Data Center Energy Cost Minimization: a Spatio-Temporal Scheduling Approach

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Data Center Energy Cost Minimization: a Spatio-Temporal Scheduling Approach"

Transcription

1 23 Proceedings IEEE INFOCOM Data Center Energy Cost Minimization: a Spatio-Temporal Scheduling Approach Jianying Luo Dept. of Electrical Engineering Stanford University Lei Rao, Xue Liu School of Computer Science McGill University Abstract Cloud computing is supported by an infrastructure known as Internet data center (IDC). As cloud computing thrives, the energy consumption and cost for IDCs are exploding. There is growing interest in energy cost minimization for IDCs in deregulated electricity markets. In this paper we study how to leverage both geographic and temporal variation of energy price to minimize energy cost for distributed IDCs. To this end, we propose a novel spatio-temporal load balancing approach. Using reallife electricity price and workload traces, extensive evaluations demonstrate that the proposed spatio-temporal load balancing approach significantly reduces energy cost for distributed IDCs. I. INTRODUCTION Recent years have witnessed the vast expansion of cloud computing []. Internet data centers (IDCs), the infrastructure to support cloud-computing service, are developing with giant strides. As cloud computing thrives, energy cost along with energy consumption for IDCs is exploding. It is estimated that energy-related costs may amount to 4.6% of operational cost of large-scale IDCs [2]. Therefore, curbing energy cost has become very important for IDC operators, e.g., Amazon, Facebook, Google, and Microsoft. Emerging concurrently with IDCs are smart grids, the modernized electric grids. Smart grids have facilitated the transition of electricity markets into deregulated markets with dynamic pricing [3, 4]. There is growing interest in how to operate distributed IDCs and manage energy cost in emerging deregulated electricity markets. Most existing works tackle the energy cost minimization problem for IDCs by spatial load balancing [5, 6, 7, 8], temporal load balancing [9, ], or energy storage[, 2]. This paper studies how to leverage both geographic and temporal variation of electricity price to minimize energy cost for IDCs, and guarantee a service completion time for cloudcomputing user requests. We propose a novel spatio-temporal load balancing approach for distributed IDCs. In Fig. we illustrate an architecture that supports load scheduling in both spatial and temporal domain. Fig. (a) shows the portion for load balancing in the space domain: from a portal server to an IDC site. Fig. (b) shows the portion for load balancing in the time domain: queueing a user request for some time and dispatching it to execution at a later time. A central workload This work was done when Dr. Lei Rao was at McGill University. Dr. Rao is now with General Motors Research Labs. scheduler manages user requests queueing and dispatching to execution on IDC sites. The main contribution of this paper is twofold. First, we study an important research problem of energy cost minimization for distributed IDCs in deregulated electricity markets. To address this problem, we propose a novel spatio-temporal load balancing approach that exploits both geographic and temporal variation of electricity price. Second, extensive evaluations based on real-life data demonstrate that our proposed approach can significantly reduce energy cost and guarantee a service completion time for user requests. The rest of the paper is organized as follows. Section II models the dispatching and execution of user requests for cloud-computing service, and formulates the energy cost minimization problem for distributed IDCs. Section III uses real-life electricity price and workload traces to evaluate the efficacy of our approach. Section IV discusses the relevant work in the literature. Finally, Section V concludes the paper. II. PROBLEM FORMULATION In this section, we first describe portal server, and distributed IDC system. Next we explain workload of user requests, electricity price, workload queue, and workload scheduler. Then we give the queueing delay constraint for workload, and the capacity constraint for IDC sites. We further formulate the energy cost minimization problem for the distributed IDC system. We introduce the notations used throughout the paper in Table I. A. Front-end portal server, back-end distributed IDC system A cloud-computing service provider usually operates a group of front-end portal servers and a back-end distributed IDC system. Each portal server aggregates user requests originating from a service area. The distributed IDC system comprises a number of geographically separate IDC sites. In our modeling, there are J portal servers S j, j ( j J unless stated otherwise), and I geographically separate IDC sites IDC i, i ( i I unless stated otherwise). We model the portal servers and IDC sites as a discrete-time system evolving over a sequence of equal-length time slots. B. Workload of user requests, electricity price, workload queue, and workload scheduler In time slot k, is the workload of user requests arriving at portal server S j, and l [k] is the total workload arriving at /3/$3. 23 IEEE 34

2 l [k] l J- [k] S SJ- λ j,i [k][] IDC IDCi IDCI- (a) Load Balancing in Space Domain (b) Load Balancing in Time Domain Fig. : Architecture for Spatio-Temporal Load Balancing Notation J S j Q j D l [k] L [k] I IDC i C i C p i [k][d] λ j,i [k][d] λ,i [k][d] λ, [k][d] Λ, [k][d] η TABLE I: Notations Q j λ j,i [k][] IDC IDCi IDCI- λ j, [k][] λ j,i [k][] λ j,i- [k][] Definition total number of front-end portal servers front-end portal server j workload scheduler queue at S j the time slot equivalent of service completion time bound D sct user request workload arriving at S j in time slot k total user request workload arriving at all front-end portal servers in time slot k total user request workload arriving at all front-end portal servers in time slots through k total number of IDC sites IDC site i capacity of IDC i total capacity of all IDC sites in time slot k, real-life electricity price (or estimated electricity price) on IDC i in time slot k for d = (or in future time slot k + d for d D) dispatch from Q j to IDC i in time slot k for d = (or in future time slot k + d for d D) dispatch from all workload queues to IDC i in time slot k for d = (or in future time slot k + d for d D) dispatch from all workload queues to all IDC sites in time slot k for d = (or in future time slot k + d for d D) in time slot k, total workload dispatched from all workload queues to all IDC sites in time slots through k, and total estimated workload to dispatch from all workload scheduler queues to all IDC sites in all future time slots k + t, t d) amount of energy to execute one unit of workload all portal servers: l [k] = J j= l j[k]. In a time slot, IDC i cannot serve workloads more than its capacity denoted as C i. C denotes the total capacity of the distributed IDC system: C = I i= C i. In time slot k, the total workload arriving at all portal servers is assumed no more than the total capacity of the distributed IDC system: l [k] C, k. In time slot k, we collect electricity price p i [k][d], d ( d D unless stated otherwise) on the IDC i site: p i [k][] is the real-life price on the IDC i site in time slot k, and p i [k][d], d D, is the estimated price on the IDC i site in future time slot k + d. η is the amount of energy consumed to execute one unit of workload. As shown in Fig. (b), at each S j a FIFO queue Q j (referred to as workload queue) stores arriving user requests at its tail. A central scheduler fulfills spatio-temporal load balancing. The scheduler decides the workload denoted as λ j,i [k][] to dispatch from Q j to IDC i, j, i, in time slot k, and the estimated workload denoted as λ j,i [k][d] to dispatch from Q j to IDC i, j, i, in future time slot k + d, d, d D. Fig. (a) shows that in time slot k, the scheduler dispatches amount λ j,i [k][] of workload, from Q j to IDC i, j, i. A user request has a service completion time bound D sct. Due to space limitation, we discuss our design for the case that all user requests require the same service completion time bound. To accommodate more than one service delay bound for reasons such as priority, and different levels of tolerance to delay, the design can be instantiated one unit per service delay bound; the capacity of IDC sites can be partitioned into different slices with one slice per service delay bound; workload of user requests dispatched from each design-unit can be entitled to its slice of the capacity of IDC sites. The large-scale deployment of commodity computers in data centers has catalyzed application parallelization: monolithic jobs are replaced by functionally equivalent small tasks mapped into worker computers and executed in a shorter amount of time [3]. Therefore, we assume that a user request can be decomposed to small user tasks; each such task can be executed on an IDC site in a time slot; tasks forming a user request may be executed on multiple IDC sites and in multiple time slots. We assume that user requests are received at the beginning of a time slot; the scheduler then dispatches user tasks at the head of Q j to execution on IDC i, j, i. The service completion time for user tasks comprises the queueing time at Q j, the transport time from Q j to IDC i, and the execution time on IDC i. The scheduler may queue user tasks until a future time slot with cheaper electricity price. As the interval over which electricity price changes is much greater than the transport time and the execution time of user tasks, the queueing time dominates the service completion time. If user tasks are queued for no more than D time slots, the time-slot equivalent of D sct, their requirement for service completion time is deemed satisfied. C. Queueing delay constraint for workload, and capacity constraint for IDC sites The spatio-temporal load balancing is subject to a queueing delay constraint for workload and a capacity constraint for each IDC site. A cumulative arrival function L [k] counts the total workload that has been received by all portal servers in time slots through k : L [k] = k l [t]. t= A cumulative departure function Λ, [k][d] counts the total workload either dispatched by the workload scheduler to execution in time slots through k, or to be dispatched to execution in time slots k through k + d, d, J λ,i[k][d] = λ j,i[k][d], λ, [k][d] = λ,i[k][d], j= k Λ, [k][d] = λ, [t][] + t= i= d λ, [k][t], t= d, i, d. 34

