recover from disk and path failures and provide continuous I/O service to the hosting environment.

Size: px
Start display at page:

Download "recover from disk and path failures and provide continuous I/O service to the hosting environment."

Transcription

1 RAID in a nutshell A Redundant Array of Independent Disks (RAID) is a collection of disks managed by specialized array management software that coordinates their activities. An array s member disks are part of a disk subsystem the disks and the hardware that powers, packages, and connects them to host computer systems and controls their operation. Array management software may be host-based (executes in a host computer) or subsystem-based (executes in an intelligent disk controller). In either case, its functions are to: present the array s storage capacity to the hosting environment as one or more virtual disks with the desired balance of cost, data availability, and I/O performance. mask the array s internal complexity from the hosting environment by transparently mapping its available storage capacity onto its member disks and converting I/O requests directed to virtual disks into operations on member disks. recover from disk and path failures and provide continuous I/O service to the hosting environment. Array management software creates virtual disks for application use. From an application standpoint, virtual disks are functionally identical to physical disks with superior reliability and, in most cases, performance. The redundant in RAID is achieved by dedicating part of an array s storage capacity to check data. Check data can be used to regenerate individual blocks of data from a failed disk as they are requested by applications, or to reconstruct the entire contents of a failed disk to restore data protection after a failure. The most common forms of check data are a mirror (identical) copy of user data and shared parity, which involves appending mathematical code to data bits for later comparison, matching, and correction. Different combinations of mapping and check data are called RAID Levels.* Of the seven well-defined RAID Levels, three are in common use. Level 1 uses mirroring for data protection and may incorporate striping. Striping refers to the location of consecutive sequences of data blocks on successive array members. Striping balances I/O load, increasing performance. Levels 3 and 5 both use parity for data protection and almost always incorporate striping. RAID Levels 3 and 5 use different algorithms for updating both user data and check data in response to application write requests. RAID is a component technology that can be combined with other technologies to create highly available, highperformance storage systems. * See page 9 for more details on the key RAID levels. See page 6 for an illustration depicting striping.

2 RAID can protect your most valuable asset the data that drives your business. 1 For even the simplest business tasks, you depend on reliable, current information. Now, more than ever before, readily-accessible data is vital to keeping your enterprise up and running. While keeping that information available was once complex and costly, especially in a distributed environment, today s RAID technology makes high data availability simple and affordable. What s a RAID array, anyway? A disk array is a collection of disks controlled by a common array management function which coordinates their activities. If the management function provides RAID capability, the array may be called a RAID array. A storage enclosure that holds disks, one or more intelligent controllers, and possibly other storage devices, is called a storage system. If the array management function is provided by firmware within an intelligent controller, then the array s disks all reside within a single storage system. This configuration is often called subsystem-based RAID. If, however, the array management function is provided by software that executes in the hosting environment, the disks comprising a single RAID array may be parts of different storage systems. This configuration is often called a host-based RAID system. RAID (Redundant Array of Independent Disks) is a way of coordinating multiple disk drives to protect against loss of data availability if one of them fails. RAID technology can help a storage system provide on-line data access that doesn t break down when it s coupled with other technologies for highly available systems such as: uninterruptable power control systems, redundant power supplies and fans, intelligent controllers that can back each other up, and operating environments that can detect and respond to storage systems recovery actions. In most cases, the second-generation RAID systems available today deliver improved I/O performance as well. With RAID, you can balance the cost, availability, and I/O performance of your storage system to meet your business and application needs, and adjust configurations to meet your requirements as they change. The Buyer s Guide to RAID can help you understand RAID technology and its role in highly available storage systems. In consultation with your subsystem supplier, it can equip you to choose the right RAID system for your applications. Digital Equipment Corporation offers both hostand subsystem-based RAID products that are fully tested and certified for operation in multiple computing environments, including: Novell NetWare SunOS Sun Solaris Microsoft Windows NT SCO UNIX HP-UX IBM AIX OpenVMS Digital UNIX RAID ADVISORY BOARD

3 2 What do you want from your storage system? Aren t data reliability and data availability the same thing? In discussions of RAID, the terms data reliability and data availability frequently come up. Data reliability, usually expressed as Mean Time to Data Loss (MTDL), is the average length of time a storage system can be expected to perform without a failure that causes loss or destruction of data. Highly available storage systems that include redundant components are usually designed so that single component failures do not cause data loss. Data reliability is therefore usually much higher than individual component reliability in these systems. Since RAID protects against loss of data due to failure of a disk, it increases MTDL substantially (from hundreds of thousands to millions of hours in typical modern storage systems). Data availability, usually expressed as Mean Time to Availability Loss (MTAL), is a storage system s ability to deliver correct data on demand. Data may be intact, but if the only access path to it has failed, it is not available. To provide extended data availability, a storage system must not only protect against data loss (e.g., using RAID), but also against failures that could cause the hosting environment to lose access to data. Dual-redundant controllers, dual paths to disks, redundant power supplies and host I/O buses, with host support for these features are typical components of a storage system that provides high data availability. On-line storage systems are essentially simple. They store data and deliver it on request back to the hosting environment. The qualities that make a storage system more or less desirable are also quite simple. The ideal storage system would cost very little, store and deliver data on demand, and never fail. Technologies that provide very high data reliability and availability do exist at a cost. Technologies that provide ultra-high I/O performance are available also at a cost. And while low-cost storage systems are also available, they don t offer the performance or the data reliability and availability of more expensive solutions. In general, you must decide which of the three properties of storage low cost, high availability, and high I/O performance is most important, and choose accordingly. RAID technology expands your options substantially. Lowest Cost JBOD* RAID 0 Highest Performance RAID 0+1 RAID 5 RAID 3 RAID 1 Highest Availability *Just a Bunch of Disks

4 3 RAID: one part of the solution Prior to the introduction of RAID, a disk failure meant that the processing of the disk s data stopped. Recovery entailed a lengthy operation using backup tapes and transaction journals or, even worse, re-doing work to restore current data. Enter RAID. The introduction of commercial RAID, in the form of disk mirroring (also called shadowing) changed all this. Also known as RAID Level 1, disk mirroring allows processing to continue even after a disk fails. Sophisticated mirroring systems can even use a pre-designated spare disk to restore protection without interrupting data processing. Disk mirroring also improves I/O performance for many applications because concurrent read requests can be directed to different disks. About the only drawback to disk mirroring is cost. For every byte of on-line storage required, you must purchase, house, power, cool, and attach additional bytes. And although the cost of disk storage is steadily decreasing, IS budgets are being squeezed even more rapidly. Paying twice for storage is clearly undesirable for all but the most critical data. Doesn t replacing a failed component always affect availability? Replacement of failed components in a storage system can affect data availability differently: Cold swap means that a system must be powered down before the failed component can be replaced. Cold swapping is common with logic modules and nonredundant power supplies. Warm swap means that a system must be quiesced, but need not be powered down, for component replacement. Some storage systems require warm swapping of disks. Hot swap means that a failed component can be replaced while the system containing it continues to operate. The ability to hot swap major components is a common feature of storage systems built for highavailability operations. Hot Spares refer to pre-installed spare components that are powered and ready to operate without human intervention. Many highly available storage systems provide for pre-installation of spare components that are automatically brought into service if a primary component fails. Spare disks (in RAID systems), power supplies, and fans are often provided.

