F. Brinkley, MD, PhD Structural Informatics

More information

Increased prefrontal and parietal activity after training of working memory

Increased prefrontal and parietal activity after training of working memory Increased prefrontal and parietal activity after training of working memory Pernille J Olesen,Helena Westerberg & Torkel Klingberg Working memory capacity has traditionally been thought to be constant.

More information

Function (& other notes)

Function (& other notes) LAB 8. ANATOMY OF THE HUMAN BRAIN In this exercise you each will map the human brain both anatomy and function so that you can develop a more accurate picture of what s going on in your head :-) EXTERNAL

More information

An Introduction to ERP Studies of Attention

An Introduction to ERP Studies of Attention An Introduction to ERP Studies of Attention Logan Trujillo, Ph.D. Post-Doctoral Fellow University of Texas at Austin Cognitive Science Course, Fall 2008 What is Attention? Everyone knows what attention

More information

Trends in Neuroscience and Education

Trends in Neuroscience and Education Trends in Neuroscience and Education ] (]]]]) ]]] ]]] Contents lists available at SciVerse ScienceDirect Trends in Neuroscience and Education journal homepage: www.elsevier.com/locate/tine The effects

More information

Using Neuroscience to Understand the Role of Direct Mail

Using Neuroscience to Understand the Role of Direct Mail Millward Brown: Case Study Using Neuroscience to Understand the Role of Direct Mail Business Challenge Virtual media has experienced explosive growth in recent years, while physical media, such as print

More information

The Stroop effect in kana and kanji scripts in native Japanese speakers: An fmri study

The Stroop effect in kana and kanji scripts in native Japanese speakers: An fmri study Available online at www.sciencedirect.com Brain & Language 107 (2008) 124 132 www.elsevier.com/locate/b&l The Stroop effect in kana and kanji scripts in native Japanese speakers: An fmri study Emily L.

More information

NeuroImage 60 (2012) 661 672. Contents lists available at SciVerse ScienceDirect. NeuroImage. journal homepage: www.elsevier.

NeuroImage 60 (2012) 661 672. Contents lists available at SciVerse ScienceDirect. NeuroImage. journal homepage: www.elsevier. NeuroImage 60 (2012) 661 672 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Cortical plasticity for visuospatial processing and object recognition

More information

7 The use of fmri. to detect neural responses to cognitive tasks: is there confounding by task related changes in heart rate?

7 The use of fmri. to detect neural responses to cognitive tasks: is there confounding by task related changes in heart rate? 7 The use of fmri to detect neural responses to cognitive tasks: is there confounding by task related changes in heart rate? This chapter is submitted as: D. van t Ent, A. den Braber, E. Rotgans, E.J.C.

More information

NeuroImage. Taking perspective into account in a communicative task. Iroise Dumontheil a,, Olivia Küster a, Ian A. Apperly b, Sarah-Jayne Blakemore a

NeuroImage. Taking perspective into account in a communicative task. Iroise Dumontheil a,, Olivia Küster a, Ian A. Apperly b, Sarah-Jayne Blakemore a NeuroImage 52 (2010) 1574 1583 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Taking perspective into account in a communicative task Iroise Dumontheil

More information

Frontal and Parietal Contributions to Arithmetic Fact Retrieval: A Parametric Analysis of the Problem-Size Effect

Frontal and Parietal Contributions to Arithmetic Fact Retrieval: A Parametric Analysis of the Problem-Size Effect r Human Brain Mapping 32:51 59 (2011) r Frontal and Parietal Contributions to Arithmetic Fact Retrieval: A Parametric Analysis of the Problem-Size Effect Kerstin Jost, 1,2 * Patrick H. Khader, 2 Michael

More information

Ogura T. 1, Tashiro M. 1, Masud M. 1, Watanuki S. 1, Shibuya K. 2, Itoh M. 1, Yamaguchi K. 1,3, Fukuda H. 4, and Yanai K. 1,2

Ogura T. 1, Tashiro M. 1, Masud M. 1, Watanuki S. 1, Shibuya K. 2, Itoh M. 1, Yamaguchi K. 1,3, Fukuda H. 4, and Yanai K. 1,2 CYRIC Annual Report 2009 VIII. 14. Scientific Evaluation on Effects of Chiropractic Treatment, a Type of Manual Therapy, Using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) Ogura