3 The queueing delay for user tasks is bounded by D time slots: L [k D + d] Λ, [k][d], d, d D, () L [k] = Λ, [k][d]. (2) The workload and the estimated workload to dispatch from all workload queues to IDC i must not exceed the capacity of IDC i in time slots k and k + d, d, d D, respectively due to the capacity constraint for each IDC site: λ,i[k][d] C i, D. Energy cost minimization i, d. The workload scheduler aims at minimizing the estimated total energy cost to execute all user tasks currently in the workload queues throughout the immediate (D + ) time slots starting from the current time slot. The energy cost to execute amount λ, [k][] of workload on all IDC sites in time slot k is EC[k][] = λ,i[k][] η p i[k][]. (3) i= The energy cost to execute estimated amount λ, [k][d] of workload on all IDC sites in time slot k + d is EC[k][d] = λ,i[k][d] η p i[k][d], d, d D. (4) i= Therefore, the estimated total energy cost in time slots k through k + D is EC[k] = D EC[k][d]. (5) d= We formulate the following optimization problem named OPT to obtain the minimum value of EC[k]: min EC[k], λ j,i [k][d] s.t. L [k D + d] Λ, [k][d], d, d D, L [k] = Λ, [k][d], λ,i[k][d] C i, i, d, λ j,i[k][d], i, j, d. In time slot k, the scheduler solves the OPT problem, and dispatches amount λ j,i [k][] of workload from Q j to execution on IDC i, j, i. III. PERFORMANCE EVALUATION In this section, we first describe the experimental setup. Next we assess the energy cost saving achieved by the proposed spatio-temporal load balancing approach. Then we study energy cost per time slot, and queueing delay for user tasks. A. Experimental setup Our experiment settings include portal servers and workload of user requests, a distributed IDC system and real-life electricity price, load balancing schemes for comparison, and electricity price estimation. Normalized Workload Enterprise IDC Workload (a) Real-Life Enterprise IDC Workload Normalized Workload Eastern US Central US Western US (b) Generated Workload of User Requests from Three Areas Fig. 2: Real-Life Enterprise IDC Workload, and Generated Workload of User Requests Originating from Three Areas (Normalized to C ref ) ) Portal servers, and workload of user requests: In the experiments, three portal servers S j, j 2, respectively receive user requests submitted from three areas: the eastern US, the central US, and the western US. We obtain a 24- hour real-life workload denoted as l ref [k] at an enterprise production data center [4]. A time-slot interval is 5 minutes, a common divisor for electricity price intervals on all IDC sites. Fig. 2(a) shows l ref [k] normalized to C ref, the capacity of the reference data center. To model workload arriving at these portal servers, we generate three user-request workload sequences, j 2, by two transforms on the reference data center workload: first, we use the time in the Eastern Time Zone for time-keeping, and therefore delay l ref [k] by,, and 3 hours for the eastern, the central, and the western US areas respectively; second, we scale the magnitude of three intermediate workload functions by factors of 3, 2, and, which are approximately in line with the population in these three areas. Fig. 2(b) shows the resultant three user-request workload sequences normalized to C ref. 2) A distributed IDC system, and real-life electricity price: In the experiments, a distributed IDC system consists of three geographically separate IDC sites IDC i, i 2. These sites model three Internet data centers that Google operates in Atlanta, GA, Houston, TX, and Mountain View, CA. The capacity of each site is as follows: C = 2 C ref, C = 3 C ref, and C 2 = C ref. We retrieve the real-life electricity price data for Atlanta, Houston, and Mountain View [3, 4]. Atlanta has a regulated electricity market, where the electricity price for industrial customers does not change in a month. Houston and Mountain View have a deregulated electricity market, where real-time price changes on 5-minute and -hour interval bases respectively. We adjust price data so that they refer to the time in the Eastern Time Zone. Fig. 3 illustrates the 24-hour reallife electricity price sequences p i [k][], i 2, on these IDC sites on May 2, 29. 3) Load balancing schemes for comparison: We compare the following three load balancing schemes. (a) spatial load balancing (Spatial LB): it exploits only the geographic variation of electricity price. A user request received by a portal server is dispatched to execution on one, or some, or all IDC sites in the same time slot as received by portal servers. (b) temporal load balancing (): it exploits only the 342

