AUTODESK SIMULATION MULTIPHYSICS 2013


 Helen Whitehead
 1 years ago
 Views:
Transcription
1 AUTODESK SIMULATION MULTIPHYSICS 2013 Which Analysis to Use? FANKOM MÜHENDİSLİK 2/4/2013
2 AUTODESK SIMULATION MULTIPHYSICS Which Analysis to Use? Use the following guidelines to help choose the correct analysis type for your situation. 1) Linear a) Static Stress with Linear Material Models b) Natural Frequency (Modal) c) Natural Frequency (Modal) with Load Stiffening d) Response Spectrum e) Random Vibration f) Frequency Response g) Transient Stress (Direct Integration or Modal Superposition) h) Critical Buckling Load i) Dynamic Design Analysis Method (DDAM) 2) NonLinear a) MES (Mechanical Event Simulation) with Nonlinear Material Models b) Static Stress with Nonlinear Material Models c) Natural Frequency (Modal) with Nonlinear Material Models d) MES Riks Analysis 3) Thermal a) Steady State Heat Transfer b) Transient Heat Transfer 4) Fluid Flow a) Steady Fluid Flow b) Unsteady Fluid Flow c) Flow through Porous Media d) Open Channel Flow 5) Electrostatic a) Electrostatic Current and Voltage b) Electrostatic Field Strength and Voltage 6) Mass Transfer a) Transient Mass Transfer 7) Multiphysics a) Steady Coupled Fluid Flow and Thermal b) Transient Coupled Fluid Flow and Thermal
3 Linear Linear analyses follow these basic assumptions (unless otherwise noted): The loading causes only small deflections or rotations. The change in direction of the loading due to deformation is small and can be neglected. The materials are linear within the elastic region on the stressstrain curve. The boundary conditions do not change. Static Stress with Linear Material Models Calculate the displacements and stresses due to static loads. The magnitude or direction of the loading will not change over time. No inertial effects. The mass of the model is used to determine loads, such as gravity and centrifugal forces. Although contact is a nonlinear effect, it can be included in a static stress analysis. The solution becomes iterative. Examples: structures (buildings, car frames, truss systems), bodies (valve bodies, ship hulls, housings, support brackets, pressure vessels), pressfits. Natural Frequency (Modal) Calculate the natural frequencies and mode shapes of the model due to purely geometric and material properties. Examples: structures (buildings, bridges, towers), shafts, bodies (housings, support brackets). Natural Frequency (Modal) with Load Stiffening Calculate the natural frequencies and mode shapes of the model due to purely geometric and material properties. Axial compressive or tensile loads affect the frequency of the system. Examples: structures (buildings, bridges, towers), shafts, bodies (housings, support brackets).
4 Response Spectrum Calculate the maximum displacements and stresses due to a spectrumtype load. Examples: structures subjected to earthquakes, blast and shock loads, and so on. Random Vibration Calculate the statistical response of a system (displacements and stresses) due to a random vibration, white noise, or a power spectrum density. Examples: suspension systems, aerospace components, fans, and pumps. Frequency Response Calculate the steady state response (displacements and stresses) due to a harmonic or sinusoidal load or acceleration. Examples: structures with rotating imbalance, frequency sweeps, fans, and pumps Transient Stress (Direct Integration or Modal Superposition) Calculate the displacements and stresses over time due to loads that will vary in a known fashion. Inertial effects are included. Examples: structures subjected to transient events (buildings, bridges, towers), bodies (housings, support brackets), rotating imbalance. Critical Buckling Load Calculate the load that causes your model to buckle due to geometric instability. No inertial effects. (The mass of the model is used to determine loads, such as gravity and centrifugal forces.) Examples: column designs, structures (buildings, bridges, towers). Dynamic Design Analysis Method (DDAM) Use when you want to calculate the maximum displacements and stresses due to a spectrumtype load. Use when designing naval equipment or vessels. Examples: exhaust uptakes, masts, propulsion shafts.