More information

CONTE Summer Lab Experience Application

CONTE Summer Lab Experience Application CONTE Summer Lab Experience Application When preparing your application for funding from the CONTE Summer Lab Experience through the Undergraduate Program in Neuroscience, please read these instructions

More information

runl I IUI%I/\L Magnetic Resonance Imaging

runl I IUI%I/\L Magnetic Resonance Imaging runl I IUI%I/\L Magnetic Resonance Imaging SECOND EDITION Scott A. HuetteS Brain Imaging and Analysis Center, Duke University Allen W. Song Brain Imaging and Analysis Center, Duke University Gregory McCarthy

More information

Neural correlates of the episodic encoding of pictures and words

Neural correlates of the episodic encoding of pictures and words Proc. Natl. Acad. Sci. USA Vol. 95, pp. 2703 2708, March 1998 Psychology Neural correlates of the episodic encoding of pictures and words CHERYL L. GRADY*, ANTHONY R. MCINTOSH, M. NATASHA RAJAH, AND FERGUS

More information

Sarah Levin Allen, Ph.D., CBIS Executive Director, Brain Behavior Bridge Assistant Professor, Philadelphia College of Osteopathic Medicine Pediatric

Sarah Levin Allen, Ph.D., CBIS Executive Director, Brain Behavior Bridge Assistant Professor, Philadelphia College of Osteopathic Medicine Pediatric Sarah Levin Allen, Ph.D., CBIS Executive Director, Brain Behavior Bridge Assistant Professor, Philadelphia College of Osteopathic Medicine Pediatric & NJ School Neuropsychologist www.brainbehaviorbridge.com

More information

1 st December 2009. Cardiff Crown Court. Dear. Claimant: Maurice Kirk Date of Birth: 12 th March 1945

1 st December 2009. Cardiff Crown Court. Dear. Claimant: Maurice Kirk Date of Birth: 12 th March 1945 Ref: PMK/MT 1 st December 2009 Cardiff Crown Court Dear Claimant: Maurice Kirk Date of Birth: 12 th March 1945 I have been instructed by Yorkshire Law Solicitors to comment on the SPECT scan images undertaken

More information

It s All in the Brain!

It s All in the Brain! It s All in the Brain! Presented by: Mari Hubig, M.Ed. 0-3 Outreach Coordinator Educational Resource Center on Deafness What is the Brain? The brain is a muscle In order to grow and flourish, the brain

More information

Developing Human. Connectome Project. The Developing Human. David Edwards Jo Hajnal Stephen Smith Daniel Rueckert

Developing Human. Connectome Project. The Developing Human. David Edwards Jo Hajnal Stephen Smith Daniel Rueckert Developing Human Connectome Project The Developing Human Connectome Project David Edwards Jo Hajnal Stephen Smith Daniel Rueckert Developing Human Connectome Project The Developing Human Connectome Project

More information

MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients

MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients MEDIMAGE A Multimedia Database Management System for Alzheimer s Disease Patients Peter L. Stanchev 1, Farshad Fotouhi 2 1 Kettering University, Flint, Michigan, 48504 USA pstanche@kettering.edu http://www.kettering.edu/~pstanche

More information

Preserved speech abilities and compensation following prefrontal damage (neuroimaging/positron emission tomography/aphasia/recovery/lesion)

Preserved speech abilities and compensation following prefrontal damage (neuroimaging/positron emission tomography/aphasia/recovery/lesion) Proc. Natl. Acad. Sci. USA Vol. 93, pp. 1249-1253, February 1996 Neurobiology Preserved speech abilities and compensation following prefrontal damage (neuroimaging/positron emission tomography/aphasia/recovery/lesion)

More information

AQT-D. A Quick Test of Cognitive Speed. AQT-D is designed for dementia screening.

AQT-D. A Quick Test of Cognitive Speed. AQT-D is designed for dementia screening. AQT-D A Quick Test of Cognitive Speed AQT-D is designed for dementia screening. A General Introduction to AQT AQT 1 is an objective, reliable and standardized screening test designed to measure cognitive

More information

NeuroImage xxx (2010) xxx xxx. Contents lists available at ScienceDirect. NeuroImage. journal homepage: www.elsevier.

