Energy decay rates for solutions of Maxwell s system with a memory boundary condition

Size: px
Start display at page:

Download "Energy decay rates for solutions of Maxwell s system with a memory boundary condition"

Transcription

1 Collect. Math. vv, n (yyyy, 6 c 7 Universitat de Barcelona Energy decay rates for solutions of Maxwell s system with a memory boundary condition Serge Nicaise Université de Valenciennes et du Hainaut Cambrésis LAMAV, Institut des Sciences et Techniques de Valenciennes 5933 Valenciennes Cedex 9 France Cristina Pignotti Dipartimento di Matematica Pura e Applicata, Università di L Aquila Via Vetoio, Loc. Coppito, 67 L Aquila, Italy Received November 6, 6. Revised April 3, 7 Abstract We consider the stabilization of Maxwell s equations with space variable coefficients in a bounded region with a smooth boundary, subject to dissipative boundary conditions of memory type on the boundary. Under suitable conditions on the domain and on the permeability and permittivity coefficients, we prove the exponential/polynomial decay of the energy. Our result is mainly based on the use of the multipliers method and the introduction of a suitable Lyapounov functional.. Introduction Let R 3 be an open bounded domain with a smooth boundary. In the domain, we consider the homogeneous Maxwell s system D curl (µb = in (, (. B curl (λd = in (, (. div D = div B = in (, (.3 D( = D and B( = B in (.4 λµd τ (t = k B(t ν t k(sb(t s νds on (,, (.5 Keywords: Maxwell s equations, variable coefficients, memory boundary conditions, stabilization. MSC: 93D5, 93D5, 35L.

2 Nicaise and Pignotti where D, B are three-dimensional vector-valued functions of t, x = (x, x, x 3 ; µ = µ(x and λ = λ(x are scalar functions in C ( bounded from below by a positive constant, i.e., λ(x λ >, µ(x µ >, x ; (.6 D, B are the initial data in a suitable space. Moreover, in the boundary condition (.5, ν denotes the outward unit normal vector to the boundary, k is a positive constant, k : [, R is a positive function of class C and D τ denotes the tangential component of the vector field D, that is D τ = ν (D ν. The integral boundary condition (.5 describes the memory effect, it means that the boundary is a medium with a high but finite electric conductivity [8, 3, ]. Frictional dissipative boundary condition (i.e. the case k = in (.5 was studied by many authors, see [7,, 6, 7,,, 4, 5]. On the contrary for boundary conditions with memory, only a few number of papers exists [8, 3, ]. In these papers, the authors consider Maxwell s equations with constant coefficients (or piecewise constant and prove the exponential decay of a suitable energy by combining the multipliers method with the use of Pazy s theorem. The main goal of the present work is to extend the previous results to the case of variable coefficients by using the multipliers method and by introducing a suitable Lyapounov functional. Note further that our choice of the energy allows to give a simple proof of the exponential decay. Under appropriate assumptions on k, we also prove the polynomial decay of the energy. Similar results already exist for the (linear or nonlinear wave equation with internal or boundary conditions with memory, let us quote [,, 5, 3, 4, 9, 4, 6, 7, 8]. These authors prove the exponential or polynomial decay of the energy by combining the multipliers method with the use of a suitable Lyapounov functional or integral inequalities. For semilinear problems blow up phenomena may occur, see for instance [5]. Note that the Lyapounov functional method was introduced by G. Chen [6] for the wave equation and by A. Haraux [] for semilinear hyperbolic problems with internal damping. It was further developed and adapted to boundary feedbacks by E. Zuazua and co-authors in [, 3, 8, 3]. The paper is organized as follows: Well-posedness of the problem is analysed in Section under appropriate conditions on k using semigroup theory. We further show that the same conditions on k guarantee the decay of the energy. Under some geometric assumptions on the domain and additional assumptions on k, we show in Section 3 the exponential stability of our system and in Section 4 the polynomial decay of the energy. Finally in Section 5 we end up with some examples, where the geometric assumptions are illustrated.. Well-posedness of the problem In this section, we consider the existence and regularity of solutions to our system (.-(.5. We further show that our system is dissipative by proving that