4 Electricity Price ($/MWh) Atlanta Houston Mountain View Fig. 3: Real-Life Electricity Price in Atlanta, Houston, and Mountain View on May 2, 29 temporal variation of electricity price and schedules workload received by a portal server to execute on a pre-determined IDC site with a service completion time bound of D time slots. A portal server is paired with an IDC site whose capacity is the closest to the magnitude of the received workload. Specifically, a user request received by S is dispatched to IDC ; that received by S is dispatched to IDC ; and that received by S 2 is dispatched to IDC 2. (c) spatio-temporal load balancing (Spatio-): it exploits both geographic and temporal variation of electricity price. A user request received by a portal server in time slot k is executed on one, or some, or all IDC sites during the immediate (D + ) time slots. 4) Electricity price estimation: For each site IDC i, i 2, we generate an estimated electricity price sequence p i [k][d] such that the rank of each term in sequence p i [k][d] matches that of each term in sequence p i [k + d][], d, k. Using a proof similar to Theorem 4 in [], we can show that the scheduler produces the identical load scheduling result with the estimated electricity price sequence p i [k][d] compared to with the real-life electricity price sequence p i [k + d][]. B. Energy cost minimization Using the electricity price aforementioned, we assess the total energy cost to schedule the 24-hour workload received by the portal servers to execute on the IDC sites. The service completion time bound D varies from (5-min) to 8 (2- hour). Fig. 4 plots the total energy cost normalized to (C ref η) in three load balancing schemes. We make the following three observations: (a) Spatial LB is superior to for all service completion time bounds D 8 (2-hour). With D = 2 (5- hour) and 8 (2-hour), respectively costs 25.2% and 4.2% more than Spatial LB for energy. Thus Spatial LB is more effective in reducing energy cost than. (b) Spatio- is superior to Spatial LB by a greater margin when D gets larger. With D = 2 (5-hour) and 8 (2-hour), Spatio- respectively costs 2.% and 43.2% less than Spatial LB for energy. The temporal scheduling part in Spatio- contributes to this cost saving. (c) Electricity price at a location does not change very frequently or dramatically between two contiguous time slots. Normalized Total Energy Cost ($) Spatial LB Spatio Service Completion Time Bound D (5 min) Fig. 4: Total Energy Cost vs. Service Completion Time Bound D in Three Load Balancing Schemes (note that D = in Spatial LB) Normalized Energy Cost Per Time Slot ($) Spatial LB Spatio Fig. 5: Energy Cost Per Time Slot in Three Load Balancing Schemes As a result, exploiting the temporal variation of price does not significantly reduce energy cost, if the service completion time bound is short, e.g., D = 4 (-hour). Therefore, both Spatio- and are particularly suitable for delay-tolerant user requests, such as MapReduce batch jobs. Next we assess energy cost per time slot. Fig. 5 shows the energy cost normalized to (C ref η) on all IDC sites per time slot in three schemes with D = 2 (5-hour): Spatial LB features a smooth function of energy cost per time slot; has a function that underscores jerky rise and fall; Spatio- exhibits volatile energy cost per time slot, although the magnitude of energy cost is mostly less than that in. The area under each function curve is the total energy cost to execute the 24-hour workload in each scheme. It is clear that the energy cost incurred by Temporal LB is the most, and that incurred by Spatio- is the least. C. Queueing delay for user tasks Fig. 6 presents the cumulative distribution function (CDF) of queueing delay for user tasks on all IDC sites in Temporal LB, and Spatio- with D = 2 (5-hour). We make the following three observations: (a) Both schemes satisfy the queueing delay constraint. (b) Due to the experiment setup, Spatio- has an average queueing delay more than : as electricity price does not vary over time slots on IDC, Temporal LB dispatches workload received by portal server S, which accounts for one third of the total workload, to execution on IDC with little queueing delay. (c) As the queueing delay approaches 2 time slots (5-hour), the CDF function for Spatio- rises rapidly. This is 343

5 CDF of Queueing Delay Spatio Fig. 6: Queueing Delay Distribution in, and Spatio- a result of temporal scheduling: the heavy workload received by all portal servers after time slot 54 is mostly dispatched to execution on IDC in time slots as distant as possible from time slot 72 with the highest electricity price. IV. RELATED WORK Energy management for IDCs is an active research topic. Existing works mostly aim at reducing energy consumption in IDCs. In [5] Liu et al. presented an overview of challenges toward power management in IDCs. In [6] Andrews et al. studied the trade-off between server energy usage and network queueing. In [7] Xu et al. proposed trough filling for distributed IDCs to achieve energy efficiency. Recently energy cost minimization for IDCs has attracted much attention. To tackle this problem, most existing works utilize spatial load balancing, temporal load balancing, or energy storage. In [6] Qureshi et al. focused on the evaluation of electricity price data. In [5] Rao et al. proposed a spatial load balancing scheme for distributed IDCs. In [7, 8] Le et al. and Liu et al. proposed spatial scheduling approaches and promoted renewable energy. In [9] Yao et al. used a stochastic optimization approach. In [] Luo et al. proposed a temporal load balancing scheme for an IDC. In [, 2] Urgaonkar et al. and Guo et al. used energy storage to save energy cost. Different from their works, we propose a spatio-temporal load balancing approach in this paper. A key performance requirement in IDCs is service delay. Most existing works use average queueing delay to evaluate the IDC service delay performance [5, 9]. A recent study on real-life production systems showed that there existed a long tail in processing delay for user requests; the user requests experiencing the longest delay significantly degraded users experience [8, 9]. Thus it is necessary to provide a service delay bound for all user requests. We incorporate a queueing delay constraint into the formulated problem, and guarantee a service completion time for user requests in distributed IDCs. V. CONCLUSION Internet data centers (IDCs) incur huge energy cost. Minimizing energy cost for IDC operations has recently attracted much attention. In this paper, we study how to leverage both geographic and temporal variation of electricity price to minimize energy cost for distributed IDCs. We propose a novel spatio-temporal load balancing approach. Extensive evaluations demonstrate that the proposed spatio-temporal load balancing approach achieves significant energy cost saving compared to the schemes using either spatial load balancing or temporal load balancing alone. ACKNOWLEDGMENTS This work was supported in part by NSERC Discovery Grant REFERENCES [] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, A view of cloud computing, Commun. ACM, vol. 53, pp. 5 58, April 2. [2] J. Hamilton, Cooperative expendable micro-slice servers (cems): Low cost, low power servers for internet-scale services, Jan. 29. [3] United States Energy Information Administration, Dept. of Energy, [4] United States Federal Energy Regulatory Commission, [5] L. Rao, X. Liu, L. Xie, and W. Liu, Minimizing electricity cost: Optimization of distributed internet data centers in a multi-electricitymarket environment, in INFOCOM, 2 Proceedings IEEE, march 2, pp. 9. [6] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, Cutting the electric bill for internet-scale systems, in Proceedings of the ACM SIGCOMM 29 conference on Data communication, ser. SIGCOMM 9, 29, pp [7] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, Greening geographical load balancing, SIGMETRICS Perform. Eval. Rev., vol. 39, pp , June 2. [8] K. Le, R. Bianchini, T. Nguyen, O. Bilgir, and M. Martonosi, Capping the brown energy consumption of internet services at low cost, in Green Computing Conference, 2 International, aug. 2, pp [9] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, Data centers power reduction: A two time scale approach for delay tolerant workloads, in INFOCOM, 22 Proceedings IEEE, march 22, pp [] J. Luo, L. Rao, and X. Liu, eco-idc: Trade delay for energy cost with service delay guarantee for internet data centers, in Cluster Computing (CLUSTER), 22 IEEE International Conference on, sept. 22, pp [] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam, Optimal power cost management using stored energy in data centers, in Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems, ser. SIGMETRICS, 2, pp [2] Y. Guo and Y. Fang, Electricity cost saving strategy in data centers by using energy storage, IEEE Transactions on Parallel and Distributed Systems, vol. 99, no. PrePrints, 22. [3] J. Diaz, C. Munoz-Caro, and A. Nino, A survey of parallel programming models and tools in the multi and many-core era, Parallel and Distributed Systems, IEEE Transactions on, vol. PP, no. 99, p., 22. [4] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, Workload analysis and demand prediction of enterprise data center applications, in Workload Characterization, 27. IISWC 27. IEEE th International Symposium on, sept. 27, pp [5] J. Liu, F. Zhao, X. Liu, and W. He, Challenges towards elastic power management in internet data centers, in Proceedings of the 29 29th IEEE International Conference on Distributed Computing Systems Workshops, ser. ICDCSW 9, 29, pp [6] M. Andrews, S. Antonakopoulos, and L. Zhang, Energy-aware scheduling algorithms for network stability, in INFOCOM, 2 Proceedings IEEE, april 2, pp [7] D. Xu and X. Liu, Geographic trough filling for internet datacenters, in INFOCOM, 22 Proceedings IEEE, march 22, pp [8] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, An analysis of traces from a production mapreduce cluster, Cluster Computing and the Grid, IEEE International Symposium on, vol., pp. 94 3, 2. [9] D. Ersoz, M. Yousif, and C. Das, Characterizing network traffic in a cluster-based, multi-tier data center, in Distributed Computing Systems, 27. ICDCS 7. 27th International Conference on, june 27, p