NeuroImage xxx (2010) xxx xxx. Contents lists available at ScienceDirect. NeuroImage. journal homepage: www.elsevier. YNIMG-07011; No. of pages: 12; 4C: NeuroImage xxx (2010) xxx xxx Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Delineating self-referential processing

More information

THE HUMAN BRAIN. observations and foundations

THE HUMAN BRAIN. observations and foundations THE HUMAN BRAIN observations and foundations brains versus computers a typical brain contains something like 100 billion miniscule cells called neurons estimates go from about 50 billion to as many as

More information

35% Oversight Failure to. Detect 22% 35% STUDY OF FACE DESIGN, LIGHTING SYSTEM DESIGN FOR ENHANCED DETECTION RATE OF MOTORCYCLES

35% Oversight Failure to. Detect 22% 35% STUDY OF FACE DESIGN, LIGHTING SYSTEM DESIGN FOR ENHANCED DETECTION RATE OF MOTORCYCLES STUDY OF FACE DESIGN, LIGHTING SYSTEM DESIGN FOR ENHANCED DETECTION RATE OF MOTORCYCLES Kazuyuki, Maruyama Yojiro, Tsutsumi Motorcycle R&D Center/Honda R&D Co., Ltd. Japan Yutaka, Murata Future Transportation

More information

MRI DATA PROCESSING. Compiled by: Nicolas F. Lori and Carlos Ferreira. Introduction

MRI DATA PROCESSING. Compiled by: Nicolas F. Lori and Carlos Ferreira. Introduction MRI DATA PROCESSING Compiled by: Nicolas F. Lori and Carlos Ferreira Introduction Magnetic Resonance Imaging (MRI) is a clinical exam that is safe to the patient. Nevertheless, it s very important to attend

More information

Whole-brain Functional MR Imaging Activation from a Finger-tapping Task Examined with Independent Component Analysis

Whole-brain Functional MR Imaging Activation from a Finger-tapping Task Examined with Independent Component Analysis AJNR Am J Neuroradiol 21:1629 1635, October 2000 Whole-brain Functional MR Imaging Activation from a Finger-tapping Task Examined with Independent Component Analysis Chad H. Moritz, Victor M. Haughton,

More information

Your Brain on Google: Patterns of Cerebral Activation during Internet Searching

Your Brain on Google: Patterns of Cerebral Activation during Internet Searching REGULAR RESEARCH ARTICLES Your Brain on Google: Patterns of Cerebral Activation during Internet Searching Gary W. Small, M.D., Teena D. Moody, Ph.D., Prabha Siddarth, Ph.D., Susan Y. Bookheimer, Ph.D.

More information

THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI. Douglas C. Noll* and Walter Schneider

THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI. Douglas C. Noll* and Walter Schneider THEORY, SIMULATION, AND COMPENSATION OF PHYSIOLOGICAL MOTION ARTIFACTS IN FUNCTIONAL MRI Douglas C. Noll* and Walter Schneider Departments of *Radiology, *Electrical Engineering, and Psychology University

More information

Brain areas underlying visual mental imagery and visual perception: an fmri study

Brain areas underlying visual mental imagery and visual perception: an fmri study Cognitive Brain Research 20 (2004) 226 241 Research report Brain areas underlying visual mental imagery and visual perception: an fmri study Giorgio Ganis a,b,c, *, William L. Thompson a, Stephen M. Kosslyn

More information

Free software solutions for MEG/EEG source imaging

Free software solutions for MEG/EEG source imaging Free software solutions for MEG/EEG source imaging François Tadel Cognitive Neuroscience & Brain Imaging Lab., CNRS University of Paris - Hôpital de la Salpêtrière Cognitive Neuroimaging Unit, Inserm U562

More information

Video-Based Eye Tracking

Video-Based Eye Tracking Video-Based Eye Tracking Our Experience with Advanced Stimuli Design for Eye Tracking Software A. RUFA, a G.L. MARIOTTINI, b D. PRATTICHIZZO, b D. ALESSANDRINI, b A. VICINO, b AND A. FEDERICO a a Department

More information

Does tool-related fmri activity within the intraparietal sulcus reflect the plan to grasp?