3 Maxwell s system with a memory boundary condition 3 its energy decays. For that purpose, the function k( in the boundary condition (.5 needs to satisfy the following assumptions: k (t, k (t. (. Note that these assumptions are relatively standard, see [8, ]. With our assumptions (., problem (. (.5 can be formulated as a standard evolution equation u Au =, u( = u [] with an appropriate operator A, which generates a strongly continuous semigroup (proved using the same techniques as the ones from [, Theorem.]. This allows to obtain the following result: Theorem. Let the above assumptions on k be satisfied. Then, for all initial data D, B L ( 3 such that div D = div B = in, curl (µb, curl (λd L ( 3 and satisfying the compatibility condition λµd τ = k B ν on, there exists a unique solution (D, B of (. (.5 with the regularity D, B C (R ; L ( 3, curl (µb C(R ; L ( 3, curl (λd C(R ; L ( 3. We define the energy of our system (. (.5 by E(t := { λ D(t µ B(t } dx t k s (s t k(t B(t τ νdτ B(t τ νdτ d. dsd (. Note that our definition differs from the one in [3, ] and is inspired from the definition of the energy for the wave equation with memory boundary conditions [,, 5, 9, 7]. Let us further denote by E( the standard energy E(t := (λ D µ B dx. (.3 Proposition. For any regular solution (D, B to problem (. (.5, one has E (t = k B(t ν d k t (t B(t τ νdτ d t k s (s B(t τ νdτ dsd. (.4

4 4 Nicaise and Pignotti Proof. Differentiating (. we have E (t = {λdd µbb }dx t ( s ( s k (s B(t τ νdτ ( t ( t k(t B(t τ νdτ B (t τ νdτ k(t ( t B(t τ νdτ B( νd. B (t τ νdτ dsd d Then, using (., (. and integrating by parts, we get E (t = λµ(d ν Bd t ( s k (s B(t τ νdτ [B(t B(t s] νdsd ( t k(t B(t τ νdτ B(t νd. (.5 Identity (.5 can be rewritten as E (t = λµ(d ν Bd t ( s B(t ν k (s t s B(t τ νdτ dsd k (s d B(t τ νdτ dsd ds ( t k(tb(t ν B(t τ νdτ d, from which follows, integrating by parts, E (t = λµ(d ν Bd t ( s B(t ν k (s t s t ( t k (s k (t k(tb(t ν B(t τ νdτ dsd B(t τ νdτ dsd B(t τ νdτ d B(t τ νdτ d. Now, observe that the boundary condition (.5 can be rewritten as t λµd τ (t = k B(t ν k(tb(t τ νdτ t ( s k (s B(t τ νdτ ds. (.6 (.7

5 Maxwell s system with a memory boundary condition 5 Therefore, using (.7 and observing that (D ν B = D τ (B ν, we have ( t λµ(d ν Bd = k(tb(t ν B(t τ νdτ d t ( s B(t ν k (s B(t τ νdτ dsd k B ν d, that substituted in (.6 gives (.4. (.8 Our next purpose is to find sufficient conditions on k, on the coefficients λ, µ and on in order to guarantee the exponential/polynomial decay of the energy. 3. Stabilization result: exponential decay We assume that there exist a C vector field q and ρ > such that and λdiv q ξ λ µdiv q ξ µ 3 i,k= 3 i,k= q i x k ξ i ξ k q λ ξ ρλ ξ, x, ξ R 3, (3. q i x k ξ i ξ k q µ ξ ρµ ξ, x, ξ R 3. (3. Obviously, the vector field q and the parameter ρ may depend on the coefficients λ and µ and on the geometry of (see Section 5. We further assume that q ν > on. Therefore, for a suitable positive constant δ, one has q ν δ on. (3.3 Remark 3. Conditions (3. and (3. impose some restrictions on the coefficients λ and µ. They are more restrictive than the one taken in [3] using microlocal analysis and differential geometry arguments. Nevertheless in some particular cases, these conditions may become necessary according to differential geometry approach (see Example 3 below. We refer to the papers of Yao [9] and Macià and Zuazua [9] for the case of scalar wave equations with variable coefficients. The condition (3.3 has a different nature, it is a geometrical condition on. For the standard multiplier q(x = x x, it means that is strictly star-shaped with respect to x. Moreover we make the following assumptions on the function k in the boundary condition (.5: for positive constants γ, γ. k(t, k (t γ k(t, k (t γ k (t, t >, (3.4