ENERGY EFFICIENT AND REDUCTION OF POWER COST IN GEOGRAPHICALLY DISTRIBUTED DATA CARDS

ENERGY EFFICIENT AND REDUCTION OF POWER COST IN GEOGRAPHICALLY DISTRIBUTED DATA CARDS ENERGY EFFICIENT AND REDUCTION OF POWER COST IN GEOGRAPHICALLY DISTRIBUTED DATA CARDS M Vishnu Kumar 1, E Vanitha 2 1 PG Student, 2 Assistant Professor, Department of Computer Science and Engineering,

More information

Cutting Down the Energy Cost of Geographically Distributed Cloud Data Centers

Cutting Down the Energy Cost of Geographically Distributed Cloud Data Centers Cutting Down the Energy Cost of Geographically Distributed Cloud Data Centers Huseyin Guler 1, B. Barla Cambazoglu 2 and Oznur Ozkasap 1 1 Koc University, Istanbul, Turkey 2 Yahoo! Research, Barcelona,

More information

Cost-aware Workload Dispatching and Server Provisioning for Distributed Cloud Data Centers

Cost-aware Workload Dispatching and Server Provisioning for Distributed Cloud Data Centers , pp.51-60 http://dx.doi.org/10.14257/ijgdc.2013.6.5.05 Cost-aware Workload Dispatching and Server Provisioning for Distributed Cloud Data Centers Weiwei Fang 1, Quan Zhou 1, Yuan An 2, Yangchun Li 3 and

More information

Profit Maximization and Power Management of Green Data Centers Supporting Multiple SLAs

Profit Maximization and Power Management of Green Data Centers Supporting Multiple SLAs Profit Maximization and Power Management of Green Data Centers Supporting Multiple SLAs Mahdi Ghamkhari and Hamed Mohsenian-Rad Department of Electrical Engineering University of California at Riverside,

More information

Online Resource Management for Data Center with Energy Capping

Online Resource Management for Data Center with Energy Capping Online Resource Management for Data Center with Energy Capping A. S. M. Hasan Mahmud Florida International University Shaolei Ren Florida International University Abstract The past few years have been

More information

Dynamic Virtual Machine Allocation in Cloud Server Facility Systems with Renewable Energy Sources

Dynamic Virtual Machine Allocation in Cloud Server Facility Systems with Renewable Energy Sources Dynamic Virtual Machine Allocation in Cloud Server Facility Systems with Renewable Energy Sources Dimitris Hatzopoulos University of Thessaly, Greece Iordanis Koutsopoulos Athens University of Economics

More information

Minimizing the Operational Cost of Data Centers via Geographical Electricity Price Diversity

Minimizing the Operational Cost of Data Centers via Geographical Electricity Price Diversity 203 IEEE Sixth International Conference on Cloud Computing Minimizing the Operational Cost of Data Centers via Geographical Electricity Price Diversity Zichuan Xu Weifa Liang Research School of Computer

More information

Resource-Diversity Tolerant: Resource Allocation in the Cloud Infrastructure Services

Resource-Diversity Tolerant: Resource Allocation in the Cloud Infrastructure Services IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 5, Ver. III (Sep. Oct. 2015), PP 19-25 www.iosrjournals.org Resource-Diversity Tolerant: Resource Allocation

More information

Global Cost Diversity Aware Dispatch Algorithm for Heterogeneous Data Centers

Global Cost Diversity Aware Dispatch Algorithm for Heterogeneous Data Centers Global Cost Diversity Aware Dispatch Algorithm for Heterogeneous Data Centers Ananth Narayan S. ans6@sfu.ca Soubhra Sharangi ssa121@sfu.ca Simon Fraser University Burnaby, Canada Alexandra Fedorova fedorova@cs.sfu.ca

More information

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage

Cutting Down Electricity Cost in Internet Data Centers by Using Energy Storage his full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 0 proceedings. Cutting Down Electricity Cost in Internet

More information

Online Resource Management for Data Center with Energy Capping

Online Resource Management for Data Center with Energy Capping Online Resource Management for Data Center with Energy Capping Hasan Mahmud and Shaolei Ren Florida International University 1 A massive data center Facebook's data center in Prineville, OR 2 Three pieces

More information

Coordination of Cloud Computing and Smart Power Grids

Coordination of Cloud Computing and Smart Power Grids Coordination of Cloud Computing and Smart ower Grids Amir-Hamed Mohsenian-Rad and Alberto Leon-Garcia Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada e-mails:

More information

COST MINIMIZATION OF RUNNING MAPREDUCE ACROSS GEOGRAPHICALLY DISTRIBUTED DATA CENTERS

COST MINIMIZATION OF RUNNING MAPREDUCE ACROSS GEOGRAPHICALLY DISTRIBUTED DATA CENTERS COST MINIMIZATION OF RUNNING MAPREDUCE ACROSS GEOGRAPHICALLY DISTRIBUTED DATA CENTERS Ms. T. Cowsalya PG Scholar, SVS College of Engineering, Coimbatore, Tamilnadu, India Dr. S. Senthamarai Kannan Assistant

More information

A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems

A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems Aysan Rasooli Department of Computing and Software McMaster University Hamilton, Canada Email: rasooa@mcmaster.ca Douglas G. Down

More information

A Hybrid Load Balancing Policy underlying Cloud Computing Environment

A Hybrid Load Balancing Policy underlying Cloud Computing Environment A Hybrid Load Balancing Policy underlying Cloud Computing Environment S.C. WANG, S.C. TSENG, S.S. WANG*, K.Q. YAN* Chaoyang University of Technology 168, Jifeng E. Rd., Wufeng District, Taichung 41349

More information

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING

CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE CURTAIL THE EXPENDITURE OF BIG DATA PROCESSING USING MIXED INTEGER NON-LINEAR PROGRAMMING R.Kohila