Does tool-related fmri activity within the intraparietal sulcus reflect the plan to grasp? www.elsevier.com/locate/ynimg NeuroImage 36 (2007) T94 T108 Does tool-related fmri activity within the intraparietal sulcus reflect the plan to grasp? Kenneth F. Valyear, a Cristiana Cavina-Pratesi, b

More information

1 Cerebral metabolic changes in men after chiropractic spinal manipulation for neck pain

1 Cerebral metabolic changes in men after chiropractic spinal manipulation for neck pain 1 Cerebral metabolic changes in men after chiropractic spinal manipulation for neck pain Alternative Therapies Health Medicine Nov-Dec 2011;Vol. 17; No. 6; pp12-7 Tashiro M, Ogura T, Masud M, Watanuki

More information

COMMENTS AND CONTROVERSIES Why Voxel-Based Morphometry Should Be Used

COMMENTS AND CONTROVERSIES Why Voxel-Based Morphometry Should Be Used NeuroImage 14, 1238 1243 (2001) doi:10.1006/nimg.2001.0961, available online at http://www.idealibrary.com on COMMENTS AND CONTROVERSIES Why Voxel-Based Morphometry Should Be Used John Ashburner 1 and

More information

Episodic encoding and recognition of pictures and words: role of the human medial temporal lobes

Episodic encoding and recognition of pictures and words: role of the human medial temporal lobes Acta Psychologica 105 (2000) 159±179 www.elsevier.com/locate/actpsy Episodic encoding and recognition of pictures and words: role of the human medial temporal lobes Stefan Kohler a,*, Morris Moscovitch

More information

Reorganization in the Primary Motor Cortex after Spinal Cord Injury - a functional Magnetic Resonance (fmri) Study

Reorganization in the Primary Motor Cortex after Spinal Cord Injury - a functional Magnetic Resonance (fmri) Study Reorganization in the Primary Motor Cortex after Spinal Cord Injury - a functional Magnetic Resonance (fmri) Study M. Lotze 1, U. Laubis-Herrmann 2, H. Topka 2, M. Erb 1, W. Grodd 1 1 Section Exp. MR of

More information

Charles A. Nelson III Children s Hospital Boston/Harvard Medical School Harvard Center on the Developing Child

Charles A. Nelson III Children s Hospital Boston/Harvard Medical School Harvard Center on the Developing Child Charles A. Nelson III Children s Hospital Boston/Harvard Medical School Harvard Center on the Developing Child Presented at NICHD Cognition Workshop, 14-15 March 2011, Bethesda, MD Outline I. Declaration

More information

Association between Cognitive Performance and Cortical Glucose Metabolism in Patients with Mild Alzheimer s Disease

Association between Cognitive Performance and Cortical Glucose Metabolism in Patients with Mild Alzheimer s Disease Original Research Article Dement Geriatr Cogn Disord 2005;20:352 357 DOI: 10.1159/000088558 Published online: September 26, 2005 Association between Cognitive Performance and Cortical Glucose Metabolism

More information

Fall 2013 to present Assistant Professor, Department of Psychological and Brain Sciences, Johns Hopkins University

Fall 2013 to present Assistant Professor, Department of Psychological and Brain Sciences, Johns Hopkins University M A R I N A B E D N Y Johns Hopkins University Department of Psychological and Brain Sciences 3400 N. Charles Street, Ames Hall Baltimore, MD 21218 mbedny@mit.edu ACADEMIC POSITIONS Fall 2013 to present

More information

Overlapping mechanisms of attention and spatial working memory

Overlapping mechanisms of attention and spatial working memory Review 119 Overlapping mechanisms of attention and spatial working memory Edward Awh and John Jonides Spatial selective attention and spatial working memory have largely been studied in isolation. Studies

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Integrative Body-Mind Training (IBMT)

Integrative Body-Mind Training (IBMT) Integrative Body-Mind Training (IBMT) For more information http://www.yi-yuan.net Or Email: yiyuanbalance@hotmail.com IBMT was developed in the 1990s by Prof. Yi-Yuan Tang in China based on his scientific