5 4 Two of the RAID Levels identified by researchers at the University of California, Levels 3 and 5, have proven commercially attractive, and most RAID storage systems offer one or both of these in some form. Levels 3 and 5 use part of the disk array capacity to store parity (check data). RAID Levels 3 and 5 differ in the way they coordinate member disk activities to satisfy application I/O requests, and as a result tend to work better in different environments. In a RAID Level 3 array, the disks are physically or logically synchronized, and each contributes equally to satisfy every I/O request made to the array (called parallel-access). Storage systems that contain RAID Level 3 arrays perform well for applications that transfer large files, but less well in applications that make frequent requests for smaller amounts of data. In a RAID Level 5 array, the disks are allowed to operate independently (called independentaccess) so that in principle, the array may satisfy multiple application I/O requests concurrently. RAID Level 5 arrays perform well for either large-file I/O or transaction-like I/O as long as the majority of the I/O requests are application read requests. Application write requests, which require both user data and check data to be updated, perform less well. Mirroring RAID One member of each mirrorset provides capacity; the remaining members provide data redundancy 2-way mirrorset 3-way mirrorset Parity RAID The capacity equal to one member of the array provides redundancy for the data capacity of the remaining members of the array e f1 d c b a f e d 1 c b a e d c 1 b a f f f f e c d b 1 a e d c b a 1 e 1 c d b a Hot Spare Spares may be dedicated to a single array or available to any array in the system

6 5 Where does RAID fit in a storage hierarchy? RAID Levels 3 and 5, known as parity RAID, add a new dimension to a cost-availability-performance on-line storage hierarchy. With parity RAID, protection against single disk failure can be had for a much smaller cost premium usually 10% to 35% than with mirroring. Many storage systems allow you to choose the number of disks to be arrayed, effectively allowing you to choose the cost premium within broad limits. There is a price to be paid for this low-cost availability, however. The two forms of parity RAID, Levels 3 and 5, have very different I/O performance characteristics. Early RAID systems forced you to choose between RAID Levels 3 and 5, effectively dedicating each array to a single type of application. With today s sophisticated storage systems, you no longer need to choose between RAID Levels 3 and 5. Some new storage systems allow mixed arrays within the same storage subsystem. Others automatically and dynamically adjust between the two forms of parity RAID as the I/O load changes, and augment the RAID capability with cache to further mitigate performance differences. The resulting storage systems offer high-performance access to protected data for almost any application. Retrieving data from a failed disk Regeneration is the on-demand recreation of user data from a failed array member disk. Regeneration not only recovers data from failed disks, it can also recover data when a hard media error occurs. Data regeneration in a RAID Level 1 array consists simply of delivering an alternate copy of data. In a parity RAID array, data regeneration is performed using the parity and data from corresponding locations on the array s surviving member disks.* Reconstruction is the restoration of data protection when a replacement for a failed member disk has been made available. Reconstruction consists of block-byblock regeneration of the user and check data from the failed disk, and writing it to the replacement disk. Reconstruction is performed transparently by the array s management function, but requires considerable I/O resources, and may therefore impact application performance. Some RAID array implementations allow the user to choose whether to use all available I/O resources for reconstruction (restoring data protection as quickly as possible), or to guarantee some level of resource availability for applications. *Computed by using the exclusive OR function Parity RAID still has one drawback restoring data protection in a parity RAID array takes longer and requires more I/O resources than with mirroring RAID. Thus, while parity RAID costs less per-stored-byte than mirrored storage, it also opens a longer window of time through which data access can be lost if a second disk fails during reconstruction.

7 6 Where does RAID fit in your total storage strategy? How cache broadens RAID s appeal A cache is a solid-state memory used as an intermediate stage in the I/O path between host memory and storage devices. A read cache holds data on its way to the host; a write cache holds data on its way to the storage device. A read cache improves I/O performance by anticipating that certain data will be required soon, and holding it in the cache. A read-ahead cache anticipates that data adjacent to recently read data will be read soon, and pre-reads it. A most recently used read cache anticipates that recently read or written data will be required again soon, and holds it as long as possible. In either case, when a host requests cached data it can be delivered instantly, without waiting for disk seeking and rotation. Application requests are satisfied more rapidly, and response improves. A write cache holds data waiting to be written to storage devices. If response to an application write request is delayed until data is written to the storage device, the cache is called a write-through cache. If response occurs while data is still waiting to be written, it is a write-behind cache. Parity RAID in a highly available storage system offers a dramatic increase in cost-effective data availability. Newer RAID products also offer improved performance compared to independently managed disks. Parity RAID offers affordable protection for a far greater portion of a typical enterprise s data than would be possible if only mirroring technology were available. Because it allows greater quantities of storage to be managed as a single disk, RAID can also simplify life for your system administrator. However, RAID does not replace the need to backup data; the fact is, most data loss is caused by human error, not storage system failures, so thorough backup processes are still required. Conventional Disks (data distributed sequentially) Hot Spot ; 80/20 effect. Entire system is bottlenecked by the slowest data access. Striped array Hot Spot is spread across multiple disks, improving overall performance. Striping distributes frequently accessed data (hot spots) and the associated workload across multiple disk spindles, providing better application and subsystem performance.

8 7 Deciding if you need RAID With RAID, you can match your storage resources to your data access needs more closely than ever before. Parity RAID, in particular, creates new possibilities for you and your system administrator. If performance and availability are unequivocally your highest priorities, mirroring is your best choice. Some systems are capable of making three or more copies of data so that consistent backups can be made while protected data is available for application use. Some are also capable of striping data across multiple sets of mirrored disks for improved performance. For data that s not clearly mission-critical, you may need to analyze the cost benefits of availability. Parity RAID allows you to match the cost of protection to the value of the data. Finally, for data that meets none of the above criteria, it may be worth asking whether you need it stored on-line at all. For such data, it may make sense to migrate directly from a RAID array to a near-line or off-line storage facility. How cache broadens RAID s appeal, (continued) Write-behind cache speeds write performance, but presents a risk. If the storage system responds to a write request with a completion indication, the application may take further action based on the assumption that its data is safely stored on a disk. If, however, a system failure (most often due to a power failure) occurs before the data is actually written, then all record of the pending update is lost. Application processing may therefore be inconsistent with disk contents. To guard against this possibility, many storage systems with write cache provide auxiliary power of some kind to preserve cache contents until the system can restart and write data to media. This makes the cache non-volatile. A non-volatile write cache is called a write-back cache, since data in it can safely be written back to disk after the response to the application.