5 Nonlinear The assumptions listed for linear analyses are not limitations when doing a nonlinear analysis. Unless indicated otherwise, nonlinear permits the following: The loading can cause large deflections and/or rotations. Rigid body motion and/or rotations are accounted for. The loading can change in direction due to the deformation. The materials can be nonlinear, either elastic (such as rubber) or plastic (such as a metal that exceeds the yield strength). The boundary conditions can change over time in a known fashion. MES (Mechanical Event Simulation) with Nonlinear Material Models Calculate the displacements, velocities, accelerations, and stresses over time due to dynamic loads. The loads can be constant, vary over time, or vary based on calculated results. Inertial effects are included. Examples: linkages and mechanisms, pressfit, snapfits, multiple body contact and impact, forming and extruding processes, rubber and foam components (bellows, seats). Static Stress with Nonlinear Material Models Calculate the displacements and stresses due to static loads. The loads can be constant, vary between time steps or load cases, or vary based on calculated results. Inertial effects are ignored. (The mass of the model is used to determine loads, such as gravity and centrifugal forces.) Examples: pressfit, multiple body contact and impact, forming and extruding processes, rubber and foam components (bellows, seats). Natural Frequency (Modal) with Nonlinear Material Models Calculate the natural frequencies and mode shapes of the model. The change in frequency due to displacements or changing material properties is not included. Loads do not affect the frequencies.
6 Boundary conditions are fixed. Examples: structures (buildings, bridges, towers), shafts, bodies (housings, support brackets). MES Riks Analysis Calculate the displacements and stresses before and after the model has buckled or collapsed. Inertial effects are ignored. Examples: columns, components with snapthrough behavior. Thermal Steady State Heat Transfer Calculate temperature and heat fluxes after an infinite period (steadystate conditions). The thermal loads are constant over time. Examples: structures (furnaces, insulating wall), electrical components. Transient Heat Transfer Calculate the temperature and heat fluxes over time due to the thermal loads. The thermal loads can be constant or change over time. The material can change states between a solid and liquid. Examples: structures (furnaces, insulating walls, brake systems), electrical components, annealing processes. Fluid Flow Steady Fluid Flow Calculate the velocity and pressure distribution due to the motion of a fluid. The fluid has reached a steadystate solution at each time step or load case. Inertial effects are ignored.
7 Examples: valves, rotating equipment (fans, mixers), wind and drag force analysis, flow measuring devices. Unsteady Fluid Flow Calculate the velocity and pressure distribution due to the motion of a fluid. The fluid is undergoing an acceleration during the analysis or change over time. Inertial effects are included. Examples: valves, rotating equipment (fans, mixers), wind and drag force analysis, flow measuring devices. Flow through Porous Media Calculate the velocity and pressure distribution of a fluid passing through a series of filtering layers. The flow is through (or dominated by) a fully saturated porous medium. The fluid has reached a steadystate solution after an infinite period. Inertial effects are ignored. Examples: Aquifers, catalyst beds, filters, sedimentary studies Electrostatic Electrostatic Current and Voltage Calculate the current and voltage distribution after an infinite period (steadystate conditions) due to induced voltages and current sources. Examples: electrical components (circuit breakers, circuit boards, batteries), piezoelectrics. Electrostatic Field Strength and Voltage Calculate the electric field and voltage distribution after an infinite period (steadystate conditions) in an insulator due to induced voltages and charges. Examples: insulators, micro electro mechanical systems (MEMS)
8 Mass Transfer Transient Mass Transfer Calculate the concentration over time of multiple species. The transport of the species is due to random molecular motion. Examples: chemical species through a membrane (drug delivery). Multiphysics Steady Coupled Fluid Flow and Thermal Calculate the temperatures, heat fluxes, velocities, and pressure distribution in a fluid or a model with fluid and solid parts. The fluid has reached a steadystate solution at each time step or load case. The thermal results have reached a steadystate solution at each time step or load case. Inertial effects are ignored. Examples: heat exchangers, circuit boards, cooling/heating system design, HVAC systems. Transient Coupled Fluid Flow and Thermal Calculate the temperatures, heat fluxes, velocities, and pressure distribution in a fluid or a model with fluid and solid parts. All the results can vary over time. The fluid is undergoing an acceleration during the analysis or change over time. Inertial effects are included. The thermal loads can be constant or change over time. Examples: heat exchangers, circuit boards, cooling/heating system design, HVAC systems.
Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.
2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS
More informationSOLIDWORKS SIMULATION GET DESIGN INSIGHTS TO DRIVE MARKET WINNING INNOVATION
SOLIDWORKS SIMULATION GET DESIGN INSIGHTS TO DRIVE MARKET WINNING INNOVATION SOPHISTICATED SIMULATION IS NO LONGER JUST FOR SPECIALISTS What if? It s the inspiration that fuels innovation and with SolidWorks
More informationجامعة البلقاء التطبيقية
AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First
More informationPiezoelectric Simulations
Piezoelectric Simulations Outline Overview Examples Relevant Products Useful Features Overview Industries Using Piezoelectric Devices Aerospace Oil & Gas Automotive Piezoelectric Devices MEMS Acoustics
More informationCourse in. Nonlinear FEM
Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited
More informationCHAPTER 4 4 NUMERICAL ANALYSIS
41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in
More informationSEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:
SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the
More informationThis chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections:
Chapter 21. Melting Modeling Solidification and This chapter describes how you can model solidification and melting in FLUENT. Information is organized into the following sections: Section 21.1: Overview
More informationEFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLESTAYED BRIDGES
EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLESTAYED BRIDGES YangCheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy FengShan 83000,Taiwan Republic
More informationTHERMAL ANALYSIS. Overview
W H I T E P A P E R THERMAL ANALYSIS Overview In this white paper we define and then outline the concept of thermal analysis as it relates to product design. We discuss the principles of conduction, convection,
More informationNonlinear Analysis Using Femap with NX Nastran
Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of
More informationDISTANCE DEGREE PROGRAM CURRICULUM NOTE:
Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall
More information1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids  both liquids and gases.
More informationLecture 24  Surface tension, viscous flow, thermodynamics
Lecture 24  Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
More informationCAE Finite Element Method
16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationCOMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.
North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS  Grades 912 Strands: The strands are: Nature of Science, Science as Inquiry, Science and
More informationDYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD
International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, JanFeb 2016, pp. 190202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1
More informationThe simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM
1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different
More informationIMU Components An IMU is typically composed of the following components:
APN064 IMU Errors and Their Effects Rev A Introduction An Inertial Navigation System (INS) uses the output from an Inertial Measurement Unit (IMU), and combines the information on acceleration and rotation
More informationdu u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
More informationAeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
More informationSpecifying a Variable Frequency Drive s
Specifying a Variable Frequency Drive s Put on by Bruce Reeves and Jeremy Gonzales Dykman Electrical Covering the Western US For all of your VFD and Soft Start and Motor Needs How To Specify a Variable
More informationSilos. Florea Dinu. Lecture 20: 28/02/2014
Silos Florea Dinu Lecture 20: 28/02/2014 European Erasmus Mundus Master Course Sustainable Constructions under Natural 520121120111CZERA MUNDUSEMMC Silos Silos are used by a wide range of industries
More informationB.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) TermEnd Examination December, 2011 BAS010 : MACHINE DESIGN
No. of Printed Pages : 7 BAS01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O TermEnd Examination December, 2011 BAS010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)
More informationNumerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
More informationGraduate Courses in Mechanical Engineering
Graduate Courses in Mechanical Engineering MEEG 501 ADVANCED MECHANICAL ENGINEERING ANALYSIS An advanced, unified approach to the solution of mechanical engineering problems, with emphasis on the formulation
More information1.054/1.541 Mechanics and Design of Concrete Structures (309) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (309) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
More informationSOLIDWORKS SIMULATION
SOLIDWORKS SIMULATION GET ENGINEERING INSIGHTS WITH VIRTUAL SIMULATION SOPHISTICATED SIMULATION IS NO LONGER JUST FOR SPECIALISTS Concurrent Engineering for more informed design SOLIDWORKS Simulation gives
More informationFluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
More informationENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS
ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical
More informationList of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p.
Preface p. v List of Problems Solved p. xiii Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. 6 Assembly of the Global System of Equations p.