6 6 Nicaise and Pignotti Remark 3. Note that the assumptions (3.4 imply that the functions k and k are exponentially decaying to. These assumptions are quite reasonable, since in [3], the authors take k(t = exp ( σ(xt, for some σ(x >, while in [] the condition k H (R combined with their condition (. leads to (3.4. Now we recall a standard identity with multipliers: Proposition 3.3 Let (D, B be a regular solution of problem (. (.4 and let q be a C vector field. Then the following identity holds: (B D qdx = (div q(λ D µ B dx 3 q i (λd i D k µb i B k dx x k i,k= {(q λ D (q µ B }dx {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d. (3.5 Proof. See [5, Lemma.] that extends to variable coefficients λ, µ a previous identity proved by Komornik [6]. Remark 3.4 Note that identity (3.5 holds without assuming any particular boundary condition. We can estimate the boundary terms in (3.5 as follows. Lemma 3.5 Assume that (3.4 holds. Let (D, B be a regular solution of problem (. (.5 and let q be a C vector field verifying (3., (3., (3.3. Then, {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d C {k B(t ν t d k(t B(t τ νdτ d (3.6 t k s (s B(t τ νdτ } dsd, for a suitable positive constant C. Proof. Denoting by D ν and B ν the scalar normal components of D and B we have {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d = {(λ D µ B (3.7 (q ν µ(q BB ν λ(q DD ν }d.

7 Maxwell s system with a memory boundary condition 7 We can rewrite (3.7 as {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d = {(λ D τ λdν µ B τ µbνq ν q[µ(b ν ν B τ B ν λ(d ν ν D τ D ν ]}d = (q ν(λdν µbνd {(λ D τ µ B τ (q ν µq B τ B ν λq D τ D ν }d, (3.8 where D τ and B τ are the tangential parts of D and B. From (3.8, applying Young s inequality and recalling assumption (3.3, we obtain {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d C { D τ B τ (3.9 }d, for a suitable constant C >. Then, using the boundary condition (.7 in (3.9, we have {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d { C B(t ν d k t (t B(t τ νdτ d t s k (s B(t τ νdτds } d. (3. Using Cauchy-Schwarz s inequality and the assumptions on k, we can estimate { t k s } (s B(t τ νdτds t t [ k (s]ds [ k s (s] B(t τ νdτ ds (3. t C [ k s (s] B(t τ νdτ ds. Therefore, using (3. and (3.4, inequality (3. implies {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d C {k B(t ν t d k(t B(t τ νdτ d t k (s s B(t τ νdτ } dsd, for a suitable constant C >.

8 8 Nicaise and Pignotti By the estimate (3.6 and the assumptions (3., (3. on q, 3.5 gives (B D qdx ρ (λ D µ B dx C {k B(t ν t d k(t B(t τ νdτ d t k (s s B(t τ νdτ } dsd. (3. Now, we can give the exponential stability result (compare with [5, Lemma.5]. Theorem 3.6 Assume that (3., (3., (3.3 and (3.4 hold. Then, for any solution (D, B of problem (. (.5 (in the sense of Theorem., we have for suitable positive constants C, C. E(t C E(e C t, t >, (3.3 Proof. We first consider a regular solution (D, B of problem (. (.5. By assumption (3.4, (.4 implies E (t k γ B(t ν d γ t k(t B(t τ νdτ t k s (s B(t τ νdτ dsd. Define the Lyapounov functional Ẽ(t := E(t ˆγ d (3.4 (B D qdx, (3.5 where ˆγ is a positive constant chosen sufficiently small later on and q a C vector field verifying (3., (3. and (3.3. Differentiating (3.5 and using (3., we have d dtẽ(t ˆγρE(t k B(t ν d γ t k(t B(t τ νdτ d 4 γ t k s (s B(t τ νdτ dsd, 4 for ˆγ sufficiently small. By the definition of the energy E, we obtain for a positive constant c. d dtẽ(t c E(t, (3.6

9 Maxwell s system with a memory boundary condition 9 Now, to conclude it suffices to observe that for ˆγ sufficiently small, there exist positive constants c, c such that Hence by (3.7 and (3.6, we get c E(t Ẽ(t c E(t. (3.7 d CẼ(t, (3.8 dtẽ(t which means that Ẽ is exponentially decreasing. The claim follows by the first inequality in (3.7 for a regular solution. Since the estimate (3.3 is valid for finite energy solutions, by density it holds for any solution in the sense of Theorem.. Remark 3.7 Note that all the above results still hold if the function k depends also on the space variable, that is k := k(x, t, k : [, R, k C ( [,. The same remark applies to the following section. We have considered k := k(t only for the sake of simplicity. 4. Stabilization result: polynomial decay In this section we assume that the function k in the boundary condition (.5 verifies k(t, k (t γ [k(t] /p, k (t γ [ k (t] /(p, t >, (4. for positive constants γ, γ and for some real number p >. Note that the assumptions (4. imply that the functions k and k are polynomially decaying to as /( t p and /( t p respectively. Instead of Lemma 3.5 we need, in this case, the following result. Lemma 4. Assume that (4. holds. Let (D, B be a solution of problem (. (.5 and let q be a C vector field verifying (3., (3., (3.3. Then, there exist a positive constant C such that {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d C {k B(t ν d [k(t] /p t B(t τ νdτ d (4. t [ k (s] /(p s B(t τ νdτ } dsd.