More information

Impact of workload and renewable prediction on the value of geographical workload management. Arizona State University

Impact of workload and renewable prediction on the value of geographical workload management. Arizona State University Impact of workload and renewable prediction on the value of geographical workload management Zahra Abbasi, Madhurima Pore, and Sandeep Gupta Arizona State University Funded in parts by NSF CNS grants and

More information

A Sequential Game Perspective and Optimization of the Smart Grid with Distributed Data Centers

A Sequential Game Perspective and Optimization of the Smart Grid with Distributed Data Centers A Sequential Game Perspective and Optimization of the Smart Grid with Distributed Data Centers Yanzhi Wang, Xue Lin, and Massoud Pedram Department of Electrical Engineering University of Southern California

More information

Minimizing Electricity Cost: Optimization of Distributed Internet Data Centers in a Multi-Electricity-Market Environment

Minimizing Electricity Cost: Optimization of Distributed Internet Data Centers in a Multi-Electricity-Market Environment This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM proceedings This paper was presented as part of the main

More information

Socially-Responsible Load Scheduling Algorithms for Sustainable Data Centers over Smart Grid

Socially-Responsible Load Scheduling Algorithms for Sustainable Data Centers over Smart Grid Socially-Responsible Load Scheduling Algorithms for Sustainable Data Centers over Smart Grid Jian He, Xiang Deng, Dan Wu, Yonggang Wen, Di Wu Department of Computer Science, Sun Yat-Sen University, Guangzhou,

More information

Dynamic Scheduling and Pricing in Wireless Cloud Computing

Dynamic Scheduling and Pricing in Wireless Cloud Computing Dynamic Scheduling and Pricing in Wireless Cloud Computing R.Saranya 1, G.Indra 2, Kalaivani.A 3 Assistant Professor, Dept. of CSE., R.M.K.College of Engineering and Technology, Puduvoyal, Chennai, India.

More information

Data Centers Power Reduction: A two Time Scale Approach for Delay Tolerant Workloads

Data Centers Power Reduction: A two Time Scale Approach for Delay Tolerant Workloads Data Centers Power Reduction: A two Time Scale Approach for Delay Tolerant Workloads Yuan Yao, Longbo Huang, Abhihshek Sharma, Leana Golubchik and Michael Neely University of Southern California, Los Angeles,

More information

ROUTING ALGORITHM BASED COST MINIMIZATION FOR BIG DATA PROCESSING

ROUTING ALGORITHM BASED COST MINIMIZATION FOR BIG DATA PROCESSING ROUTING ALGORITHM BASED COST MINIMIZATION FOR BIG DATA PROCESSING D.Vinotha,PG Scholar,Department of CSE,RVS Technical Campus,vinothacse54@gmail.com Dr.Y.Baby Kalpana, Head of the Department, Department

More information

THE CLOUD AND ITS EFFECTS ON WEB DEVELOPMENT

THE CLOUD AND ITS EFFECTS ON WEB DEVELOPMENT TREX WORKSHOP 2013 THE CLOUD AND ITS EFFECTS ON WEB DEVELOPMENT Jukka Tupamäki, Relevantum Oy Software Specialist, MSc in Software Engineering (TUT) tupamaki@gmail.com / @tukkajukka 30.10.2013 1 e arrival

More information

Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator

Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator 1 Optimal Integration of Renewable Energy Resources in Data Centers with Behind-the-Meter Renewable Generator Mahdi Ghamkhari and Hamed Mohsenian-Rad Department of Electrical and Computer Engineering Texas

More information

IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE

IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE Mr. Santhosh S 1, Mr. Hemanth Kumar G 2 1 PG Scholor, 2 Asst. Professor, Dept. Of Computer Science & Engg, NMAMIT, (India) ABSTRACT

More information

Energy Efficient Geographical Load Balancing via Dynamic Deferral of Workload

Energy Efficient Geographical Load Balancing via Dynamic Deferral of Workload 2012 IEEE Fifth International Conference on Cloud Computing Energy Efficient Geographical Load Balancing via Dynamic Deferral of Workload Muhammad Abdullah Adnan, Ryo Sugihara and Rajesh K. Gupta University

More information

An Overview on Important Aspects of Cloud Computing

An Overview on Important Aspects of Cloud Computing An Overview on Important Aspects of Cloud Computing 1 Masthan Patnaik, 2 Ruksana Begum 1 Asst. Professor, 2 Final M Tech Student 1,2 Dept of Computer Science and Engineering 1,2 Laxminarayan Institute

More information

Profit Aware Load Balancing for Distributed Cloud Data Centers

Profit Aware Load Balancing for Distributed Cloud Data Centers Profit Aware Load Balancing for Distributed Cloud Data Centers Shuo Liu, Shaolei Ren, Gang Quan, Ming Zhao, and Shangping Ren Department of Electrical and Computer Engineering, Florida International University,

More information

Traffic-Aware Resource Provisioning for Distributed Clouds

Traffic-Aware Resource Provisioning for Distributed Clouds ENERGY EFFICIENCY Traffic-Aware Resource Provisioning for Distributed Clouds Dan Xu, AT&T Labs Xin Liu, University of California, Davis Athanasios V. Vasilakos, Lulea University of Technology, Sweden Examining

More information

Force-directed Geographical Load Balancing and Scheduling for Batch Jobs in Distributed Datacenters

Force-directed Geographical Load Balancing and Scheduling for Batch Jobs in Distributed Datacenters Force-directed Geographical Load Balancing and Scheduling for Batch Jobs in Distributed Datacenters Hadi Goudarzi and Massoud Pedram University of Southern California Department of Electrical Engineering

More information

Cloud Management: Knowing is Half The Battle

Cloud Management: Knowing is Half The Battle Cloud Management: Knowing is Half The Battle Raouf BOUTABA David R. Cheriton School of Computer Science University of Waterloo Joint work with Qi Zhang, Faten Zhani (University of Waterloo) and Joseph

More information

A Cloud Data Center Optimization Approach Using Dynamic Data Interchanges

A Cloud Data Center Optimization Approach Using Dynamic Data Interchanges A Cloud Data Center Optimization Approach Using Dynamic Data Interchanges Efstratios Rappos Institute for Information and Communication Technologies, Haute Ecole d Ingénierie et de Geston du Canton de

More information

Maximizing Profit in Cloud Computing System via Resource Allocation

Maximizing Profit in Cloud Computing System via Resource Allocation Maximizing Profit in Cloud Computing System via Resource Allocation Hadi Goudarzi and Massoud Pedram University of Southern California, Los Angeles, CA 90089 {hgoudarz,pedram}@usc.edu Abstract With increasing

More information

Algorithms for sustainable data centers

Algorithms for sustainable data centers Algorithms for sustainable data centers Adam Wierman (Caltech) Minghong Lin (Caltech) Zhenhua Liu (Caltech) Lachlan Andrew (Swinburne) and many others IT is an energy hog The electricity use of data centers