More informationAutodesk BIM 360. Jerker Hägglund, Autodesk Northern Europe AEC/ENI Technical Specialist. Image created in Autodesk 3ds Max software.
Autodesk BIM 360 Jerker Hägglund, Autodesk Northern Europe AEC/ENI Technical Specialist Image created in Autodesk 3ds Max software The Next Generation of BIM Extend your desktop into the cloud Key Benefits:
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationLinear Dynamics with Abaqus
Linear Dynamics with Abaqus 2016 About this Course Course objectives Upon completion of this course you will be able to: Extract eigenmodes about a certain frequency Determine whether the number of extracted
More informationDynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
More informationCAE Finite Element Method
16.810 Engineering Design and Rapid Prototyping CAE Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)
More informationAbaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus
Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB06RCA1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures
More informationKINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE
ADVANCED ENGINEERING 3(2009)1, ISSN 18465900 KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE Cibulka, J. Abstract: This paper deals with the design of Kinetic Energy Recovery Systems
More informationIndiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
More informationModern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module  2 Lecture  2 Part 2 of 2 Review of Atomic Bonding II We will continue
More informationSolved with COMSOL Multiphysics 4.3
Vibrating String Introduction In the following example you compute the natural frequencies of a pretensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the
More informationThermoMechanical Coupled Simulation with LSDYNA
DYNAmore GmbH Industriestraße 2, D70565 Stuttgart andrea.erhart@dynamore.de www.dynamore.de Ingenieurbüro Tobias Loose Herdweg 13, D75045 Wössingen Lkr. Karlsruhe loose@tling.de www.loose.at ThermoMechanical
More informationDEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTISTAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 16, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTISTAGE RUBBER BEARINGS FOR
More informationMaterial Optimization and Weight Reduction of Drive Shaft Using Composite Material
IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) eissn: 22781684,pISSN: 2320334X, Volume 10, Issue 1 (Nov.  Dec. 2013), PP 3946 Material Optimization and Weight Reduction of Drive Shaft
More informationPUTTING THE SPIN IN CFD
W H I T E PA P E R PUTTING THE SPIN IN CFD Overview Engineers who design equipment with rotating components need to analyze and understand the behavior of those components if they want to improve performance.
More informationFinite Element Analysis for Acoustic Behavior of a Refrigeration Compressor
Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid
More informationExpress Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013  Industry
More informationFXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the
11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single
More informationMonifysikaalisten ongelmien simulointi Elmerohjelmistolla. Simulation of Multiphysical Problems with Elmer Software
Monifysikaalisten ongelmien simulointi Elmerohjelmistolla Simulation of Multiphysical Problems with Elmer Software Peter Råback Tieteen CSC 25.11.2004 Definitions for this presentation Model Mathematical
More informationChapter 6 Energy Equation for a Control Volume
Chapter 6 Energy Equation for a Control Volume Conservation of Mass and the Control Volume Closed systems: The mass of the system remain constant during a process. Control volumes: Mass can cross the boundaries,
More informationPump ED 101. Positive Displacement Pumps. Part I Reciprocating Pumps
Pump ED 101 Positive Displacement Pumps Part I Reciprocating Pumps Joe Evans, Ph.D http://www.pumped101.com There are many pump designs that fall into the positive displacement category but, for the most
More informationHighly flexible couplings
Construction and operation 8.03.00 Instructions for installation 8.03.00 Types of stress 8.04.00 Diagrams for static deformation of the coupling ring 8.05.00 Coupling size 8.07.00 Examples of combinations
More informationFLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect
More informationSANYO DENKI AMERICA, INC.