10 Nicaise and Pignotti Proof. Using Cauchy-Schwarz s inequality we can estimate { t k s } (s B(t τ νdτds t t [ k (s] p/(p ds [ k (s] (p/(p s B(t τ νdτ ds. (4.3 By (4. the function k is decreasing as /(t p, then t [ k (s] p/(p ds, t >, is uniformly bounded (in t. So, (4.3 and the boundedness of k allow to obtain by (3. {(λ D µ B (q ν µ(q B(ν B λ(q D(ν D}d C {k B(t ν d [k(t] /p t B(t τ νdτ d t [ k (s] /(p s B(t τ νdτ } dsd, for a suitable constant C >. By the estimate (4. and the assumptions (3., (3. on q, (3.5 gives (B D qdx ρ (λ D µ B dx C {k B(t ν d [k(t] /p t t [ k (s] /(p s B(t τ νdτ d B(t τ νdτ } dsd. (4.4 We are ready to give the stabilization result. Theorem 4. Assume that (3., (3., (3.3 and (4. hold. Let (D, B be a regular solution of problem (. (.5 and let r be such that p < r < p p. Then, there exist a positive constant C (depending non linearly on D and B such that C E(t, t >. (4.5 ( t

11 Maxwell s system with a memory boundary condition Proof. By the assumption (4. and the identity (.4 we can obtain E (t k B(t ν d γ t [k(t] /p t s [ k (s] /(p γ Let Ẽ( be the functional defined by (3.5. By (4.6 and (4.4, for ˆγ sufficiently small, we have B(t τ νdτ B(t τ νdτ dsd. d dtẽ(t ˆγρE(t k B(t ν d γ [k(t] /p t B(t τ νdτ d 4 γ t [ k (s] /(p s B(t τ νdτ dsd. 4 d (4.6 (4.7 From Hölder s inequality (see [7, Lemma 4.], we may write t and then, { [ k (s] t s B(t τ νdτ dsd { t [ k (s] /(p s { t [ k (s] r s s B(t τ νdτ dsd B(t τ νdτ dsd } ( r(p [ k (s] B(t τ νdτ dsd t [ k (s] /(p s B(t τ νdτ dsd { We can estimate t [ k (s] r s { t [ k (s] r s { t [ k (s] r( t Moreover by (.4, we observe that B(t τ νdτ dsd B(t τ νdτ dsd } ( r(p } } },. (4.8 dsd } (4.9 ( r(p B(τ ν dτ. B(τ ν d k E (τ, τ >

12 Nicaise and Pignotti and then, since the energy E( is decreasing, t B(τ ν ddτ k E(, t >. (4. Therefore, from (4. and Cauchy-Schwarz s inequality ( t d t B(τ ν dτ t B(τ ν dτd ct, (4. for a positive constant c. Moreover, by (4. recalling that r > p, it holds [ k (s] r ds <. (4. So, by (4.9, (4. and (4., we conclude that { t [ k (s] r s B(t τ νdτ dsd } ( r(p ct (4.3 Therefore, from (4.8 and (4.3, we have for all t >, { t [ k (s] ct s B(t τ νdτ dsd } t [ k (s] /(p s B(t τ νdτ dsd, (4.4 for a suitable positive constant c. By (4.4 and (4.7 it follows that, for all t >, Ẽ (t ct { E(t t ( t [ k (s] for a suitable constant c >. Now, observing that s [k(t] /p t }, B(t τ νdτ dsd ( r(p > p, B(t τ νdτ d (4.5

13 Maxwell s system with a memory boundary condition 3 using Hölder s inequality we can estimate { k(t t B(t τ νdτ d [k(t] { { t { [k(t] /p t { ct t t } t B(t τ νdτ d B(t τ νdτ } d } B(t τ νdτ } d B(t τ ν dτd [k(t] /p t } B(t τ νdτ d, where, in the last inequality, we have used (4.. Then, since E(t is bounded ( E(t E(t E(, by (4.6 we obtain E(t t { { c E(t t t [k(t] p t s t s [ k (s] k(t [ k (s] c[e(t], B(t τ νdτ d B(t τ νdτ dsd B(t τ νdτ d B(t τ νdτ dsd } } (4.6 (4.7 for some positive constant c. Therefore, by (4.5 and (4.7, Ẽ (t ct [E(t], for t >, which gives, for a suitable positive constant c, Ẽ (t ct [Ẽ(t], for t >. This implies that Ẽ is decaying to zero as /( t and so, (4.5 holds reminding that E(t cẽ(t.

