A Model of Optimum Tariff in Vehicle Fleet Insurance


 Ann Jordan
 3 years ago
 Views:
Transcription
1 A Model of Optimum Tariff in Vehicle Fleet Insurance. Bouhetala and F.Belhia and R.Salmi Statistics and Probability Department Bp, 3, ElAlia, USTHB, BabEzzouar, Alger Algeria. Summary: An approach about tariff in vehicle fleet insurance has been proposing, where we develop a nonlinear mathematical model with constraints. The solution of the problem is an optimum cut rates for each class of ris. The model has been implementing on computer. ey words: Fleet insurance, Vehicle ris, Cut rate, Optimisation, Simulation. Introduction The individual sees often to protect of hazardous ris phenomena of his environment. A potential ris may be transferring to insurance company for cover, versus payment of premium. The calculus of this premium is an essential element at the insurer and requires actuarial techniques. In [RSST98], we find general principles to determinate a good premium. For the case of vehicle ris, an approach of the determination of an optimal premium, by using linear programming has given in [B0]. Recently, [NB04] show an asymptotic result concerning an estimator of extreme ris premium by using the adjusted premium principle given by [W96]. In this paper, we propose an optimal approach to determine cut rates of premium, by class of ris, in a vehicle fleet assurance. For a commercial reason, the reduction is an important parameter in the portfolio management strategy of company. We suggest a nonlinear programming model with constraints to determine optimal cut rates. Factors and classes of ris The most signification factors of ris, considered by this problem are type of vehicle, traffic area, and usage and vehicle power. Each factor is a set of codes. A ris class is a combination of these factors. For instance, the class 0003 concerns vehicles for business use, of power from 7 to 0 horses and moving inside a determined area. The set of ris classes has been generating by applying trees method, as for instance the CART method.
2 3 3 Premium of ris Formally, a ris premium may be considering as a nonnegative random variable X with distribution function F X. We associate to X a finite quantity (X ), called the premium of ris. The determination of (X ) needs a particular treatment and represents a reference point for commercial premiums calculus. Different principles of ris premium are given. A calculation of a good premium requires some proprieties of (X ). Let X, Y, Z be three arbitrary riss, the following proprieties are suggested, for a practice reason of the definition of ris premium principle (see [RSST98] ). P) α 0, ( α ) =α P) α 0, (α X) =α (X) P3) (X+Y) (X) + (Y) P4) α 0, (α +X) =α + (X) P5) X st Y then (X) (Y) ("st" order stochastic) P6) If for all a [0,], and for all (X) = (Y) ( a FX + (a) F Z ) = ( a FY + (a) F Z ). Each property admits a convenient interpretation. On the basic of these proprieties, principles of ris premium are defined by: A) Principle of the expected value: α 0, (X) = (+α ) E(X), (E(X)< ), A) Principle of variance: (X) = E(X) + a Var (X), A3) Principle of the deviation: (X) = E(X) + a A4) Principle of modified variance: Var ( X ) E ( X ) + a ( X ) = E( X ) 0 A5) Principle of the exponential:, Var(X), if E ( X ) > 0 if E ( X ) = 0 ax ) log E ( e (X) = a A6) Principle of adjusted premium: This principle concerns the case of extreme ris X (see [RSST98]). [W96] suggests the following principle. (X) = u p ( F ( x )) dx, X
3 33 Where p is a parameter of distortion and u is a value, appropriately determined in practice. For the case of this principle, an estimators family ( ˆ ), asymptotically normal has given in [NB04]. u n n N The following character of ris one or the other among of this principle may be chosen. As it is about the vehicle ris, we use expected value principle. 4 Modelling Given S the damage cost (random yearly cost) associate to th class of ris. The insurance supposed nowing the expectancy: E ( S ), =,,..., that can be calculated from damage historic. This, permits to determinate the net premium π, given by π = E, =,,...,. ( ) S = For a reason of commercial security, the insurer consider the premium π = ( +α ) π, =,,...,, where α is a loading parameter of net premium, which is, generally, fixed by the insurer according to his tariff strategy. Given N the total number of vehicles, separated into classes. The insurer gets N commercial premiums of a global value estimated to π. Let c be the cut rate relative to the th class of ris. The insurer yields part c c π of his premiums and conserve the other part ( ). Then, the total value of conserved premium becomes: π = S ( ) c π, with a total cost of damage: = To determine these cut rates, the company has to consider at least the quantity: ( ) Z= E c π S () =