9 8 Can you afford to use RAID? More important, can you afford not to? Hardware RAID versus Software RAID The data mapping and protection algorithms that comprise RAID technology are so complex that a software implementation is a virtual necessity. Nevertheless, the term hardware RAID has come into use to describe RAID functionality that is implemented in the firmware of an intelligent storage controller. This may be contrasted with software RAID, which executes in a host computer. Hardware RAID usually offers superior I/O performance, with little or no impact on host computing capability. In general, hardware RAID requires the purchase of storage systems with that capability built in. Software RAID, on the other hand, can be much less expensive to implement using already-existing storage components, and can offer superior data availability since it can allow RAID array member disks to be spread across multiple storage systems, or in multi-host environments, even across host computers. Which RAID is the right RAID depends on whether you are adding to an existing system or installing a new system, as well as on your I/O performance and data availability requirements. You can estimate the cost of unavailable data. For example, in a 200 node network supporting telemarketers with a labor cost of $25 per hour, an hour without the data that supports these employees means $5,000 in lost labor cost. The cost of lost labor may be only the tip of the iceberg. If each employee above averages $200 per hour in sales, loss of access to the data they need to work means $40,000 in lost orders. At least some of these will be irretrievable. Even if you re not losing sales directly, loss of access to data can also impede such customer activities as service, order tracking, or customer account information. Losses of good will and customer satisfaction are difficult to quantify, but clearly they eventually can impact your success. Compare these costs to the incremental cost of adding RAID to a storage system and RAID usually emerges a clear winner.

10 9 Choosing the right RAID for you Most early RAID systems implemented one or more of the RAID technologies outlined in the University of California research without much embellishment. A by-product of this implementation style was that RAID array I/O performance was very dependent on application I/O load. A conventional wisdom grew up around RAID array I/O performance, as summarized below: RAID Level 1 performs well for a variety of applications, especially when multiple mirrored disk pairs have data striped across them. RAID Level 3 performs very well in applications that transfer large files, but poorly in transaction applications. RAID Level 5 performs very well in applications whose I/O loads consist mostly of read requests, and very poorly in applications whose I/O loads include a high proportion of writes. The result of this was that early RAID arrays had to be matched to applications as described in the table below. Today, RAID systems offer enhanced RAID capabilities. Perhaps the most important is the addition of writeback cache. Another is the ability of firmware to switch between parallel access (RAID Level 3) and independent access (RAID Level 5) as the I/O load changes. And you can improve performance and lower costs with new backplane RAID controllers, which allow you to configure an entire RAID system inside your server cabinet or expansion storage enclosure and mix RAID levels to meet application needs. The net result is that today s RAID systems are much more flexible and provide a number of performance, availability and ease-of-management features. RAID Array Type Performance Characteristics Application Environments Mirrored High read performance, both for Mission-critical applications such as (RAID Level 1) transaction and large file system disks, root master files, database applications. Minor write penalty journals, etc. compared to individual disks. Parallel Access High large file performance. Low High-volume data collection, such as (RAID Level 3) transaction performance. seismic or telemetric. Processing of large images. Batch processing of large files. Independent Access High transaction performance for Interactive transaction processing, (RAID Level 5) read-mostly I/O loads. Fairly high Multi-user file services. Generally, performance in reading large files. office environment applications. Low performance in any application that predominantly writes data.

11 10 Other types of RAID As RAID has evolved, the terminology has grown to include several other product and technology names that include the term RAID: RAID Level 6. University of California researchers identified an additional mapping and protection model that built on the original parity RAID work by incorporating two independent parity schemes. Two variations of this ultimately emerged, but with the same net effect: RAID Level 6 provides protection against the failure of any two disks in an array. Its cost/performance factors have not made it a popular contender against simple parity RAID. RAID Levels 2 and 4. These RAID Levels are not widely used, because other levels provide comparable benefits at a lower cost. RAID Level 0. University of California research identified a striped mapping of data which maps virtual disk block addresses to member disk block addresses in a regular repeating pattern called striping. This form of data mapping improves the I/O performance of a non-raid disk array by balancing the I/O load across all of the array s disks. Called RAID Level 0, it s not true RAID, because it doesn t provide data redundancy or protection. As RAID has become popular, vendors seeking to identify with it, yet establish uniqueness, have created their own variations, using terms such as RAID 53, RAID Level 7, and RAID 10 (also called RAID 0+1). In general, these terms refer either to combinations of the seven basic models or to their combination with other technologies such as cache or parallel, asynchronously operating processes within an intelligent controller.

12 11 Summing up RAID s single greatest benefit is enhanced data availability. Remember, though, that RAID only protects against disk failure. For truly high availability, the entire storage system must be engineered from the ground up to include such features as redundant power and cooling, redundant controllers with failover capability and host support, and hot-swappable major components. The availability of cache and of parity RAID that dynamically adapts to I/O load changes puts to rest much of the earlier discussion surrounding the I/O performance of RAID arrays and the sensitivity to application I/O load characteristics. This brings the benefits of RAID to a much wider set of applications. Technology advancements and decreasing costs have combined to make RAID an affordable, effective part of a total solution that assures your data is always accessible. StorageWorks RAID Subsystems The following RAID subsystems are available from Digital today: RAID Array 410 Available for UNIX-based systems. Supports Hewlett-Packard HP-UX, IBM AIX, and Sun Microsystem SunOS and Solaris environments. RAID Array 230 Available for Intel and Alpha PCI bus systems. Supports Digital UNIX, OpenVMS, Windows NT, Novell Net- Ware, and SCO UNIX operating systems. RAID Array 210 Available for Intel and Alpha EISA bus systems. Supports Digital UNIX, OpenVMS, Windows NT, Novell NetWare, and SCO UNIX operating systems. StorageWorks RAID Controllers You can configure your own RAID subsystem with the following RAID-capable controllers: HSZ Array Controllers Support fast-wide differential SCSI; OpenVMS, Digital UNIX and NT. Combines the best of RAID 3 and 5 by dynamically adapting between I/O-intensive and data transfer-intensive applications. HSJ Array Controllers Support CI; VMS only. Combines the best of RAID 3 and 5 by dynamically adapting between I/O-intensive and data transfer-intensive applications. HSD Array Controllers Support DSSI; VMS only. Combines the best of RAID 3 and 5 by dynamically adapting between I/O-intensive and data transfer-intensive applications. StorageWorks RAID Software RAID Software for OpenVMS Supports RAID Levels 0 and 5.Can be used in conjunction with Volume Shadowing for OpenVMS to gain Level 0+1. Volume Shadowing for OpenVMS Supports RAID Level 1. Can be used in conjunction with RAID Software for OpenVMS to gain Level 0+1. Logical Storage Manager for Digital UNIX Supports RAID Level 0, Level 1, and Level 0+1.