14 4 Nicaise and Pignotti 5. Examples Let us finish our paper with some examples that illustrate the assumptions (3., (3. and (3.3. Example. If we take λ and µ verifying for any x, λ(x λ(x (x x cλ(x, (5.8 µ(x µ(x (x x cµ(x, (5.9 for a given point x and a positive constant c, then (3. and (3. hold for the standard multiplier q(x := x x. In particular (5.8 and (5.9 hold if λ(x (x x, µ(x (x x, x. If the domain is strictly star-shaped with respect to x, then (3.3 also holds. Example. If λ µ and q := λ (x(x x, then (3. and (3. become λ (x x ξ λ ξ ( λ ξ((x x ξ ρ ξ, x, ξ R 3. In particular, this is verified if x x λ < 5 (inf λ. As λ is always supposed to be positive in, the condition (3.3 holds if the domain is strictly star-shaped with respect to x. Example 3. equivalent to that is If λ µ x and if we take q := x, then (3. and (3. are ( x ξ x ( x ξ ρ( x ξ, ( x ξ ρ( x ξ. Consequently if { x R 3 : x < }, then there exists ρ > such that this condition is satisfied. Moreover the condition (3.3 will hold if the domain is strictly star-shaped with respect to. For this example note that if contains the unit sphere, i.e., { x R 3 : x }, then (3. and (3. reveal to be necessary because the wave equation u tt div (λµ u is not exactly controllable from the boundary since the unit sphere is a close geodesic (see [9]. From these examples we see that our results are limited by the conditions (3., (3. and (3.3. To extend such results to a larger class of coefficients λ and µ and allow less geometrical constraints on the domain, a combination of microlocal analysis and differential geometry should be used. But, in authors opinion, this combination does not work for boundary conditions with memory.

15 Maxwell s system with a memory boundary condition 5 References. M. Aassila, M.M. Cavalcanti, and J.A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain, SIAM J. Control Optim. 38 (, D. Andrade and J.E. Muñoz Rivera, Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci. 3 (, M.M. Cavalcanti, V.N. Domingos Cavalcanti, and M.L. Santos, Uniform decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, in System modeling and optimization, IFIP Int. Fed. Inf. Process. 66, 39 55, Kluwer Acad. Publ., Boston, MA, M.M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, Differential Integral Equations 8 (5, M.M. Cavalcanti and H.P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 4 (3, 3 34 (electronic. 6. G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl. (9 58 (979, M. Eller, J.E. Lagnese, and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math. (, M. Fabrizio and A. Morro. A boundary condition with memory in electromagnetism, Arch. Rational Mech. Anal. 36 (996, A. Guesmia, Stabilisation de l équation des ondes avec conditions aux limites de type mémoire, Afrika Math. (999, A. Haraux, Semi-linear hyperbolic problems in bounded domains, Math. Rep. 3 (987, i xxiv and 8.. A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal. (988, B.V. Kapitonov, Stabilization and exact boundary controllability for Maxwell s equations, SIAM J. Control Optim. 3 (994, B.V. Kapitonov and G.P. Menzala, Uniform stabilization for Maxwell s equations with boundary conditions with memory, Asymptot. Anal. 6 (, M. Kirane and N.-E. Tatar, A memory type boundary stabilization of a mildly damped wave equation, E. J. Qual. Theory Differ. Equ., 6 (999, M. Kirane and N.-E. Tatar, Non-existence results for a semilinear hyperbolic problem with boundary condition of memory type, Z. Anal. Anwendungen 9 (, V. Komornik, Boundary stabilization, observation and control of Maxwell s equations, Panamer. Math. J. 4 (994, V. Komornik, Exact controllability and stabilization. The multiplier method, Masson, Paris; John Wiley and Sons, Ltd., Chichester, V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. 69 (99, F. Macià and E. Zuazua, On the lack of observability for wave equations: a Gaussian beam approach, Asymptot. Anal. 3 (, 6.. R. Nibbi and S. Polidoro, Exponential decay for Maxwell s equations with a boundary memory condition, J. Math. Anal. Appl. 3 (5, S. Nicaise, M. Eller, and J.E. Lagnese, Stabilization of heterogeneous Maxwell s equations by linear or nonlinear boundary feedback, Electron. J. Differential Equations (, 6 (electronic.. S. Nicaise and C. Pignotti, Boundary stabilization of Maxwell s equations with space-time variable coefficients, ESAIM Control Optim. Calc. Var. 9 (3, (electronic. 3. S. Nicaise and C. Pignotti, Internal and boundary observability estimates for heterogeneous Maxwell s system, Appl. Math. Optim. 54 (6, K.D. Phung, Contrôle et stabilisation d ondes électromagnétiques, ESAIM Control Optim. Calc. Var. 5 (, (electronic.