More information

Data Centers to Offer Ancillary Services

Data Centers to Offer Ancillary Services Data Centers to Offer Ancillary Services Mahdi Ghamkhari and Hamed Mohsenian-Rad Department of Electrical Engineering, University of California at Riverside, Riverside, CA, USA e-mails: {ghamkhari, hamed}@ee.ucr.edu

More information

Characterizing Workload of Web Applications on Virtualized Servers

Characterizing Workload of Web Applications on Virtualized Servers Characterizing Workload of Web Applications on Virtualized Servers Xiajun Wang 1,2, Song Huang 2, Song Fu 2 and Krishna Kavi 2 1 Department of Information Engineering Changzhou Institute of Light Industry

More information

On the Amplitude of the Elasticity Offered by Public Cloud Computing Providers

On the Amplitude of the Elasticity Offered by Public Cloud Computing Providers On the Amplitude of the Elasticity Offered by Public Cloud Computing Providers Rostand Costa a,b, Francisco Brasileiro a a Federal University of Campina Grande Systems and Computing Department, Distributed

More information

Characterizing Task Usage Shapes in Google s Compute Clusters

Characterizing Task Usage Shapes in Google s Compute Clusters Characterizing Task Usage Shapes in Google s Compute Clusters Qi Zhang University of Waterloo qzhang@uwaterloo.ca Joseph L. Hellerstein Google Inc. jlh@google.com Raouf Boutaba University of Waterloo rboutaba@uwaterloo.ca

More information

Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers

Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers Performance Comparison of Assignment Policies on Cluster-based E-Commerce Servers Victoria Ungureanu Department of MSIS Rutgers University, 180 University Ave. Newark, NJ 07102 USA Benjamin Melamed Department

More information

The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy

The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy Yan Gao Accenture Technology Labs Zheng Zeng Apple Inc. Xue Liu McGill University P. R. Kumar Texas A&M University

More information

Provably-Efficient Job Scheduling for Energy and Fairness in Geographically Distributed Data Centers

Provably-Efficient Job Scheduling for Energy and Fairness in Geographically Distributed Data Centers 3nd IEEE International Conference on Distributed Computing Systems Provably-Efficient Job Scheduling for Energy and Fairness in Geographically Distributed Data Centers Shaolei Ren Yuxiong He Fei Xu Electrical

More information

A Review of Load Balancing Algorithms for Cloud Computing

A Review of Load Balancing Algorithms for Cloud Computing www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume - 3 Issue -9 September, 2014 Page No. 8297-8302 A Review of Load Balancing Algorithms for Cloud Computing Dr.G.N.K.Sureshbabu

More information

On-line Scheduling of Real-time Services for Cloud Computing

On-line Scheduling of Real-time Services for Cloud Computing On-line Scheduling of Real-time Services for Cloud Computing Shuo Liu Gang Quan Electrical and Computer Engineering Department Florida International University Miami, FL, 33174 {sliu5, gang.quan}@fiu.edu

More information

Online Dynamic Capacity Provisioning in Data Centers

Online Dynamic Capacity Provisioning in Data Centers Online Dynamic Capacity Provisioning in Data Centers Minghong Lin and Adam Wierman California Institute of Technology Lachlan L. H. Andrew Swinburne University of Technology Eno Thereska Microsoft Research

More information

ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS

ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS ADAPTIVE LOAD BALANCING ALGORITHM USING MODIFIED RESOURCE ALLOCATION STRATEGIES ON INFRASTRUCTURE AS A SERVICE CLOUD SYSTEMS Lavanya M., Sahana V., Swathi Rekha K. and Vaithiyanathan V. School of Computing,

More information

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity

Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity Noname manuscript No. (will be inserted by the editor) Guidelines for Selecting Hadoop Schedulers based on System Heterogeneity Aysan Rasooli Douglas G. Down Received: date / Accepted: date Abstract Hadoop

More information

Geoprocessing in Hybrid Clouds

Geoprocessing in Hybrid Clouds Geoprocessing in Hybrid Clouds Theodor Foerster, Bastian Baranski, Bastian Schäffer & Kristof Lange Institute for Geoinformatics, University of Münster, Germany {theodor.foerster; bastian.baranski;schaeffer;

More information

Big Data Processing of Data Services in Geo Distributed Data Centers Using Cost Minimization Implementation

Big Data Processing of Data Services in Geo Distributed Data Centers Using Cost Minimization Implementation Big Data Processing of Data Services in Geo Distributed Data Centers Using Cost Minimization Implementation A. Dhineshkumar, M.Sakthivel Final Year MCA Student, VelTech HighTech Engineering College, Chennai,

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014 RESEARCH ARTICLE OPEN ACCESS Survey of Optimization of Scheduling in Cloud Computing Environment Er.Mandeep kaur 1, Er.Rajinder kaur 2, Er.Sughandha Sharma 3 Research Scholar 1 & 2 Department of Computer

More information

Capping the Brown Energy Consumption of Internet Services at Low Cost

Capping the Brown Energy Consumption of Internet Services at Low Cost Capping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Thu D. Nguyen Rutgers University Ozlem Bilgir Margaret Martonosi Princeton University Energy Consumption

More information

Analysis of Various Task Scheduling Algorithms in Cloud Computing

Analysis of Various Task Scheduling Algorithms in Cloud Computing 2015 IJSRSET Volume 1 Issue 6 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Various Task Scheduling s in Cloud Computing Patel Dhara R*, Dr. Chirag

More information

Analysis of Service Broker Policies in Cloud Analyst Framework

Analysis of Service Broker Policies in Cloud Analyst Framework Journal of The International Association of Advanced Technology and Science Analysis of Service Broker Policies in Cloud Analyst Framework Ashish Sankla G.B Pant Govt. Engineering College, Computer Science

More information

Dynamic Resource Pricing on Federated Clouds

Dynamic Resource Pricing on Federated Clouds Dynamic Resource Pricing on Federated Clouds Marian Mihailescu and Yong Meng Teo Department of Computer Science National University of Singapore Computing 1, 13 Computing Drive, Singapore 117417 Email:

More information

SLA-aware Resource Scheduling for Cloud Storage

SLA-aware Resource Scheduling for Cloud Storage SLA-aware Resource Scheduling for Cloud Storage Zhihao Yao Computer and Information Technology Purdue University West Lafayette, Indiana 47906 Email: yao86@purdue.edu Ioannis Papapanagiotou Computer and

More information

International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012. Green WSUS

International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012. Green WSUS International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Abstract 112 Green WSUS Seifedine Kadry, Chibli Joumaa American University of the Middle East Kuwait The new era of information

More information

Supply Chain Platform as a Service: a Cloud Perspective on Business Collaboration

Supply Chain Platform as a Service: a Cloud Perspective on Business Collaboration Supply Chain Platform as a Service: a Cloud Perspective on Business Collaboration Guopeng Zhao 1, 2 and Zhiqi Shen 1 1 Nanyang Technological University, Singapore 639798 2 HP Labs Singapore, Singapore

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Discovery 2015: Cloud Computing Workshop June 20-24, 2011 Berkeley, CA Introduction to Cloud Computing Keith R. Jackson Lawrence Berkeley National Lab What is it? NIST Definition Cloud computing is a model

More information

Dynamic Workload Management in Heterogeneous Cloud Computing Environments

Dynamic Workload Management in Heterogeneous Cloud Computing Environments Dynamic Workload Management in Heterogeneous Cloud Computing Environments Qi Zhang and Raouf Boutaba University of Waterloo IEEE/IFIP Network Operations and Management Symposium Krakow, Poland May 7, 2014

More information

Prediction System for Reducing the Cloud Bandwidth and Cost

Prediction System for Reducing the Cloud Bandwidth and Cost ISSN (e): 2250 3005 Vol, 04 Issue, 8 August 2014 International Journal of Computational Engineering Research (IJCER) Prediction System for Reducing the Cloud Bandwidth and Cost 1 G Bhuvaneswari, 2 Mr.