4 34 4. The problem Hypothesis We consider the following assumptions: H) the portfolio is controlled for annual period, n = H) each class I, =,,,, including n vehicles (N = ) H3) in any class, riss insured are homogeneous and independents. H4) for each class of ris, the cost of damage S, is a nonnegative random variable. c H5) the cut rates are unnown variables to determine. 4. Formulation of objective s function Let Y i be the cost of damage of i th vehicle associated to the th class of ris. n The global cost damage relative to class is, S = Y i i= Given: j any damage of the vehicle i. U i, the total yearly number of damages of vehicle i. Y ij is the random cost of j th damage relative to the vehicle i of the th class of ris (j =,,,U i ). Then, the total cost of damages is Y = Yi j, for =,,, and i =,,,n i U i j = Let N s be the random variable "number of damages of the th class Then n n N s =. U i i = U i S = Y = i = j = i j We admit also the following consideration: Y Y N s, (,..., are (i.i.d.), with : E l = E ( ) =,,, and l =,,, N s. Y Y N s, N s l = Y ) Y Y l,..., are independents from the variable N s =,,,.
5 35 An explicit calculation of () gives the following objective function, to minimize: Where Z = + c π E Ns E Y π + = = c π ( ) = ψ = + N s Y + var N s ( Y ) π E ( ) E ( ) ( ) E + ψ E var Y ( N s ) 4.3 Constraints 4.3. Constraint in relation to the technical equilibrium For the insurance company, the ratio S τ =, is an essential index to measure the π technical equilibrium. The quantities S and π represents, respectively, total cost of damages and total of the acquired premiums. In practice, a good tariff must verified, τ. Then, we have: Let = = S ( c ) π. τ ( S ( c ) π ) = Thus, the first constraint must be: c π = l τ 0. τ + Y τ π 0. = Ns l = = 4.3. Constraint in relation to the total cut rate: For more justice towards the customer, the insurer applies, class by class, a reduction rule. The average balanced rate must not exceed a given percentage ( τ ) (the maximum, fixed by the company, being 50%).
6 36 We have: = = c π π τ. Hence, the second constraint will be: = c π  τ 0 π = Constraints in relation to the cut rate of class In every class, the cut rate must be restrained between 0 and a proportion fixed by the expert of the company. According to this condition, we consider constraints: 0 c ξ 0 ξ <, =,,..., ξ 4.4 Mathematical model From 4. and 4.3, we have to resolve, the following program: Min c, c,..., c (Z = + c π E Ns E Y π + ) ψ = = Under constraints τ c π = = c π ( ) = + Y τ π 0 0 τ () < c π = N s l = = τ 0 0 τ < π = c ξ 0, 0 ξ < =,,...,
7 37 5 Comment The proposed model is a tool of a decision help, concerning the fixation of the cut rates in vehicle fleet insurance. The stochastic form of model needs the calculation of the tow first moments of the random variables N s and Y ; respectively, the particular case of Poisson and lognormal laws is taen into consideration. The model is implemented on computer, as interactive pacage, where the user has the choice to estimate the parameters of the model, by using the statistical database of the insurer, or by simulation as is showing by the fig., that represents the simulation module of calculus of cut rates. Ris Vehicle Individual Total Expected Expected Optimal cut rates class number premium premium number cost of damages Fig. Simulation module of calculus of optimal cut rates
8 38 References [RSST98] Rolsi, T., Schmidt, H., Schmidt, V., Teugels, J.: Stochastic Process for Insurance and Finance. John Wiley & Sons edition (998). [B0] Bouhetala,. : A linear Programming Model for an optimal basic premium in car insurance. Bulletin of the International Statistical Institute, Vol. III, pp (00). [NB04] Necir, A.,Bouhetala,.: Estimating the risadjusted premium for the largest claims reinsurance covers. COMPSTAT04, Proc. in Computational Statistics, Physica Verlag, Heidelberg, New Yor, pp (004). [W96] Wang S.: Premium calculation by Transforming the Layer Premium Density, ASTIN Bulletin, 6, 7 9 (996).