16 6 Nicaise and Pignotti 5. C. Pignotti, Observability and controllability of Maxwell s equations, Rend. Mat. Appl. 9 (999, T.H. Qin, Global solvability of nonlinear wave equation with a viscoelastic boundary condition, Chinese Ann. Math. Ser. B 4 (993, M.L. Santos, Decay rates for solutions of a system of wave equations with memory, Electron. J. Differential Equations 73 (,. 8. M.L. Santos, Decay rates for solutions of a system of wave equations with memory, Electron. J. Differential Equations 38 (, P.F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim. 37 (999, E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems, Asymptotic Anal. (988, E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim. 8 (99,

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

Finite speed of propagation in porous media. by mass transportation methods

Finite speed of propagation in porous media. by mass transportation methods Finite speed of propagation in porous media by mass transportation methods José Antonio Carrillo a, Maria Pia Gualdani b, Giuseppe Toscani c a Departament de Matemàtiques - ICREA, Universitat Autònoma

More information

A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt. Damping

A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt. Damping Applied Mathematics & Information Sciences 5(1) (211), 17-28 An International Journal c 211 NSP A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping C. A Raposo 1, W. D. Bastos 2 and

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Systems with Persistent Memory: the Observation Inequality Problems and Solutions Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,

More information

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

More information

Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative variables

Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative variables Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 6 (013), 74 85 Research Article Some strong sufficient conditions for cyclic homogeneous polynomial inequalities of degree four in nonnegative

More information

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov

OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics

More information

3.7 Non-autonomous linear systems of ODE. General theory

3.7 Non-autonomous linear systems of ODE. General theory 3.7 Non-autonomous linear systems of ODE. General theory Now I will study the ODE in the form ẋ = A(t)x + g(t), x(t) R k, A, g C(I), (3.1) where now the matrix A is time dependent and continuous on some

More information

Solutions series for some non-harmonic motion equations

Solutions series for some non-harmonic motion equations Fifth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 10, 2003, pp 115 122. http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1

1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information

Quasi-static evolution and congested transport

Quasi-static evolution and congested transport Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed

More information

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

Linköping University Electronic Press

Linköping University Electronic Press Linköping University Electronic Press Report Well-posed boundary conditions for the shallow water equations Sarmad Ghader and Jan Nordström Series: LiTH-MAT-R, 0348-960, No. 4 Available at: Linköping University

More information

5.2 Accuracy and Stability for u t = c u x

5.2 Accuracy and Stability for u t = c u x c 006 Gilbert Strang 5. Accuracy and Stability for u t = c u x This section begins a major topic in scientific computing: Initial-value problems for partial differential equations. Naturally we start with

More information

Mean Value Coordinates

Mean Value Coordinates Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.

More information

RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS

RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS T. J. CHRISTIANSEN Abstract. We consider scattering by an obstacle in R d, d 3 odd. We show that for the Neumann Laplacian if

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

Lecture 3: Fourier Series: pointwise and uniform convergence.

Lecture 3: Fourier Series: pointwise and uniform convergence. Lecture 3: Fourier Series: pointwise and uniform convergence. 1. Introduction. At the end of the second lecture we saw that we had for each function f L ([, π]) a Fourier series f a + (a k cos kx + b k

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

The Method of Lagrange Multipliers

The Method of Lagrange Multipliers The Method of Lagrange Multipliers S. Sawyer October 25, 2002 1. Lagrange s Theorem. Suppose that we want to maximize (or imize a function of n variables f(x = f(x 1, x 2,..., x n for x = (x 1, x 2,...,

More information

Thin Layers in Micromagnetism

Thin Layers in Micromagnetism Thin Layers in Micromagnetism Gilles Carbou Mathématiques Appliquées de Bordeaux, CNRS ERS 23 et Université Bordeaux, 35 cours de la libération, 33405 Talence cedex, France. Abstract - In this paper we

More information

A RIGOROUS AND COMPLETED STATEMENT ON HELMHOLTZ THEOREM

A RIGOROUS AND COMPLETED STATEMENT ON HELMHOLTZ THEOREM Progress In Electromagnetics Research, PIER 69, 287 304, 2007 A RIGOROU AND COMPLETED TATEMENT ON HELMHOLTZ THEOREM Y. F. Gui and W. B. Dou tate Key Lab of Millimeter Waves outheast University Nanjing,

More information

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

More information

Existence de solutions à support compact pour un problème elliptique quasilinéaire