13 12 A RAID System Checklist As RAID systems have matured, it s become much easier for you to choose. Most modern RAID systems integrate RAID with other technologies to provide good across-the-board I/O performance and high data availability for substantially lower cost than fully mirrored storage. You want to be sure that the RAID systems you consider incorporate and effectively use these advanced features. The following checklist can help you evaluate RAID systems. Basic Function: Does the RAID system provide the necessary data mapping and protection models for the anticipated usage? Mirroring (RAID Level 1) for mission-critical data? Parallel access (RAID Level 3) for large file applications? Implementation of mixed arrays? Availability Features: Can the RAID system s data protection be tuned to meet precise application requirements? Are the minimum and maximum parity arrays sizes adequate? Does the RAID system support the required range of disk capacities? Does the RAID system support simple disk striping? Does the RAID system support multiple arrays of different types operating concurrently? Failure Recovery Features: Does the RAID system provide adequate features for recovering from component failures? Can spare disks be pre-designated so that unattended restoration of data protection after a disk failure is possible? Is hot swapping of disks, power supplies, fans, and any other components critical to operation possible? Does the RAID system support dual-redundant controllers and can one controller assume the other s workload in the event of a failure? Does the RAID system incorporate an environmental monitoring unit that can provide warning of dangerous conditions such as high temperature and low power? Does the intended hosting environment support the failure recovery features? I/O Performance Features: Does the RAID system effectively exploit the basic technologies to provide superior I/O performance that is independent of I/O load characteristics? Does the RAID system incorporate some technique such as write-back cache to alleviate the parity RAID update performance shortcomings? Can the RAID system dynamically switch between parallel and independent access update algorithms according to the I/O load? Does the RAID system allow the system administrator to balance I/O resources between reconstruction and application requirements?

14 Digital believes the information in this publication is accurate as of its publication date; such information is subject to change without notice. Digital is not responsible for inadvertent errors. Digital conducts its business in a manner that conserves the environment and protects the safety and health of its employees, customers, and the community. Digital, Digital Equipment Corporation, StorageWorks, the StorageWorks logo, OpenVMS and Digital UNIX are trademarks of Digital Equipement Corporation. Hewlett-Packard and HP-UX are registered trademarks of Hewlett-Packard Company. IBM and AIX are registered trademarks of Inernational Business Machines Corporation. Intel is a trademark of Intel Corporation. Microsoft is a registered trademark of Microsoft Corporation.NT is a trademark of Microsoft Corporation. Novell and NetWare are registered trademarkes of Novell, Inc. RAB is a certification mark of the RAID Advisory Board, St Peter, MN, SunOS is a trademark of Sun Microsystems, Inc. Solaris is a registered trademark of Sun Microsystems, Inc. SCO is a trademark of Santa Cruz Operations, Inc. UNIX is a registered trademark licensed exclusively by X/Open Company Ltd. Copyright 1995 EC-G Digital Equipment Corporation. All rights reserved.

15 The Buyer s Guide To RAID Systems For more information on StorageWorks RAID solutions, please call: Location Phone Fax U.S. and Canada STORWORK Europe Japan United Kingdom Australia/Sydney Asia/Hong Kong Asia/Singapore TM Solutions from Digital Equipment Corporation

16 The Buyer s Guide To RAID Systems TM

TECHNOLOGY BRIEF. Compaq RAID on a Chip Technology EXECUTIVE SUMMARY CONTENTS

TECHNOLOGY BRIEF. Compaq RAID on a Chip Technology EXECUTIVE SUMMARY CONTENTS TECHNOLOGY BRIEF August 1999 Compaq Computer Corporation Prepared by ISSD Technology Communications CONTENTS Executive Summary 1 Introduction 3 Subsystem Technology 3 Processor 3 SCSI Chip4 PCI Bridge

More information

RAID Technology. RAID Overview

RAID Technology. RAID Overview Technology In the 1980s, hard-disk drive capacities were limited and large drives commanded a premium price. As an alternative to costly, high-capacity individual drives, storage system developers began

More information

DELL RAID PRIMER DELL PERC RAID CONTROLLERS. Joe H. Trickey III. Dell Storage RAID Product Marketing. John Seward. Dell Storage RAID Engineering

DELL RAID PRIMER DELL PERC RAID CONTROLLERS. Joe H. Trickey III. Dell Storage RAID Product Marketing. John Seward. Dell Storage RAID Engineering DELL RAID PRIMER DELL PERC RAID CONTROLLERS Joe H. Trickey III Dell Storage RAID Product Marketing John Seward Dell Storage RAID Engineering http://www.dell.com/content/topics/topic.aspx/global/products/pvaul/top

More information

Intel RAID Controllers

Intel RAID Controllers Intel RAID Controllers Best Practices White Paper April, 2008 Enterprise Platforms and Services Division - Marketing Revision History Date Revision Number April, 2008 1.0 Initial release. Modifications

More information

IBM ^ xseries ServeRAID Technology

IBM ^ xseries ServeRAID Technology IBM ^ xseries ServeRAID Technology Reliability through RAID technology Executive Summary: t long ago, business-critical computing on industry-standard platforms was unheard of. Proprietary systems were

More information

StorageWorks RAID Array 200 Subsystems Controller Installation and Standalone Configuration Utility User's Guide. Order Number: EK-SWRA2-IG.

StorageWorks RAID Array 200 Subsystems Controller Installation and Standalone Configuration Utility User's Guide. Order Number: EK-SWRA2-IG. StorageWorks RAID Array 200 Subsystems Controller Installation and Standalone Configuration Utility User's Guide Order Number: EK-SWRA2-IG. C01 Third Printing, April 1995 The information in this document

More information

RAID Basics Training Guide

RAID Basics Training Guide RAID Basics Training Guide Discover a Higher Level of Performance RAID matters. Rely on Intel RAID. Table of Contents 1. What is RAID? 2. RAID Levels RAID 0 RAID 1 RAID 5 RAID 6 RAID 10 RAID 0+1 RAID 1E

More information

RAID technology and IBM TotalStorage NAS products

RAID technology and IBM TotalStorage NAS products IBM TotalStorage Network Attached Storage October 2001 RAID technology and IBM TotalStorage NAS products By Janet Anglin and Chris Durham Storage Networking Architecture, SSG Page No.1 Contents 2 RAID

More information

Definition of RAID Levels

Definition of RAID Levels RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds

More information

technology brief RAID Levels March 1997 Introduction Characteristics of RAID Levels

technology brief RAID Levels March 1997 Introduction Characteristics of RAID Levels technology brief RAID Levels March 1997 Introduction RAID is an acronym for Redundant Array of Independent Disks (originally Redundant Array of Inexpensive Disks) coined in a 1987 University of California

More information

SAN Conceptual and Design Basics

SAN Conceptual and Design Basics TECHNICAL NOTE VMware Infrastructure 3 SAN Conceptual and Design Basics VMware ESX Server can be used in conjunction with a SAN (storage area network), a specialized high speed network that connects computer

More information

RAID Technology Overview

RAID Technology Overview RAID Technology Overview HP Smart Array RAID Controllers HP Part Number: J6369-90050 Published: September 2007 Edition: 1 Copyright 2007 Hewlett-Packard Development Company L.P. Legal Notices Copyright

More information

An Oracle White Paper November 2010. Oracle Real Application Clusters One Node: The Always On Single-Instance Database

An Oracle White Paper November 2010. Oracle Real Application Clusters One Node: The Always On Single-Instance Database An Oracle White Paper November 2010 Oracle Real Application Clusters One Node: The Always On Single-Instance Database Executive Summary... 1 Oracle Real Application Clusters One Node Overview... 1 Always

More information

Affordable Remote Data Replication

Affordable Remote Data Replication SANmelody Application Affordable Remote Data Replication Your Data is as Valuable as Anyone s You know very well how critical your data is to your organization and how much your business would be impacted

More information

Infortrend ESVA Family Enterprise Scalable Virtualized Architecture

Infortrend ESVA Family Enterprise Scalable Virtualized Architecture Infortrend ESVA Family Enterprise Scalable Virtualized Architecture R Optimized ROI Ensures the most efficient allocation of consolidated capacity and computing power, and meets wide array of service level

More information

RAID. Contents. Definition and Use of the Different RAID Levels. The different RAID levels: Definition Cost / Efficiency Reliability Performance

RAID. Contents. Definition and Use of the Different RAID Levels. The different RAID levels: Definition Cost / Efficiency Reliability Performance RAID Definition and Use of the Different RAID Levels Contents The different RAID levels: Definition Cost / Efficiency Reliability Performance Further High Availability Aspects Performance Optimization

More information

Speed and Persistence for Real-Time Transactions

Speed and Persistence for Real-Time Transactions Speed and Persistence for Real-Time Transactions by TimesTen and Solid Data Systems July 2002 Table of Contents Abstract 1 Who Needs Speed and Persistence 2 The Reference Architecture 3 Benchmark Results

More information

RAID Array 230/Plus Subsystem RAID Configuration Utility

RAID Array 230/Plus Subsystem RAID Configuration Utility RAID Array 230/Plus Subsystem RAID Configuration Utility User's Guide AA-R07GA-TE Digital Equipment Corporation Maynard, Massachusetts First Edition, November 1996 The information in this document is subject

More information

Distribution One Server Requirements

Distribution One Server Requirements Distribution One Server Requirements Introduction Welcome to the Hardware Configuration Guide. The goal of this guide is to provide a practical approach to sizing your Distribution One application and

More information

VERITAS Volume Management Technologies for Windows

VERITAS Volume Management Technologies for Windows WHITE PAPER VERITAS Volume Management Technologies for Windows V E R I T A S W H I T E P A P E R The Next Generation of Disk Management for Windows Platforms Windows 2000 and Windows Server 2003 1 TABLE

More information

QuickSpecs. HP Smart Array 5312 Controller. Overview

QuickSpecs. HP Smart Array 5312 Controller. Overview Overview Models 238633-B21 238633-291 (Japan) Feature List: High Performance PCI-X Architecture High Capacity Two Ultra 3 SCSI channels support up to 28 drives Modular battery-backed cache design 128 MB

More information

RAID Utility User Guide. Instructions for setting up RAID volumes on a computer with a Mac Pro RAID Card or Xserve RAID Card

RAID Utility User Guide. Instructions for setting up RAID volumes on a computer with a Mac Pro RAID Card or Xserve RAID Card RAID Utility User Guide Instructions for setting up RAID volumes on a computer with a Mac Pro RAID Card or Xserve RAID Card Contents 3 RAID Utility User Guide 3 The RAID Utility Window 4 Running RAID Utility

More information

Getting Started With RAID

Getting Started With RAID Dell Systems Getting Started With RAID www.dell.com support.dell.com Notes, Notices, and Cautions NOTE: A NOTE indicates important information that helps you make better use of your computer. NOTICE: A

More information

An Introduction to RAID. Giovanni Stracquadanio stracquadanio@dmi.unict.it www.dmi.unict.it/~stracquadanio

An Introduction to RAID. Giovanni Stracquadanio stracquadanio@dmi.unict.it www.dmi.unict.it/~stracquadanio An Introduction to RAID Giovanni Stracquadanio stracquadanio@dmi.unict.it www.dmi.unict.it/~stracquadanio Outline A definition of RAID An ensemble of RAIDs JBOD RAID 0...5 Configuring and testing a Linux

More information

Best Practices RAID Implementations for Snap Servers and JBOD Expansion

Best Practices RAID Implementations for Snap Servers and JBOD Expansion STORAGE SOLUTIONS WHITE PAPER Best Practices RAID Implementations for Snap Servers and JBOD Expansion Contents Introduction...1 Planning for the End Result...1 Availability Considerations...1 Drive Reliability...2

More information

EMC Backup and Recovery for Microsoft SQL Server 2008 Enabled by EMC Celerra Unified Storage

EMC Backup and Recovery for Microsoft SQL Server 2008 Enabled by EMC Celerra Unified Storage EMC Backup and Recovery for Microsoft SQL Server 2008 Enabled by EMC Celerra Unified Storage Applied Technology Abstract This white paper describes various backup and recovery solutions available for SQL

More information

IBM System Storage DS5020 Express

IBM System Storage DS5020 Express IBM DS5020 Express Manage growth, complexity, and risk with scalable, high-performance storage Highlights Mixed host interfaces support (Fibre Channel/iSCSI) enables SAN tiering Balanced performance well-suited

More information

RAID Overview: Identifying What RAID Levels Best Meet Customer Needs. Diamond Series RAID Storage Array

RAID Overview: Identifying What RAID Levels Best Meet Customer Needs. Diamond Series RAID Storage Array ATTO Technology, Inc. Corporate Headquarters 155 Crosspoint Parkway Amherst, NY 14068 Phone: 716-691-1999 Fax: 716-691-9353 www.attotech.com sales@attotech.com RAID Overview: Identifying What RAID Levels

More information

RAID Utility User s Guide Instructions for setting up RAID volumes on a computer with a MacPro RAID Card or Xserve RAID Card.