More information

ORIGINAL ARTICLE. Correlation of Laparoscopic Experience With Differential Functional Brain Activation

ORIGINAL ARTICLE. Correlation of Laparoscopic Experience With Differential Functional Brain Activation ORIGINAL ARTICLE Correlation of Laparoscopic Experience With Differential Functional Brain Activation A Positron Emission Tomography Study With Oxygen 15 Labeled Water Brian Duty, MD; Sero Andonian, MD;

More information

Brain Anatomy in Turner Syndrome: Evidence for Impaired Social and Spatial Numerical Networks

Brain Anatomy in Turner Syndrome: Evidence for Impaired Social and Spatial Numerical Networks Cerebral Cortex Advance Access published March 28, 2004 Brain Anatomy in Turner Syndrome: Evidence for Impaired Social and Spatial Numerical Networks N. Molko 1, A. Cachia 2,3, D. Riviere 1,2, J.F. Mangin

More information

The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour

The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour Review The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour John Duncan MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK A common

More information

ASSIGNMENTS AND GRADING

ASSIGNMENTS AND GRADING Instructor: Janet Menard Office: Craine- 431 Phone: 533-3099 Email: menard@queensu.ca Class Hours: Tuesdays 11:30 1:00 Friday 1:00 2:30 Office Hours: Mondays 1:00-2:00 Thursdays 3:30-4:30 (please notify

More information

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time

GE Medical Systems Training in Partnership. Module 8: IQ: Acquisition Time Module 8: IQ: Acquisition Time IQ : Acquisition Time Objectives...Describe types of data acquisition modes....compute acquisition times for 2D and 3D scans. 2D Acquisitions The 2D mode acquires and reconstructs

More information

Neural Correlates of Creative Writing: An fmri Study

Neural Correlates of Creative Writing: An fmri Study r Human Brain Mapping 00:00 00 (2011) r Neural Correlates of Creative Writing: An fmri Study Carolin Shah, 1 Katharina Erhard, 1 Hanns-Josef Ortheil, 2 Evangelia Kaza, 1 Christof Kessler, 3 and Martin

More information

Vocabulary & General Concepts of Brain Organization

Vocabulary & General Concepts of Brain Organization Vocabulary & General Concepts of Brain Organization Jeanette J. Norden, Ph.D. Professor Emerita Vanderbilt University School of Medicine Course Outline Lecture 1: Vocabulary & General Concepts of Brain

More information

Visual Attention and Emotional Perception

Visual Attention and Emotional Perception Visual Attention and Emotional Perception Luiz Pessoa 1 and Leslie G. Ungerleider 2 (1) Department of Psychology, Brown University, Providence, RI (2) Laboratory of Brain & Cognition, National Institute

More information

Brain Function, Spell Reading, and Sweep-Sweep-Spell by Abigail Marshall, March 2005

Brain Function, Spell Reading, and Sweep-Sweep-Spell by Abigail Marshall, March 2005 Brain Function, Spell Reading, and Sweep-Sweep-Spell by Abigail Marshall, March 2005 This is not phonics or a phonetic process; it is simply letter and word recognition. Ronald D. Davis T wo of the most

More information

The Neuroscience of MBCT for Depression. Thorsten Barnhofer Freie Universitaet Berlin 11 th of April, 2014

The Neuroscience of MBCT for Depression. Thorsten Barnhofer Freie Universitaet Berlin 11 th of April, 2014 The Neuroscience of MBCT for Depression Thorsten Barnhofer Freie Universitaet Berlin 11 th of April, 2014 The Problem: Recurrent Depression Lifetime prevalence of MDD about 25% More than 80% of people

More information

Research Paper. 152 J Psychiatry Neurosci 2010;35(3)

Research Paper. 152 J Psychiatry Neurosci 2010;35(3) Research Paper Medial prefrontal cortex activity during memory encoding of pictures and its relation to symptomatic improvement after citalopram treatment in patients with major depression Martin Roy,

More information

Dissociable Prototype Learning Systems: Evidence from Brain Imaging and Behavior

Dissociable Prototype Learning Systems: Evidence from Brain Imaging and Behavior 13194 The Journal of Neuroscience, December 3, 2008 28(49):13194 13201 Behavioral/Systems/Cognitive Dissociable Prototype Learning Systems: Evidence from Brain Imaging and Behavior Dagmar Zeithamova, 1,2

More information

Mind, Brain, and Education: Neuroscience Implications for the Classroom. Study Guide

Mind, Brain, and Education: Neuroscience Implications for the Classroom. Study Guide Mind, Brain, and Education: Neuroscience Implications for the Classroom Edited by David A. Sousa This study guide is a companion to Mind, Brain, and Education: Neuroscience Implications for the Classroom.