More information

Energy Management and Profit Maximization of Green Data Centers

Energy Management and Profit Maximization of Green Data Centers Energy Management and Profit Maximization of Green Data Centers Seyed Mahdi Ghamkhari, B.S. A Thesis Submitted to Graduate Faculty of Texas Tech University in Partial Fulfilment of the Requirements for

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 8, August-2014 68 ISSN 2278-7763

International Journal of Advancements in Research & Technology, Volume 3, Issue 8, August-2014 68 ISSN 2278-7763 International Journal of Advancements in Research & Technology, Volume 3, Issue 8, August-2014 68 A Survey of Load Balancing Algorithms using VM B.KalaiSelvi 1 and Dr.L.Mary Immaculate Sheela 2 1 Research

More information

An energy efficiency of cloud based services using EaaS transcoding of the multimedia data.

An energy efficiency of cloud based services using EaaS transcoding of the multimedia data. An energy efficiency of cloud based services using EaaS transcoding of the multimedia data. Harshal P. Ganvir Computer Science and Engineering Vidarbha Institute of Technology Nagpur, India harshal.ganvir7@gmail.com

More information

Optimal Risk-aware Power Procurement for Data Centers in Day-Ahead and Real-Time Electricity Markets

Optimal Risk-aware Power Procurement for Data Centers in Day-Ahead and Real-Time Electricity Markets Optimal Risk-aware Power Procurement for Data Centers in Day-Ahead and Real-Time Electricity Markets Mahdi Ghamkhari, Hamed Mohsenian-Rad, and Adam Wierman Department of Electrical Engineering, University

More information

Review of Cloud Computing Architecture for Social Computing

Review of Cloud Computing Architecture for Social Computing Review of Cloud Computing Architecture for Social Computing Vaishali D. Dhale M.Tech Student Dept. of Computer Science P.I.E.T. Nagpur A. R. Mahajan Professor & HOD Dept. of Computer Science P.I.E.T. Nagpur

More information

MODIFIED BITTORRENT PROTOCOL AND ITS APPLICATION IN CLOUD COMPUTING ENVIRONMENT

MODIFIED BITTORRENT PROTOCOL AND ITS APPLICATION IN CLOUD COMPUTING ENVIRONMENT MODIFIED BITTORRENT PROTOCOL AND ITS APPLICATION IN CLOUD COMPUTING ENVIRONMENT Soumya V L 1 and Anirban Basu 2 1 Dept of CSE, East Point College of Engineering & Technology, Bangalore, Karnataka, India

More information

IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION

IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND SCIENCE IMPACT OF DISTRIBUTED SYSTEMS IN MANAGING CLOUD APPLICATION N.Vijaya Sunder Sagar 1, M.Dileep Kumar 2, M.Nagesh 3, Lunavath Gandhi

More information

Geographical Load Balancing for Online Service Applications in Distributed Datacenters

Geographical Load Balancing for Online Service Applications in Distributed Datacenters Geographical Load Balancing for Online Service Applications in Distributed Datacenters Hadi Goudarzi and Massoud Pedram University of Southern California Department of Electrical Engineering - Systems

More information

Energy-Information Transmission Tradeoff in Green Cloud Computing

Energy-Information Transmission Tradeoff in Green Cloud Computing Energy-Information Transmission Tradeoff in Green Cloud Computing Amir-Hamed Mohsenian-Rad and Alberto Leon-Garcia Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada

More information

Geographical Load Balancing for Online Service Applications in Distributed Datacenters

Geographical Load Balancing for Online Service Applications in Distributed Datacenters Geographical Load Balancing for Online Service Applications in Distributed Datacenters Hadi Goudarzi and Massoud Pedram University of Southern California Department of Electrical Engineering - Systems

More information

New Cloud Computing Network Architecture Directed At Multimedia

New Cloud Computing Network Architecture Directed At Multimedia 2012 2 nd International Conference on Information Communication and Management (ICICM 2012) IPCSIT vol. 55 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V55.16 New Cloud Computing Network

More information

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age.

Keywords: Dynamic Load Balancing, Process Migration, Load Indices, Threshold Level, Response Time, Process Age. Volume 3, Issue 10, October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Load Measurement

More information

Minimizing Disaster Backup Window for Geo-Distributed Multi-Datacenter Cloud Systems

Minimizing Disaster Backup Window for Geo-Distributed Multi-Datacenter Cloud Systems Minimizing Disaster Backup Window for Geo-Distributed Multi-Datacenter Cloud Systems Jingjing Yao, Ping Lu, Zuqing Zhu School of Information Science and Technology University of Science and Technology

More information

Online Control of Datacenter Power Supply under Uncertain Demand and Renewable Energy

Online Control of Datacenter Power Supply under Uncertain Demand and Renewable Energy Online Control of Datacenter Power Supply under Uncertain Demand and Renewable Energy Wei Deng, Fangming Liu, Hai Jin, Xiaofei Liao Services Computing Technology and System Lab, Cluster and Grid Computing

More information

Cost-effective Partial Migration of VoD Services to Content Clouds

Cost-effective Partial Migration of VoD Services to Content Clouds 211 IEEE 4th International Conference on Cloud Computing Cost-effective Partial Migration of VoD Services to Content Clouds Haitao Li, Lili Zhong, Jiangchuan Liu,BoLi,KeXu, Simon Fraser University, Email:

More information

Performance of Cloud Computing Centers with Multiple Priority Classes

Performance of Cloud Computing Centers with Multiple Priority Classes 202 IEEE Fifth International Conference on Cloud Computing Performance of Cloud Computing Centers with Multiple Priority Classes Wendy Ellens, Miroslav Živković, Jacob Akkerboom, Remco Litjens, Hans van

More information

A Novel Cost-effective Dynamic Data Replication Strategy for Reliability in Cloud Data Centres

A Novel Cost-effective Dynamic Data Replication Strategy for Reliability in Cloud Data Centres 2011 Ninth IEEE Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing A Novel Cost-effective Dynamic Data Replication Strategy for Reliability in Cloud Data Centres Wenhao LI

More information

Do You Feel the Lag of Your Hadoop?