Optimal reinsurance with ruin probability target
Optimal reinsurance with ruin probability target Arthur Charpentier 7th International Workshop on Rare Event Simulation, Sept. 2008 http ://blogperso.univrennes1.fr/arthur.charpentier/ 1 Ruin, solvency
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationStochastic programming approaches to pricing in nonlife insurance
Stochastic programming approaches to pricing in nonlife insurance Martin Branda Charles University in Prague Department of Probability and Mathematical Statistics 11th International Conference on COMPUTATIONAL
More informationExam Introduction Mathematical Finance and Insurance
Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closedbook exam. The exam does not use scrap cards. Simple calculators are allowed. The questions
More informationOn the mathematical theory of splitting and Russian roulette
On the mathematical theory of splitting and Russian roulette techniques St.Petersburg State University, Russia 1. Introduction Splitting is an universal and potentially very powerful technique for increasing
More informationMaster s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
More informationNonparametric adaptive age replacement with a onecycle criterion
Nonparametric adaptive age replacement with a onecycle criterion P. CoolenSchrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK email: Pauline.Schrijner@durham.ac.uk
More informationApproximation of Aggregate Losses Using Simulation
Journal of Mathematics and Statistics 6 (3): 233239, 2010 ISSN 15493644 2010 Science Publications Approimation of Aggregate Losses Using Simulation Mohamed Amraja Mohamed, Ahmad Mahir Razali and Noriszura
More informationPricing Alternative forms of Commercial insurance cover. Andrew Harford
Pricing Alternative forms of Commercial insurance cover Andrew Harford Pricing alternative covers Types of policies Overview of Pricing Approaches Total claim cost distribution Discounting Cash flows Adjusting
More informationLeast Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN13: 9780470860809 ISBN10: 0470860804 Editors Brian S Everitt & David
More informationCover. Optimal Retentions with Ruin Probability Target in The case of Fire. Insurance in Iran
Cover Optimal Retentions with Ruin Probability Target in The case of Fire Insurance in Iran Ghadir Mahdavi Ass. Prof., ECO College of Insurance, Allameh Tabataba i University, Iran Omid Ghavibazoo MS in
More informationA three dimensional stochastic Model for Claim Reserving
A three dimensional stochastic Model for Claim Reserving Magda Schiegl Haydnstr. 6, D  84088 Neufahrn, magda.schiegl@tonline.de and Cologne University of Applied Sciences Claudiusstr. 1, D50678 Köln
More informationUnderwriting risk control in nonlife insurance via generalized linear models and stochastic programming
Underwriting risk control in nonlife insurance via generalized linear models and stochastic programming 1 Introduction Martin Branda 1 Abstract. We focus on rating of nonlife insurance contracts. We
More informationCAPITAL ALLOCATION FOR INSURANCE COMPANIES WHAT GOOD IS IT? H e l m u t G r ü n d l, Berlin* and H a t o S c h m e i s e r, Berlin*
CAPITAL ALLOCATION FOR INSURANCE COMPANIES WHAT GOOD IS IT? By H e l m u t G r ü n d l, Berlin* and H a t o S c h m e i s e r, Berlin* SEPTEMBER 23, SECOND DRAFT JELKLASSIFICATION: G22, G3, G32 *Institut
More informationDiscuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
More informationLOGNORMAL MODEL FOR STOCK PRICES
LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as
More informationsheng@mail.ncyu.edu.tw 1 Content Introduction Expectation and variance of continuous random variables Normal random variables Exponential random variables Other continuous distributions The distribution
More informationOverview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
More informationTHE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
More information4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
More information3. The Economics of Insurance
3. The Economics of Insurance Insurance is designed to protect against serious financial reversals that result from random evens intruding on the plan of individuals. Limitations on Insurance Protection