Existence de solutions à support compact pour un problème elliptique quasilinéaire Existence de solutions à support compact pour un problème elliptique quasilinéaire Jacques Giacomoni, Habib Mâagli, Paul Sauvy Université de Pau et des Pays de l Adour, L.M.A.P. Faculté de sciences de

More information

Lecture 12 Basic Lyapunov theory

Lecture 12 Basic Lyapunov theory EE363 Winter 2008-09 Lecture 12 Basic Lyapunov theory stability positive definite functions global Lyapunov stability theorems Lasalle s theorem converse Lyapunov theorems finding Lyapunov functions 12

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important

More information

Solution Using the geometric series a/(1 r) = x=1. x=1. Problem For each of the following distributions, compute

Solution Using the geometric series a/(1 r) = x=1. x=1. Problem For each of the following distributions, compute Math 472 Homework Assignment 1 Problem 1.9.2. Let p(x) 1/2 x, x 1, 2, 3,..., zero elsewhere, be the pmf of the random variable X. Find the mgf, the mean, and the variance of X. Solution 1.9.2. Using the

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

More information

MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

More information

Coefficient of Potential and Capacitance

Coefficient of Potential and Capacitance Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

A mixed FEM for the quad-curl eigenvalue problem

A mixed FEM for the quad-curl eigenvalue problem Noname manuscript No. (will be inserted by the editor) A mixed FEM for the quad-curl eigenvalue problem Jiguang Sun Received: date / Accepted: date Abstract The quad-curl problem arises in the study of

More information

Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants

Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants A.S. Bonnet-Bendhia, P. Ciarlet Jr., C. M. Zwölf CNRS-INRIA-ENSTA UMR 706 3, Boulevard Victor,

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

The determinant of a skew-symmetric matrix is a square. This can be seen in small cases by direct calculation: 0 a. 12 a. a 13 a 24 a 14 a 23 a 14

The determinant of a skew-symmetric matrix is a square. This can be seen in small cases by direct calculation: 0 a. 12 a. a 13 a 24 a 14 a 23 a 14 4 Symplectic groups In this and the next two sections, we begin the study of the groups preserving reflexive sesquilinear forms or quadratic forms. We begin with the symplectic groups, associated with

More information

1 Introduction, Notation and Statement of the main results

1 Introduction, Notation and Statement of the main results XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 2007 (pp. 1 6) Skew-product maps with base having closed set of periodic points. Juan

More information

CONSERVATION LAWS. See Figures 2 and 1.

CONSERVATION LAWS. See Figures 2 and 1. CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vector-valued function F is equal to the total flux of F

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

2.5 Gaussian Elimination

2.5 Gaussian Elimination page 150 150 CHAPTER 2 Matrices and Systems of Linear Equations 37 10 the linear algebra package of Maple, the three elementary 20 23 1 row operations are 12 1 swaprow(a,i,j): permute rows i and j 3 3

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

Review for Calculus Rational Functions, Logarithms & Exponentials

Review for Calculus Rational Functions, Logarithms & Exponentials Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

More information

AN EXPANSION FORMULA FOR FRACTIONAL DERIVATIVES AND ITS APPLICATION. Abstract

AN EXPANSION FORMULA FOR FRACTIONAL DERIVATIVES AND ITS APPLICATION. Abstract AN EXPANSION FORMULA FOR FRACTIONAL DERIVATIVES AND ITS APPLICATION T. M. Atanackovic 1 and B. Stankovic 2 Dedicated to Professor Ivan H. Dimovski on the occasion of his 7th birthday Abstract An expansion

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

An optimal transportation problem with import/export taxes on the boundary

An optimal transportation problem with import/export taxes on the boundary An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Fabienne Comte, Celine Duval, Valentine Genon-Catalot To cite this version: Fabienne

More information

Target identification of buried coated objects

Target identification of buried coated objects Volume 25, N. 2-3, pp. 269 288, 2006 Copyright 2006 SBMAC ISSN 0101-8205 www.scielo.br/cam Target identification of buried coated objects FIORALBA CAKONI and DAVID COLTON Department of Mathematical Sciences,

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

Faraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 2-3) B t da = S

Faraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 2-3) B t da = S Dr. Alain Brizard Electromagnetic Theory I PY 3 Faraday s Law & Maxwell s Equations Griffiths Chapter 7: Sections -3 Electromagnetic Induction The flux rule states that a changing magnetic flux Φ B = S

More information

(4.8) Solving Systems of Linear DEs by Elimination

(4.8) Solving Systems of Linear DEs by Elimination INTRODUCTION: (4.8) Solving Systems of Linear DEs by Elimination Simultaneous dinary differential equations involve two me equations that contain derivatives of two me dependent variables the unknown functions