More information

Imaging the developing brain: what have we learned about cognitive development?

Imaging the developing brain: what have we learned about cognitive development? Review TRENDS in Cognitive Sciences Vol.9 No.3 March 2005 Imaging the developing brain: what have we learned about cognitive development? B.J. Casey 1, Nim Tottenham 1, Conor Liston 1 and Sarah Durston

More information

Prepublication Requirements

Prepublication Requirements Issued Prepublication Requirements The Joint Commission has approved the following revisions for prepublication. While revised requirements are published in the semiannual updates to the print manuals

More information

Effects of Music Training on the Child s Brain and Cognitive Development

Effects of Music Training on the Child s Brain and Cognitive Development Effects of Music Training on the Child s Brain and Cognitive Development GOTTFRIED SCHLAUG, a ANDREA NORTON, a KATIE OVERY, a AND ELLEN WINNER b a Department of Neurology, Music and Neuroimaging Laboratory,

More information

Dagmar (Dasa) Zeithamova-Demircan, Ph.D.

Dagmar (Dasa) Zeithamova-Demircan, Ph.D. Dagmar (Dasa) Zeithamova-Demircan, Ph.D. Department of Psychology University of Oregon Eugene OR 97403-1227 Phone: (541) 346-6731 dasa@uoregon.edu EDUCATION 8/2008 Ph.D. Neuroscience University of Texas

More information

Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis

Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis The Journal of Neuroscience, November 24, 2010 30(47):15915 15926 15915 Behavioral/Systems/Cognitive Aberrant Frontal and Temporal Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis

More information

Common regions of the human frontal lobe recruited by diverse cognitive demands

Common regions of the human frontal lobe recruited by diverse cognitive demands C. Heuss and U. Gerber G-protein-independent signaling R EVIEW 87 Liu, F. et al. (2000) Direct protein protein coupling enables crosstalk between dopamine D 5 and -aminobutyric acid A receptors. Nature

More information

2. MATERIALS AND METHODS

2. MATERIALS AND METHODS Difficulties of T1 brain MRI segmentation techniques M S. Atkins *a, K. Siu a, B. Law a, J. Orchard a, W. Rosenbaum a a School of Computing Science, Simon Fraser University ABSTRACT This paper looks at

More information

Comparative Electrophysiological and Hemodynamic Measures of Neural Activation During Memory-Retrieval

Comparative Electrophysiological and Hemodynamic Measures of Neural Activation During Memory-Retrieval Human Brain Mapping 13:104 123(2001) Comparative Electrophysiological and Hemodynamic Measures of Neural Activation During Memory-Retrieval Emrah Düzel, 1 * Terence W. Picton, 2 Roberto Cabeza, 3 Andrew

More information

The Parietal Lobes. Functions of the Parietal Lobes

The Parietal Lobes. Functions of the Parietal Lobes The Parietal Lobes Functions of the Parietal Lobes The Parietal Lobes develop at about the age of 5 years. They function to give the individual perspective and to help them understand space, touch, and

More information

Report. Virtual Dyscalculia Induced by Parietal-Lobe TMS Impairs Automatic Magnitude Processing

Report. Virtual Dyscalculia Induced by Parietal-Lobe TMS Impairs Automatic Magnitude Processing Current Biology 17, 1 5, April 17, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.02.056 Virtual Dyscalculia Induced by Parietal-Lobe TMS Impairs Automatic Magnitude Processing Report

More information

Using hemispheric preference as a predictor of success in a limited-residency information systems doctoral program

Using hemispheric preference as a predictor of success in a limited-residency information systems doctoral program Using hemispheric preference as a predictor of success in a limited-residency information systems doctoral program Steven R. Terrell, Nova Southeastern University, terrell@nova.edu Abstract Due to the