More informationPricing Alternative forms of Commercial Insurance cover
Pricing Alternative forms of Commercial Insurance cover Prepared by Andrew Harford Presented to the Institute of Actuaries of Australia Biennial Convention 2326 September 2007 Christchurch, New Zealand
More informationA credibility method for profitable crossselling of insurance products
Submitted to Annals of Actuarial Science manuscript 2 A credibility method for profitable crossselling of insurance products Fredrik Thuring Faculty of Actuarial Science and Insurance, Cass Business School,
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 5 Solutions
Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 5 Solutions About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the
More informationStop Loss Reinsurance
Stop Loss Reinsurance Stop loss is a nonproportional type of reinsurance and works similarly to excessofloss reinsurance. While excessofloss is related to single loss amounts, either per risk or per
More informationUNIT I: RANDOM VARIABLES PART A TWO MARKS
UNIT I: RANDOM VARIABLES PART A TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1x) 0
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationSOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168
SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION Ravi PHATARFOD School of Mathematical Sciences Monash University, Clayton, Victoria, Australia 3168 In this paper we consider the problem of gambling with
More informationStatistiek (WISB361)
Statistiek (WISB361) Final exam June 29, 2015 Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1. The maximum number of points is 100. Points distribution: 23 20 20 20 17
More informationOptimization approaches to multiplicative tariff of rates estimation in nonlife insurance
Optimization approaches to multiplicative tariff of rates estimation in nonlife insurance Kooperativa pojišt ovna, a.s., Vienna Insurance Group & Charles University in Prague ASTIN Colloquium in The Hague
More informationOn characterization of a class of convex operators for pricing insurance risks
On characterization of a class of convex operators for pricing insurance risks Marta Cardin Dept. of Applied Mathematics University of Venice email: mcardin@unive.it Graziella Pacelli Dept. of of Social
More informationUNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency.
UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Candidate no Exam in: STK 4540 NonLife Insurance Mathematics Day of examination: December, 9th, 2015 Examination hours: 09:00 13:00 This
More informationCASH FLOW MATCHING PROBLEM WITH CVaR CONSTRAINTS: A CASE STUDY WITH PORTFOLIO SAFEGUARD. Danjue Shang and Stan Uryasev
CASH FLOW MATCHING PROBLEM WITH CVaR CONSTRAINTS: A CASE STUDY WITH PORTFOLIO SAFEGUARD Danjue Shang and Stan Uryasev PROJECT REPORT #20111 Risk Management and Financial Engineering Lab Department of
More informationProbability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special DistributionsVI Today, I am going to introduce
More informationBINOMIAL OPTIONS PRICING MODEL. Mark Ioffe. Abstract
BINOMIAL OPTIONS PRICING MODEL Mark Ioffe Abstract Binomial option pricing model is a widespread numerical method of calculating price of American options. In terms of applied mathematics this is simple
More informationAggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477  Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman  BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
More informationINDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulationbased method for estimating the parameters of economic models. Its
More informationPlease write your name and student number at the spaces provided:
MATH 3630 Actuarial Mathematics I Final Examination  sec 001 Monday, 10 December 2012 Time Allowed: 2 hours (6:008:00 pm) Room: MSB 411 Total Marks: 120 points Please write your name and student number
More informationINSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
More informationA Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 1618, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