Do You Feel the Lag of Your Hadoop? Do You Feel the Lag of Your Hadoop? Yuxuan Jiang, Zhe Huang, and Danny H.K. Tsang Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology, Hong Kong Email:

More information

Efficient and Enhanced Load Balancing Algorithms in Cloud Computing

Efficient and Enhanced Load Balancing Algorithms in Cloud Computing , pp.9-14 http://dx.doi.org/10.14257/ijgdc.2015.8.2.02 Efficient and Enhanced Load Balancing Algorithms in Cloud Computing Prabhjot Kaur and Dr. Pankaj Deep Kaur M. Tech, CSE P.H.D prabhjotbhullar22@gmail.com,

More information

AN EFFICIENT STRATEGY OF THE DATA INTEGRATION BASED CLOUD

AN EFFICIENT STRATEGY OF THE DATA INTEGRATION BASED CLOUD INTERNATIONAL JOURNAL OF REVIEWS ON RECENT ELECTRONICS AND COMPUTER SCIENCE AN EFFICIENT STRATEGY OF THE DATA INTEGRATION BASED CLOUD Koncha Anantha Laxmi Prasad 1, M.Yaseen Pasha 2, V.Hari Prasad 3 1

More information

Proxy-Assisted Periodic Broadcast for Video Streaming with Multiple Servers

Proxy-Assisted Periodic Broadcast for Video Streaming with Multiple Servers 1 Proxy-Assisted Periodic Broadcast for Video Streaming with Multiple Servers Ewa Kusmierek and David H.C. Du Digital Technology Center and Department of Computer Science and Engineering University of

More information

AN EFFICIENT LOAD BALANCING ALGORITHM FOR CLOUD ENVIRONMENT

AN EFFICIENT LOAD BALANCING ALGORITHM FOR CLOUD ENVIRONMENT AN EFFICIENT LOAD BALANCING ALGORITHM FOR CLOUD ENVIRONMENT V.Bharath 1, D. Vijayakumar 2, R. Sabarimuthukumar 3 1,2,3 Department of CSE PG, National Engineering College Kovilpatti, Tamilnadu, (India)

More information

Keywords: Big Data, HDFS, Map Reduce, Hadoop

Keywords: Big Data, HDFS, Map Reduce, Hadoop Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Configuration Tuning

More information

Locality Based Protocol for MultiWriter Replication systems

Locality Based Protocol for MultiWriter Replication systems Locality Based Protocol for MultiWriter Replication systems Lei Gao Department of Computer Science The University of Texas at Austin lgao@cs.utexas.edu One of the challenging problems in building replication

More information

GreenMap: MapReduce with Ultra High Efficiency Power Delivery

GreenMap: MapReduce with Ultra High Efficiency Power Delivery GreenMap: MapReduce with Ultra High Efficiency Power Delivery Du Su, Yi Lu University of Illinois at Urbana-Champaign Abstract Energy consumption has become a significant fraction of the total cost of

More information

Apache Hadoop. Alexandru Costan

Apache Hadoop. Alexandru Costan 1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open

More information

Cost-Minimizing Preemptive Scheduling of MapReduce Workloads on Hybrid Clouds

Cost-Minimizing Preemptive Scheduling of MapReduce Workloads on Hybrid Clouds Cost-Minimizing Preemptive Scheduling of MapReduce Workloads on Hybrid Clouds Xuanjia Qiu, Wai Leong Yeow, Chuan Wu, Francis C.M. Lau Department of Computer Science, The University of Hong Kong, Hong Kong,

More information

An Open MPI-based Cloud Computing Service Architecture

An Open MPI-based Cloud Computing Service Architecture An Open MPI-based Cloud Computing Service Architecture WEI-MIN JENG and HSIEH-CHE TSAI Department of Computer Science Information Management Soochow University Taipei, Taiwan {wjeng, 00356001}@csim.scu.edu.tw

More information

Experimental Evaluation of Energy Savings of Virtual Machines in the Implementation of Cloud Computing

Experimental Evaluation of Energy Savings of Virtual Machines in the Implementation of Cloud Computing 1 Experimental Evaluation of Energy Savings of Virtual Machines in the Implementation of Cloud Computing Roberto Rojas-Cessa, Sarh Pessima, and Tingting Tian Abstract Host virtualization has become of

More information

A SLA-based Cloud Computing Framework: Workload and Location Aware Resource Allocation to Distributed Data Centers in a Cloud

A SLA-based Cloud Computing Framework: Workload and Location Aware Resource Allocation to Distributed Data Centers in a Cloud A SLA-based Cloud Computing Framework: Workload and Location Aware Resource Allocation to Distributed Data Centers in a Cloud Seokho Son, Gihun Jung, and Sung Chan Jun School of Information and Communications,

More information

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads

Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads Advanced Load Balancing Mechanism on Mixed Batch and Transactional Workloads G. Suganthi (Member, IEEE), K. N. Vimal Shankar, Department of Computer Science and Engineering, V.S.B. Engineering College,

More information

Design of Simulator for Cloud Computing Infrastructure and Service

Design of Simulator for Cloud Computing Infrastructure and Service , pp. 27-36 http://dx.doi.org/10.14257/ijsh.2014.8.6.03 Design of Simulator for Cloud Computing Infrastructure and Service Changhyeon Kim, Junsang Kim and Won Joo Lee * Dept. of Computer Science and Engineering,

More information

Cost Minimization for Big Data Processing in Geo-Distributed Data Centers

Cost Minimization for Big Data Processing in Geo-Distributed Data Centers 1 Cost Minimization for Big Data Processing in Geo-Distributed Data Centers Lin Gu, Student Member, IEEE, Deze Zeng, Member, IEEE, Peng Li, Member, IEEE and Song Guo, Senior Member, IEEE Abstract The explosive

More information

Heterogeneity-Aware Resource Allocation and Scheduling in the Cloud

Heterogeneity-Aware Resource Allocation and Scheduling in the Cloud Heterogeneity-Aware Resource Allocation and Scheduling in the Cloud Gunho Lee, Byung-Gon Chun, Randy H. Katz University of California, Berkeley, Yahoo! Research Abstract Data analytics are key applications

More information

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is the published version of a Proceedings Paper presented at the 213 IEEE International

More information

Evaluating Task Scheduling in Hadoop-based Cloud Systems

Evaluating Task Scheduling in Hadoop-based Cloud Systems 2013 IEEE International Conference on Big Data Evaluating Task Scheduling in Hadoop-based Cloud Systems Shengyuan Liu, Jungang Xu College of Computer and Control Engineering University of Chinese Academy

More information

Research on Job Scheduling Algorithm in Hadoop

Research on Job Scheduling Algorithm in Hadoop Journal of Computational Information Systems 7: 6 () 5769-5775 Available at http://www.jofcis.com Research on Job Scheduling Algorithm in Hadoop Yang XIA, Lei WANG, Qiang ZHAO, Gongxuan ZHANG School of

More information

An Efficient Checkpointing Scheme Using Price History of Spot Instances in Cloud Computing Environment

An Efficient Checkpointing Scheme Using Price History of Spot Instances in Cloud Computing Environment An Efficient Checkpointing Scheme Using Price History of Spot Instances in Cloud Computing Environment Daeyong Jung 1, SungHo Chin 1, KwangSik Chung 2, HeonChang Yu 1, JoonMin Gil 3 * 1 Dept. of Computer

More information