Fundamentals of Brushless DC Axial Cooling Fans Gerald Tan Sales Engineering Manager Sanyo Denki America Inc. 3/31/08 Table of Contents 1. Introduction. 2 2. BLDC fan construction. 2 2.1 Rotor assembly
More informationIntroduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response
More informationStructural Displacements. Structural Displacements. Beam Displacement. Truss Displacements 2
Structural Displacements Structural Displacements P Beam Displacement 1 Truss Displacements The deflections of civil engineering structures under the action of usual design loads are known to be small
More informationFinite Element Method
16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck deweck@mit.edu Dr. Il Yong Kim kiy@mit.edu January 12, 2004 Plan for Today FEM Lecture
More informationScience Standard Articulated by Grade Level Strand 5: Physical Science
Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties
More informationPresented at the COMSOL Conference 2008 Boston
Presented at the COMSOL Conference 2008 Boston Residual Stresses in Panels Manufactured Using EBF3 Process J. Gaillard (Masters Student, Microelectronics and Micromechanics Department, ENSICAEN (Ecole
More informationLecture 16  Free Surface Flows. Applied Computational Fluid Dynamics
Lecture 16  Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in
More informationME6130 An introduction to CFD 11
ME6130 An introduction to CFD 11 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
More informationNonlinear analysis and formfinding in GSA Training Course
Nonlinear analysis and formfinding in GSA Training Course Nonlinear analysis and formfinding in GSA 1 of 47 Oasys Ltd Nonlinear analysis and formfinding in GSA 2 of 47 Using the GSA GsRelax Solver
More informationChapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGrawHill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright
More informationBoardworks AS Physics
Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to
More informationCENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES
CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps
More informationBasic Concepts of Thermodynamics
Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible
More informationSensor Performance Metrics
Sensor Performance Metrics Michael Todd Professor and Vice Chair Dept. of Structural Engineering University of California, San Diego mdtodd@ucsd.edu Email me if you want a copy. Outline Sensors as dynamic
More informationLong term performance of polymers
1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form
More information32:(5#5$7,1* 4833#USP283#+] 4;33#USP293#+] 3ULPH 113 kva, 90 kw 124 kva, 99 kw 6WDQGE\ 114 kva, 91 kw 125 kva, 100 kw
,1'8675,$/#*(16(7 6HULHV#'9#448 32:(5#5$7,1* 4833#USP283#+] 4;33#USP293#+] 3ULPH 113 kva, 90 kw 124 kva, 99 kw 6WDQGE\ 114 kva, 91 kw 125 kva, 100 kw Generator set consisting of engine and alternator mounted
More informationMotorCAD Software for Thermal Analysis of Electrical Motors  Links to Electromagnetic and Drive Simulation Models
MotorCAD Software for Thermal Analysis of Electrical Motors  Links to Electromagnetic and Drive Simulation Models Dave Staton, Douglas Hawkins and Mircea Popescu Motor Design Ltd., Ellesmere, Shropshire,
More informationPragmatic multiscale and multiphysics analysis of Charles Bridge in Prague
Pragmatic multiscale and multiphysics analysis of Charles Bridge in Prague Jiří Šejnoha 1,2 Michal Šejnoha 1,2 Jan Zeman 1 Jan Novák 1,2 with Zdeněk Janda, Jiří Maděra, Jan Vorel and Jan Sýkora 1 Department
More informationTurbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation
Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation Sapienza Università di Roma, September 14, 2009 M. T. HORSCH,
More informationMEMS Multiphysics Simulation in ANSYS Workbench David Harrar II, PhD Ozen Engineering, Inc.