More informationThe Study of Chinese P&C Insurance Risk for the Purpose of. Solvency Capital Requirement
The Study of Chinese P&C Insurance Risk for the Purpose of Solvency Capital Requirement Xie Zhigang, Wang Shangwen, Zhou Jinhan School of Finance, Shanghai University of Finance & Economics 777 Guoding
More informationThe Delta Method and Applications
Chapter 5 The Delta Method and Applications 5.1 Linear approximations of functions In the simplest form of the central limit theorem, Theorem 4.18, we consider a sequence X 1, X,... of independent and
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationSPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION
SPARE PARS INVENORY SYSEMS UNDER AN INCREASING FAILURE RAE DEMAND INERVAL DISRIBUION Safa Saidane 1, M. Zied Babai 2, M. Salah Aguir 3, Ouajdi Korbaa 4 1 National School of Computer Sciences (unisia),
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2
Math 370, Spring 2008 Prof. A.J. Hildebrand Practice Test 2 About this test. This is a practice test made up of a random collection of 15 problems from past Course 1/P actuarial exams. Most of the problems
More informationDepartment of Applied Mathematics, University of Venice WORKING PAPER SERIES Working Paper n. 203/2010 October 2010
Department of Applied Mathematics, University of Venice WORKING PAPER SERIES Antonella Campana and Paola Ferretti Initial premium, aggregate claims and distortion risk measures in X L reinsurance with
More informationGENERALIZED LINEAR MODELS IN VEHICLE INSURANCE
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 62 41 Number 2, 2014 http://dx.doi.org/10.11118/actaun201462020383 GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE Silvie Kafková
More informationTRANSACTIONS JUNE, 1969 AN UPPER BOUND ON THE STOPLOSS NET PREMIUMACTUARIAL NOTE NEWTON L. BOWERS, JR. ABSTRACT
TRANSACTIONS OF SOCIETY OF ACTUARIES 1969 VOL. 21 PT. 1 NO. 60 VOL. XXI, PART I M~TINO No. 60 TRANSACTIONS JUNE, 1969 AN UPPER BOUND ON THE STOPLOSS NET PREMIUMACTUARIAL NOTE NEWTON L. BOWERS, JR. ABSTRACT
More informationChapters 5. Multivariate Probability Distributions
Chapters 5. Multivariate Probability Distributions Random vectors are collection of random variables defined on the same sample space. Whenever a collection of random variables are mentioned, they are
More informationBayesian prediction of disability insurance frequencies using economic indicators
Bayesian prediction of disability insurance frequencies using economic indicators Catherine Donnelly HeriotWatt University, Edinburgh, UK Mario V. Wüthrich ETH Zurich, RisLab, Department of Mathematics,
More informationWHY THE LONG TERM REDUCES THE RISK OF INVESTING IN SHARES. A D Wilkie, United Kingdom. Summary and Conclusions
WHY THE LONG TERM REDUCES THE RISK OF INVESTING IN SHARES A D Wilkie, United Kingdom Summary and Conclusions The question of whether a risk averse investor might be the more willing to hold shares rather
More informationA Unifying Pricing Theory for Insurance and Financial Risks: Applications for a Unified Risk Management
A Unifying Pricing Theory for Insurance and Financial Risks: Applications for a Unified Risk Management Alejandro Balbás 1 and José Garrido 1,2 1 Department of Business Administration University Carlos
More informationMonte Carlo Simulation
1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: sweber@stochastik.unihannover.de web: www.stochastik.unihannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging
More informationEcon 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7
Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7 C2. Health Insurance: Risk Pooling Health insurance works by pooling individuals together to reduce the variability
More informationOptimal Stopping in Software Testing
Optimal Stopping in Software Testing Nilgun Morali, 1 Refik Soyer 2 1 Department of Statistics, Dokuz Eylal Universitesi, Turkey 2 Department of Management Science, The George Washington University, 2115
More information**BEGINNING OF EXAMINATION** The annual number of claims for an insured has probability function: , 0 < q < 1.