RAID Utility User s Guide Instructions for setting up RAID volumes on a computer with a MacPro RAID Card or Xserve RAID Card. RAID Utility User s Guide Instructions for setting up RAID volumes on a computer with a MacPro RAID Card or Xserve RAID Card. 1 Contents 3 RAID Utility User s Guide 3 Installing the RAID Software 4 Running

More information

Fault Tolerance & Reliability CDA 5140. Chapter 3 RAID & Sample Commercial FT Systems

Fault Tolerance & Reliability CDA 5140. Chapter 3 RAID & Sample Commercial FT Systems Fault Tolerance & Reliability CDA 5140 Chapter 3 RAID & Sample Commercial FT Systems - basic concept in these, as with codes, is redundancy to allow system to continue operation even if some components

More information

High Availability and Disaster Recovery Solutions for Perforce

High Availability and Disaster Recovery Solutions for Perforce High Availability and Disaster Recovery Solutions for Perforce This paper provides strategies for achieving high Perforce server availability and minimizing data loss in the event of a disaster. Perforce

More information

Hardware RAID vs. Software RAID: Which Implementation is Best for my Application?

Hardware RAID vs. Software RAID: Which Implementation is Best for my Application? STORAGE SOLUTIONS WHITE PAPER Hardware vs. Software : Which Implementation is Best for my Application? Contents Introduction...1 What is?...1 Software...1 Software Implementations...1 Hardware...2 Hardware

More information

Assessing RAID ADG vs. RAID 5 vs. RAID 1+0

Assessing RAID ADG vs. RAID 5 vs. RAID 1+0 White Paper October 2001 Prepared by Industry Standard Storage Group Compaq Computer Corporation Contents Overview...3 Defining RAID levels...3 Evaluating RAID levels...3 Choosing a RAID level...4 Assessing

More information

IBM TotalStorage IBM TotalStorage Virtual Tape Server

IBM TotalStorage IBM TotalStorage Virtual Tape Server IBM TotalStorage IBM TotalStorage Virtual Tape Server A powerful tape storage system that helps address the demanding storage requirements of e-business storag Storage for Improved How can you strategically

More information

Identifying the Hidden Risk of Data De-duplication: How the HYDRAstor Solution Proactively Solves the Problem

Identifying the Hidden Risk of Data De-duplication: How the HYDRAstor Solution Proactively Solves the Problem Identifying the Hidden Risk of Data De-duplication: How the HYDRAstor Solution Proactively Solves the Problem October, 2006 Introduction Data de-duplication has recently gained significant industry attention,

More information

IBM Storwize Rapid Application Storage

IBM Storwize Rapid Application Storage IBM Storwize Rapid Application Storage Efficient, pretested, integrated and powerful solution to accelerate deployment and return on investment. Highlights Improve disk utilization by up to 30 percent

More information

EMC PowerPath Family

EMC PowerPath Family DATA SHEET EMC PowerPath Family PowerPath Multipathing PowerPath Migration Enabler PowerPath Encryption with RSA The enabler for EMC host-based solutions The Big Picture Intelligent high-performance path

More information

VERITAS Business Solutions. for DB2

VERITAS Business Solutions. for DB2 VERITAS Business Solutions for DB2 V E R I T A S W H I T E P A P E R Table of Contents............................................................. 1 VERITAS Database Edition for DB2............................................................

More information

IBM Storwize Rapid Application Storage solutions

IBM Storwize Rapid Application Storage solutions IBM Storwize Rapid Application Storage solutions Efficient, integrated, pretested and powerful solutions to accelerate deployment and return on investment. Highlights Improve disk utilization by up to

More information

MICROSOFT EXCHANGE 2003. best practices BEST PRACTICES - DATA STORAGE SETUP

MICROSOFT EXCHANGE 2003. best practices BEST PRACTICES - DATA STORAGE SETUP MICROSOFT EXCHANGE 2003 best practices BEST PRACTICES - DATA STORAGE SETUP TABLE OF CONTENTS E-mail has become a business critical communication tool 3 Build a disaster recovery solution with VSS and Data

More information

The Benefits of Virtualizing

The Benefits of Virtualizing T E C H N I C A L B R I E F The Benefits of Virtualizing Aciduisismodo Microsoft SQL Dolore Server Eolore in Dionseq Hitachi Storage Uatummy Environments Odolorem Vel Leveraging Microsoft Hyper-V By Heidi

More information

VERITAS Volume Manager. for Windows. Best Practices

VERITAS Volume Manager. for Windows. Best Practices VERITAS Volume Manager for Windows Best Practices V E R I T A S W H I T E P A P E R Table of Contents Getting the Most Benefit From Online Volume Management.............................................1

More information

HP Smart Array 5i Plus Controller and Battery Backed Write Cache (BBWC) Enabler

HP Smart Array 5i Plus Controller and Battery Backed Write Cache (BBWC) Enabler Overview HP Smart Array 5i Plus Controller and Battery Backed Write Cache (BBWC) Enabler Models Smart Array 5i Plus Controller and BBWC Enabler bundled Option Kit (for ProLiant DL380 G2, ProLiant DL380

More information

HARDWARE GUIDE. MegaRAID SCSI 320-0 Zero-Channel RAID Controller

HARDWARE GUIDE. MegaRAID SCSI 320-0 Zero-Channel RAID Controller HARDWARE GUIDE MegaRAID SCSI 320-0 Zero-Channel RAID Controller September 2002 This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used

More information

Vicom Storage Virtualization Engine. Simple, scalable, cost-effective storage virtualization for the enterprise

Vicom Storage Virtualization Engine. Simple, scalable, cost-effective storage virtualization for the enterprise Vicom Storage Virtualization Engine Simple, scalable, cost-effective storage virtualization for the enterprise Vicom Storage Virtualization Engine (SVE) enables centralized administration of multi-platform,

More information

VERITAS File Server Edition Turning Commodity Hardware into High Performance, Highly Available File Servers

VERITAS File Server Edition Turning Commodity Hardware into High Performance, Highly Available File Servers VERITAS File Server Edition Turning Commodity Hardware into High Performance, Highly Available File Servers Table of Contents The VERITAS File Server Edition...1 What is an Edition?...2 File Server Edition

More information

Models Smart Array 6402A/128 Controller 3X-KZPEC-BF Smart Array 6404A/256 two 2 channel Controllers

Models Smart Array 6402A/128 Controller 3X-KZPEC-BF Smart Array 6404A/256 two 2 channel Controllers Overview The SA6400A is a high-performance Ultra320, PCI-X array controller. It provides maximum performance, flexibility, and reliable data protection for HP OpenVMS AlphaServers through its unique modular

More information

Read this before starting!