More information

A Functional Magnetic Resonance Imaging Study of the Cognitive Estimation

A Functional Magnetic Resonance Imaging Study of the Cognitive Estimation Activitas Nervosa Superior Rediviva Volume 52 No. 3 2010 ORIGINAL ARTICLE A Functional Magnetic Resonance Imaging Study of the Cognitive Estimation Jiri Horacek 1,3,4, Marek Preiss 1,3, Jaroslav Tintera

More information

Where Bottom-up Meets Top-down: Neuronal Interactions during Perception and Imagery

Where Bottom-up Meets Top-down: Neuronal Interactions during Perception and Imagery Where Bottom-up Meets Top-down: Neuronal Interactions during Perception and Imagery Andrea Mechelli 1, Cathy J. Price 1, Karl J. Friston 1 and Alumit Ishai 2 1 Wellcome Department of Imaging Neuroscience,

More information

Hemisperic Dominance of Cortical Activity Evoked by Focal Electrogustatory Stimuli

Hemisperic Dominance of Cortical Activity Evoked by Focal Electrogustatory Stimuli Chem. Senses 26: 471 482, 2001 Hemisperic Dominance of Cortical Activity Evoked by Focal Electrogustatory Stimuli Michael A. Barry, James C. Gatenby 1, Joel D. Zeiger and John C. Gore 1 Department of BioStructure

More information

3. The neuron has many branch-like extensions called that receive input from other neurons. a. glia b. dendrites c. axons d.

3. The neuron has many branch-like extensions called that receive input from other neurons. a. glia b. dendrites c. axons d. Chapter Test 1. A cell that receives information and transmits it to other cells via an electrochemical process is called a(n) a. neuron b. hormone c. glia d. endorphin Answer: A difficulty: 1 factual

More information

Skill acquisition. Skill acquisition: Closed loop theory Feedback guides learning a motor skill. Problems. Motor learning practice

Skill acquisition. Skill acquisition: Closed loop theory Feedback guides learning a motor skill. Problems. Motor learning practice Motor learning theories closed loop theory schema theory hierarchical theory Skill acquisition Motor learning practice Fitt s three stages motor imagery physical changes Skill acquisition: Closed loop

More information

Demonstrating the Implicit Processing of Visually Presented Words and Pseudowords

Demonstrating the Implicit Processing of Visually Presented Words and Pseudowords Demonstrating the Implicit Processing of Visually Presented Words and Pseudowords C. J. Price, R. J. S. Wise, and R. S. J. Frackowiak Wellcome Department of Cognitive Neurology, Institute of Neurology,

More information

The Functional Architecture of the Left Posterior and Lateral Prefrontal Cortex in Humans

The Functional Architecture of the Left Posterior and Lateral Prefrontal Cortex in Humans Cerebral Cortex October 2008;18:2460--2469 doi:10.1093/cercor/bhn010 Advance Access publication February 27, 2008 The Functional Architecture of the Left Posterior and Lateral Prefrontal Cortex in Humans

More information

Applications of random field theory to electrophysiology

Applications of random field theory to electrophysiology Neuroscience Letters 374 (2005) 174 178 Applications of random field theory to electrophysiology James M. Kilner, Stefan J. Kiebel, Karl J. Friston The Wellcome Department of Imaging Neuroscience, Institute

More information

Understanding Animate Agents

Understanding Animate Agents PSYCHOLOGICAL SCIENCE Research Report Understanding Animate Agents Distinct Roles for the Social Network and Mirror System Thalia Wheatley, Shawn C. Milleville, and Alex Martin Laboratory of Brain & Cognition,

More information

Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease

Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease 1 Neuroimaging module I: Modern neuroimaging methods of investigation of the human brain in health and disease The following contains a summary of the content of the neuroimaging module I on the postgraduate

More information

NeuroImage 50 (2010) 1606 1617. Contents lists available at ScienceDirect. NeuroImage. journal homepage: www.elsevier.

NeuroImage 50 (2010) 1606 1617. Contents lists available at ScienceDirect. NeuroImage. journal homepage: www.elsevier. NeuroImage 50 (2010) 1606 1617 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Delineating self-referential processing from episodic memory retrieval:

More information