**BEGINNING OF EXAMINATION** 1. You are given: (i) The annual number of claims for an insured has probability function: 3 p x q q x x ( ) = ( 1 ) 3 x, x = 0,1,, 3 (ii) The prior density is π ( q) = q,
More informationTABLE OF CONTENTS. 4. Daniel Markov 1 173
TABLE OF CONTENTS 1. Survival A. Time of Death for a Person Aged x 1 B. Force of Mortality 7 C. Life Tables and the Deterministic Survivorship Group 19 D. Life Table Characteristics: Expectation of Life
More informationStatistical Forecasting of HighWay Traffic Jam at a Bottleneck
Metodološki zvezki, Vol. 9, No. 1, 2012, 8193 Statistical Forecasting of HighWay Traffic Jam at a Bottleneck Igor Grabec and Franc Švegl 1 Abstract Maintenance works on highways usually require installation
More informationLife Table Analysis using Weighted Survey Data
Life Table Analysis using Weighted Survey Data James G. Booth and Thomas A. Hirschl June 2005 Abstract Formulas for constructing valid pointwise confidence bands for survival distributions, estimated using
More informationOPTIMAL DESIGN OF A MULTITIER REWARD SCHEME. Amir Gandomi *, Saeed Zolfaghari **
OPTIMAL DESIGN OF A MULTITIER REWARD SCHEME Amir Gandomi *, Saeed Zolfaghari ** Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario * Tel.: + 46 979 5000x7702, Email:
More informationUSING EXCEL SOLVER IN OPTIMIZATION PROBLEMS
USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 445 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu
More informationTHE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:
THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces
More informationFULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang
FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang 87. Li, J.; Tang, Q. Interplay of insurance and financial risks in a discretetime model with strongly regular variation. Bernoulli 21 (2015), no. 3,
More informationMath 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
More informationMODELING OF SYN FLOODING ATTACKS Simona Ramanauskaitė Šiauliai University Tel. +370 61437184, email: simram@it.su.lt
MODELING OF SYN FLOODING ATTACKS Simona Ramanauskaitė Šiauliai University Tel. +370 61437184, email: simram@it.su.lt A great proportion of essential services are moving into internet space making the
More informationMath 425 (Fall 08) Solutions Midterm 2 November 6, 2008
Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the
More information( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net Email: krzysio@krzysio.net Posted September 21,
More informationGenerating Random Numbers Variance Reduction QuasiMonte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 QuasiMonte
More informationNotes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
More informationExploratory Data Analysis
Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
More informationA GENERALIZATION OF AUTOMOBILE INSURANCE RATING MODELS: THE NEGATIVE BINOMIAL DISTRIBUTION WITH A REGRESSION COMPONENT
WORKSHOP A GENERALIZATION OF AUTOMOBILE INSURANCE RATING MODELS: THE NEGATIVE BINOMIAL DISTRIBUTION WITH A REGRESSION COMPONENT BY GEORGES DIONNE and CHARLES VANASSE Universit~ de MontrEal, Canada * ABSTRACT
More informationStat 704 Data Analysis I Probability Review
1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informationOPTIMAL CHOICE UNDER SHORT SELL LIMIT WITH SHARPE RATIO AS CRITERION AMONG MULTIPLE ASSETS
OPTIMAL CHOICE UNDER SHORT SELL LIMIT WITH SHARPE RATIO AS CRITERION AMONG MULTIPLE ASSETS Ruoun HUANG *, Yiran SHENG ** Abstract: This article is the term paper of the course Investments. We mainly focus
More informationBenchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market
Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market W. Hürlimann 1 Abstract. We consider the dynamic stable benchmark rate model introduced in Verlaak et al. (005),
More informationSLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES
Journal of ELECTRICAL ENGINEERING, VOL. 60, NO. 1, 2009, 18 23 SLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES Mohammad B. B. Sharifian Mohammad R. Feyzi Meysam Farrokhifar
More informationLecture 2 of 4part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia.
Principles and Lecture 2 of 4part series Capital Spring School on Risk, Insurance and Finance European University at St. Petersburg, Russia 24 April 2012 Fair Wang s University of Connecticut, USA page
More informationStatistics  Written Examination MEC Students  BOVISA
Statistics  Written Examination MEC Students  BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.
More informationSYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation
SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 19, 2015 Outline
More informationTailDependence an Essential Factor for Correctly Measuring the Benefits of Diversification
TailDependence an Essential Factor for Correctly Measuring the Benefits of Diversification Presented by Work done with Roland Bürgi and Roger Iles New Views on Extreme Events: Coupled Networks, Dragon
More informationUsing a Lognormal Failure Rate Distribution for Worst Case Bound Reliability Prediction
Using a Lognormal Failure Rate Distribution for Worst Case Bound Reliability Prediction Peter G. Bishop Adelard and Centre for Software Reliability pgb@csr.city.ac.uk Robin E. Bloomfield Adelard and Centre
More informationCalculate the holding period return for this investment. It is approximately
1. An investor purchases 100 shares of XYZ at the beginning of the year for $35. The stock pays a cash dividend of $3 per share. The price of the stock at the time of the dividend is $30. The dividend
More informationIEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have
More informationModule1. x 1000. y 800.
Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,
More informationMAS2317/3317. Introduction to Bayesian Statistics. More revision material
MAS2317/3317 Introduction to Bayesian Statistics More revision material Dr. Lee Fawcett, 2014 2015 1 Section A style questions 1. Describe briefly the frequency, classical and Bayesian interpretations
More information5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
More informationStatistics 100A Homework 7 Solutions
Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase
More informationContent Distribution Scheme for Efficient and Interactive Video Streaming Using Cloud
Content Distribution Scheme for Efficient and Interactive Video Streaming Using Cloud Pramod Kumar H N PostGraduate Student (CSE), P.E.S College of Engineering, Mandya, India Abstract: Now days, more
More informationModeling and Performance Evaluation of Computer Systems Security Operation 1
Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system
More informationSummary of Probability
Summary of Probability Mathematical Physics I Rules of Probability The probability of an event is called P(A), which is a positive number less than or equal to 1. The total probability for all possible
More informationFund Manager s Portfolio Choice
Fund Manager s Portfolio Choice Zhiqing Zhang Advised by: Gu Wang September 5, 2014 Abstract Fund manager is allowed to invest the fund s assets and his personal wealth in two separate risky assets, modeled
More informationProbability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
More informationPast and present trends in aggregate claims analysis
Past and present trends in aggregate claims analysis Gordon E. Willmot Munich Re Professor of Insurance Department of Statistics and Actuarial Science University of Waterloo 1st QuebecOntario Workshop
More informationLloyd Spencer Lincoln Re
AN OVERVIEW OF THE PANJER METHOD FOR DERIVING THE AGGREGATE CLAIMS DISTRIBUTION Lloyd Spencer Lincoln Re Harry H. Panjer derives a recursive method for deriving the aggregate distribution of claims in
More informationA Note on the Ruin Probability in the Delayed Renewal Risk Model
Southeast Asian Bulletin of Mathematics 2004 28: 1 5 Southeast Asian Bulletin of Mathematics c SEAMS. 2004 A Note on the Ruin Probability in the Delayed Renewal Risk Model Chun Su Department of Statistics
More informationA STUDY IN CREDIBILITY BETTERMENT THROUGH EXCLUSION OF THE LARGEST CLAIMS
A STUDY IN CREDIBILITY BETTERMENT THROUGH EXCLUSION OF THE LARGEST CLAIMS MARCEL DERRON Zurich It is often found even today in Europe that for certain statistical investigations the conclusion is drawn
More informationARTIFICIAL NEURAL NETWORKS FOR ADAPTIVE MANAGEMENT TRAFFIC LIGHT OBJECTS AT THE INTERSECTION
The 10 th International Conference RELIABILITY and STATISTICS in TRANSPORTATION and COMMUNICATION  2010 Proceedings of the 10th International Conference Reliability and Statistics in Transportation and
More informationDistributed computing of failure probabilities for structures in civil engineering
Distributed computing of failure probabilities for structures in civil engineering Andrés Wellmann Jelic, University of Bochum (andres.wellmann@rub.de) Matthias Baitsch, University of Bochum (matthias.baitsch@rub.de)
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions
Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
More informationUnobserved heterogeneity; process and parameter effects in life insurance
Unobserved heterogeneity; process and parameter effects in life insurance Jaap Spreeuw & Henk Wolthuis University of Amsterdam ABSTRACT In this paper life insurance contracts based on an urnofurns model,
More information