MEMS Multiphysics Simulation in ANSYS Workbench David Harrar II, PhD Ozen Engineering, Inc. 1 Ozen Engineering, Inc. We are the local ANSYS Channel Partner With over 25 years of experience in FEA and CFD
More informationIntroductory FLUENT Training
Chapter 10 Transient Flow Modeling Introductory FLUENT Training www.ptecgroup.ir 101 Motivation Nearly all flows in nature are transient! Steadystate assumption is possible if we: Ignore transient fluctuations
More informationCFD software overview comparison, limitations and user interfaces
CFD software overview comparison, limitations and user interfaces Daniel Legendre Introduction to CFD Turku, 05.05.2015 Åbo Akademi University Thermal and Flow Engineering Laboratory 05.05.2015 1 Some
More informationDYNAMIC ANALYSIS ON STEEL FIBRE
International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, MarchApril 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2
More informationLaminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers
Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic
More informationUnsteady Pressure Measurements
Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of the measurement of timevarying pressure (with periodic oscillations or step changes) the
More informationMechanical Actuators. Mechanical MEMS. Electrostatic Actuators. Electrostatic Actuation Cantilever Actuators
Mechanical Actuators Mechanical MEMS Dr. Bruce K. Gale Fundamentals of Micromachining Actuation mechanisms: electrostatic = electrostatic attraction of charged plates thermal = expansion of solids or fluids
More informationO.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
More informationCoSimulation and modal reduction for multifield problems in multibody dynamics
CoSimulation and modal reduction for multifield problems in multibody dynamics 7th Workshop on Descriptor Systems March 2005, Paderborn Martin Arnold [martin.arnold@mathematik.unihalle.de] Martin Luther
More informationBACHELOR OF SCIENCE DEGREE
BACHELOR OF SCIENCE DEGREE GENERAL EDUCATION CURRICULUM and Additional Degree Requirements Engineering Science Brett Coulter, Ph.D.  Director The Engineering Science degree is a wonderful way for liberal
More informationENERGY DISSIPATION DEVICES IN BRIDGES USING HYDRAULIC DAMPERS
ENERGY DISSIPATION DEVICES IN BRIDGES USING HYDRAULIC DAMPERS by E.A. Delis Bridge Engineer, Seismic Specialist Caltrans, Division of Structures Sacramento, CA 95816 R.B. Malla Assistant Professor University
More informationTHE COMPOSITE DISC  A NEW JOINT FOR HIGH POWER DRIVESHAFTS
THE COMPOSITE DISC  A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,
More informationComparison of Spherical and Membrane Large LNG. Carriers in Terms of Cargo Handling
GASTECH 2005 Comparison of Spherical and Membrane Large LNG Carriers in Terms of Cargo Handling Author Coauthors Kiho Moon, Chief Researcher Daejun Chang, Senior Researcher Donghun Lee, Researcher Hyundai
More informationModelling and Computation of Compressible Liquid Flows with Phase Transition
JASS 2009  Joint Advanced Student School, Saint Petersburg, 29. 03.  07. 04. 2009 Modelling and Simulation in Multidisciplinary Engineering Modelling and Computation of Compressible Liquid Flows with
More informationStatics of Structural Supports
Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure
More informationOverview of Topics. StressStrain Behavior in Concrete. Elastic Behavior. NonLinear Inelastic Behavior. Stress Distribution.
StressStrain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling
More informationFinite Element Method (ENGC 6321) Syllabus. Second Semester 20132014
Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 20132014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered
More informationOptoMechanical I/F for ANSYS
Abstract OptoMechanical I/F for ANSYS Victor Genberg, Keith Doyle, Gregory Michels Sigmadyne, Inc., 803 West Ave, Rochester, NY 14611 genberg@sigmadyne.com Thermal and structural output from ANSYS is
More informationSafakcan Tuncdemir 1, William M. Bradley *2. 1. Introduction
Modeling and Experimental Verification of the Power Transfer and Thermal Characteristics of Piezoelectric Transformers Subjected to Combined Mechanical and Electrical Loading Safakcan Tuncdemir 1, William
More informationDistance Learning Program
Distance Learning Program Leading To Master of Engineering or Master of Science In Mechanical Engineering Typical Course Presentation Format Program Description Clarkson University currently offers a Distance
More information4 SENSORS. Example. A force of 1 N is exerted on a PZT5A disc of diameter 10 mm and thickness 1 mm. The resulting mechanical stress is:
4 SENSORS The modern technical world demands the availability of sensors to measure and convert a variety of physical quantities into electrical signals. These signals can then be fed into data processing
More informationWeight Measurement Technology
KistlerMorse (KM) introduced bolton weight measuring systems three decades ago. These devices featured Walter Kistler s invention, the Microcell. Over the years, many improvements were made to the Microcell
More informationSOLVE COMPLEX SIMULATIONS TO ENHANCE PRODUCT PERFORMANCE
W H I T E P A P E R SOLVE COMPLEX SIMULATIONS TO ENHANCE PRODUCT PERFORMANCE Overview Engineering successful, innovative products in today s competitive environment requires simulation power. The ability
More informationDYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL
International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 2131, Article ID: IJCIET_06_11_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11
More information