Read this before starting! Points missed: Student's Name: Total score: /100 points East Tennessee State University Department of Computer and Information Sciences CSCI 4717 Computer Architecture TEST 2 for Fall Semester, 2006 Section

More information

StoreVault Advanced Protection Architecture

StoreVault Advanced Protection Architecture StoreVault Advanced Protection Architecture NetApp technologies working together Advanced data protection Advanced system protection Introduction Advanced Data Protection Overview NetApp Snapshot Technology

More information

Creating A Highly Available Database Solution

Creating A Highly Available Database Solution WHITE PAPER Creating A Highly Available Database Solution Advantage Database Server and High Availability TABLE OF CONTENTS 1 Introduction 1 High Availability 2 High Availability Hardware Requirements

More information

ES-1 Elettronica dei Sistemi 1 Computer Architecture

ES-1 Elettronica dei Sistemi 1 Computer Architecture ES- Elettronica dei Sistemi Computer Architecture Lesson 7 Disk Arrays Network Attached Storage 4"» "» 8"» 525"» 35"» 25"» 8"» 3"» high bandwidth disk systems based on arrays of disks Decreasing Disk Diameters

More information

Informix Dynamic Server May 2007. Availability Solutions with Informix Dynamic Server 11

Informix Dynamic Server May 2007. Availability Solutions with Informix Dynamic Server 11 Informix Dynamic Server May 2007 Availability Solutions with Informix Dynamic Server 11 1 Availability Solutions with IBM Informix Dynamic Server 11.10 Madison Pruet Ajay Gupta The addition of Multi-node

More information

HARDWARE GUIDE. MegaRAID SCSI 320-2 RAID Controller

HARDWARE GUIDE. MegaRAID SCSI 320-2 RAID Controller HARDWARE GUIDE MegaRAID SCSI 320-2 RAID Controller November 2002 This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used by or disclosed

More information

Availability and Disaster Recovery: Basic Principles

Availability and Disaster Recovery: Basic Principles Availability and Disaster Recovery: Basic Principles by Chuck Petch, WVS Senior Technical Writer At first glance availability and recovery may seem like opposites. Availability involves designing computer

More information

BrightStor ARCserve Backup for Windows

BrightStor ARCserve Backup for Windows BrightStor ARCserve Backup for Windows Tape RAID Option Guide r11.5 D01183-1E This documentation and related computer software program (hereinafter referred to as the "Documentation") is for the end user's

More information

Introduction. What is RAID? The Array and RAID Controller Concept. Click here to print this article. Re-Printed From SLCentral

Introduction. What is RAID? The Array and RAID Controller Concept. Click here to print this article. Re-Printed From SLCentral Click here to print this article. Re-Printed From SLCentral RAID: An In-Depth Guide To RAID Technology Author: Tom Solinap Date Posted: January 24th, 2001 URL: http://www.slcentral.com/articles/01/1/raid

More information

Filing Systems. Filing Systems

Filing Systems. Filing Systems Filing Systems At the outset we identified long-term storage as desirable characteristic of an OS. EG: On-line storage for an MIS. Convenience of not having to re-write programs. Sharing of data in an

More information

Q & A From Hitachi Data Systems WebTech Presentation:

Q & A From Hitachi Data Systems WebTech Presentation: Q & A From Hitachi Data Systems WebTech Presentation: RAID Concepts 1. Is the chunk size the same for all Hitachi Data Systems storage systems, i.e., Adaptable Modular Systems, Network Storage Controller,

More information

Why disk arrays? CPUs improving faster than disks

Why disk arrays? CPUs improving faster than disks Why disk arrays? CPUs improving faster than disks - disks will increasingly be bottleneck New applications (audio/video) require big files (motivation for XFS) Disk arrays - make one logical disk out of

More information

RAID Made Easy By Jon L. Jacobi, PCWorld

RAID Made Easy By Jon L. Jacobi, PCWorld 9916 Brooklet Drive Houston, Texas 77099 Phone 832-327-0316 www.safinatechnolgies.com RAID Made Easy By Jon L. Jacobi, PCWorld What is RAID, why do you need it, and what are all those mode numbers that

More information

Benefits of Intel Matrix Storage Technology

Benefits of Intel Matrix Storage Technology Benefits of Intel Matrix Storage Technology White Paper December 2005 Document Number: 310855-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

More information

Achieving High Availability & Rapid Disaster Recovery in a Microsoft Exchange IP SAN April 2006

Achieving High Availability & Rapid Disaster Recovery in a Microsoft Exchange IP SAN April 2006 Achieving High Availability & Rapid Disaster Recovery in a Microsoft Exchange IP SAN April 2006 All trademark names are the property of their respective companies. This publication contains opinions of

More information

The Revival of Direct Attached Storage for Oracle Databases

The Revival of Direct Attached Storage for Oracle Databases The Revival of Direct Attached Storage for Oracle Databases Revival of DAS in the IT Infrastructure Introduction Why is it that the industry needed SANs to get more than a few hundred disks attached to

More information

INCREASING EFFICIENCY WITH EASY AND COMPREHENSIVE STORAGE MANAGEMENT

INCREASING EFFICIENCY WITH EASY AND COMPREHENSIVE STORAGE MANAGEMENT INCREASING EFFICIENCY WITH EASY AND COMPREHENSIVE STORAGE MANAGEMENT UNPRECEDENTED OBSERVABILITY, COST-SAVING PERFORMANCE ACCELERATION, AND SUPERIOR DATA PROTECTION KEY FEATURES Unprecedented observability

More information

RAID HARDWARE. On board SATA RAID controller. RAID drive caddy (hot swappable) SATA RAID controller card. Anne Watson 1

RAID HARDWARE. On board SATA RAID controller. RAID drive caddy (hot swappable) SATA RAID controller card. Anne Watson 1 RAID HARDWARE On board SATA RAID controller SATA RAID controller card RAID drive caddy (hot swappable) Anne Watson 1 RAID The word redundant means an unnecessary repetition. The word array means a lineup.