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

Math Department Student Learning Objectives Updated April, 2014

Math Department Student Learning Objectives Updated April, 2014 Math Department Student Learning Objectives Updated April, 2014 Institutional Level Outcomes: Victor Valley College has adopted the following institutional outcomes to define the learning that all students

More information

1 Short Introduction to Time Series

1 Short Introduction to Time Series ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

More information

A Game Theoretic Approach for Solving Multiobjective Linear Programming Problems

A Game Theoretic Approach for Solving Multiobjective Linear Programming Problems LIBERTAS MATHEMATICA, vol XXX (2010) A Game Theoretic Approach for Solving Multiobjective Linear Programming Problems Irinel DRAGAN Abstract. The nucleolus is one of the important concepts of solution

More information

A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS

A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS Publicacions Matemàtiques, Vol 42 (998), 53 63. A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS Juha Kinnunen Abstract We prove that Muckenhoupt s A -weights satisfy a reverse Hölder inequality with an explicit

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

Hydrodynamic Limits of Randomized Load Balancing Networks

Hydrodynamic Limits of Randomized Load Balancing Networks Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli

More information

The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions. Daniel M. Kane

The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions. Daniel M. Kane The Gaussian Surface Area and Noise Sensitivity of Degree-d Polynomial Threshold Functions Daniel M. Kane Outline Definitions and Motivation Previous Work Statements of Theorems Proof of the Noise Sensitivity

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Figure 2.1: Center of mass of four points.

Figure 2.1: Center of mass of four points. Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

More information

Problems for Quiz 14

Problems for Quiz 14 Problems for Quiz 14 Math 3. Spring, 7. 1. Consider the initial value problem (IVP defined by the partial differential equation (PDE u t = u xx u x + u, < x < 1, t > (1 with boundary conditions and initial

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

More information

Wissenschaftliche Artikel (erschienen bzw. angenommen)

Wissenschaftliche Artikel (erschienen bzw. angenommen) Schriftenverzeichnis I. Monographie [1] Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg- New York, 2003.

More information

MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS

MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS Engineering MECHANICS, Vol. 15, 2008, No. 1, p. 3 11 3 MATHEMATICAL MODEL FOR VIBRATIONS OF NON-UNIFORM FLEXURAL BEAMS Mohamed Hussien Taha, Samir Abohadima* A simplified mathematical model for free vibrations

More information

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS

OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek

More information

Random graphs with a given degree sequence

Random graphs with a given degree sequence Sourav Chatterjee (NYU) Persi Diaconis (Stanford) Allan Sly (Microsoft) Let G be an undirected simple graph on n vertices. Let d 1,..., d n be the degrees of the vertices of G arranged in descending order.

More information

The sum of digits of polynomial values in arithmetic progressions

The sum of digits of polynomial values in arithmetic progressions The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: stoll@iml.univ-mrs.fr

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Shape Optimization Problems over Classes of Convex Domains

Shape Optimization Problems over Classes of Convex Domains Shape Optimization Problems over Classes of Convex Domains Giuseppe BUTTAZZO Dipartimento di Matematica Via Buonarroti, 2 56127 PISA ITALY e-mail: buttazzo@sab.sns.it Paolo GUASONI Scuola Normale Superiore

More information

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms

Some Problems of Second-Order Rational Difference Equations with Quadratic Terms International Journal of Difference Equations ISSN 0973-6069, Volume 9, Number 1, pp. 11 21 (2014) http://campus.mst.edu/ijde Some Problems of Second-Order Rational Difference Equations with Quadratic

More information

SOME RESULTS ON HYPERCYCLICITY OF TUPLE OF OPERATORS. Abdelaziz Tajmouati Mohammed El berrag. 1. Introduction

SOME RESULTS ON HYPERCYCLICITY OF TUPLE OF OPERATORS. Abdelaziz Tajmouati Mohammed El berrag. 1. Introduction italian journal of pure and applied mathematics n. 35 2015 (487 492) 487 SOME RESULTS ON HYPERCYCLICITY OF TUPLE OF OPERATORS Abdelaziz Tajmouati Mohammed El berrag Sidi Mohamed Ben Abdellah University

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Diploma Plus in Certificate in Advanced Engineering

Diploma Plus in Certificate in Advanced Engineering Diploma Plus in Certificate in Advanced Engineering Mathematics New Syllabus from April 2011 Ngee Ann Polytechnic / School of Interdisciplinary Studies 1 I. SYNOPSIS APPENDIX A This course of advanced

More information