More information

BACKUP BENCHMARKING OF VERY L ARGE MICROSOFT SQL S ERVER 7.0 D ATABASES DURING ACTIVE ONLINE T RANSACTION PERFORMANCE L OADING ON COMPAQ HARDWARE

BACKUP BENCHMARKING OF VERY L ARGE MICROSOFT SQL S ERVER 7.0 D ATABASES DURING ACTIVE ONLINE T RANSACTION PERFORMANCE L OADING ON COMPAQ HARDWARE BACKUP BENCHMARKING OF VERY L ARGE MICROSOFT SQL S ERVER 7.0 D ATABASES DURING ACTIVE ONLINE T RANSACTION PERFORMANCE L OADING ON COMPAQ HARDWARE By Torrey Russell Backup & Disaster Recovery for Windows

More information

Understanding Microsoft Storage Spaces

Understanding Microsoft Storage Spaces S T O R A G E Understanding Microsoft Storage Spaces A critical look at its key features and value proposition for storage administrators A Microsoft s Storage Spaces solution offers storage administrators

More information

Using Multipathing Technology to Achieve a High Availability Solution

Using Multipathing Technology to Achieve a High Availability Solution Using Multipathing Technology to Achieve a High Availability Solution Table of Contents Introduction...3 Multipathing Technology...3 Multipathing I/O Implementations...5 Storage Redundancy...5 Infortrend

More information

Chapter 6 External Memory. Dr. Mohamed H. Al-Meer

Chapter 6 External Memory. Dr. Mohamed H. Al-Meer Chapter 6 External Memory Dr. Mohamed H. Al-Meer 6.1 Magnetic Disks Types of External Memory Magnetic Disks RAID Removable Optical CD ROM CD Recordable CD-R CD Re writable CD-RW DVD Magnetic Tape 2 Introduction

More information

Overview of I/O Performance and RAID in an RDBMS Environment. By: Edward Whalen Performance Tuning Corporation

Overview of I/O Performance and RAID in an RDBMS Environment. By: Edward Whalen Performance Tuning Corporation Overview of I/O Performance and RAID in an RDBMS Environment By: Edward Whalen Performance Tuning Corporation Abstract This paper covers the fundamentals of I/O topics and an overview of RAID levels commonly

More information

IBM TotalStorage Network Attached Storage 100

IBM TotalStorage Network Attached Storage 100 1U low-profile IBM NAS solution for central management of remote and distributed locations IBM TotalStorage Network Attached Storage 100 Model R12 Ease of use and ease of management Web-browser interface

More information

IT Service Management

IT Service Management IT Service Management Service Continuity Methods (Disaster Recovery Planning) White Paper Prepared by: Rick Leopoldi May 25, 2002 Copyright 2001. All rights reserved. Duplication of this document or extraction

More information

Storage. The text highlighted in green in these slides contain external hyperlinks. 1 / 14

Storage. The text highlighted in green in these slides contain external hyperlinks. 1 / 14 Storage Compared to the performance parameters of the other components we have been studying, storage systems are much slower devices. Typical access times to rotating disk storage devices are in the millisecond

More information

Intel Rapid Storage Technology

Intel Rapid Storage Technology Intel Rapid Storage Technology User Guide August 2011 Revision 1.0 1 Document Number: XXXXXX INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

More information

Using RAID Admin and Disk Utility

Using RAID Admin and Disk Utility Using RAID Admin and Disk Utility Xserve RAID Includes instructions for creating RAID arrays and monitoring Xserve RAID systems K Apple Computer, Inc. 2003 Apple Computer, Inc. All rights reserved. Under

More information

EMC CLARiiON RAID 6 Technology A Detailed Review

EMC CLARiiON RAID 6 Technology A Detailed Review A Detailed Review Abstract This white paper discusses the EMC CLARiiON RAID 6 implementation available in FLARE 26 and later, including an overview of RAID 6 and the CLARiiON-specific implementation, when

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files (From Chapter 9 of textbook) Storing and Retrieving Data Database Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve

More information

Why disk arrays? CPUs speeds increase faster than disks. - Time won t really help workloads where disk in bottleneck

Why disk arrays? CPUs speeds increase faster than disks. - Time won t really help workloads where disk in bottleneck 1/19 Why disk arrays? CPUs speeds increase faster than disks - Time won t really help workloads where disk in bottleneck Some applications (audio/video) require big files Disk arrays - make one logical

More information

IBM Software Information Management. Scaling strategies for mission-critical discovery and navigation applications

IBM Software Information Management. Scaling strategies for mission-critical discovery and navigation applications IBM Software Information Management Scaling strategies for mission-critical discovery and navigation applications Scaling strategies for mission-critical discovery and navigation applications Contents

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization

More information

Non-Redundant (RAID Level 0)

Non-Redundant (RAID Level 0) There are many types of RAID and some of the important ones are introduced below: Non-Redundant (RAID Level 0) A non-redundant disk array, or RAID level 0, has the lowest cost of any RAID organization

More information

Configuring RAID for Optimal Performance

Configuring RAID for Optimal Performance Configuring RAID for Optimal Performance Intel RAID Controller SRCSASJV Intel RAID Controller SRCSASRB Intel RAID Controller SRCSASBB8I Intel RAID Controller SRCSASLS4I Intel RAID Controller SRCSATAWB

More information

RAID EzAssist Configuration Utility Quick Configuration Guide

RAID EzAssist Configuration Utility Quick Configuration Guide RAID EzAssist Configuration Utility Quick Configuration Guide DB15-000277-00 First Edition 08P5520 Proprietary Rights Notice This document contains proprietary information of LSI Logic Corporation. The

More information

User Guide - English. Embedded MegaRAID Software

User Guide - English. Embedded MegaRAID Software User Guide - English Embedded MegaRAID Software April 2015 Comments Suggestions Corrections The User Documentation Department would like to know your opinion of this manual. Your feedback helps us optimize

More information

As enterprise data requirements continue

As enterprise data requirements continue Storage Introducing the Dell PERC 6 Family of SAS RAID ControlLers By Bhanu Prakash Dixit Sanjay Tiwari Kedar Vaze Joe H. Trickey III The Dell PowerEdge Expandable RAID Controller (PERC) 6 family of enterprise-class

More information

Archive Data Retention & Compliance. Solutions Integrated Storage Appliances. Management Optimized Storage & Migration

Archive Data Retention & Compliance. Solutions Integrated Storage Appliances. Management Optimized Storage & Migration Solutions Integrated Storage Appliances Management Optimized Storage & Migration Archive Data Retention & Compliance Services Global Installation & Support SECURING THE FUTURE OF YOUR DATA w w w.q sta

More information

QuickSpecs. Models HP Smart Array E200 Controller. Upgrade Options Cache Upgrade. Overview

QuickSpecs. Models HP Smart Array E200 Controller. Upgrade Options Cache Upgrade. Overview Overview The HP Smart Array E200 is HP's first entry level PCI Express (PCIe) Serial Attached SCSI (SAS) RAID controller. The full size card has 8 ports and utilizes DDR1-266 memory. The E200 is ideal

More information

Every organization has critical data that it can t live without. When a disaster strikes, how long can your business survive without access to its

Every organization has critical data that it can t live without. When a disaster strikes, how long can your business survive without access to its DISASTER RECOVERY STRATEGIES: BUSINESS CONTINUITY THROUGH REMOTE BACKUP REPLICATION Every organization has critical data that it can t live without. When a disaster strikes, how long can your business

More information

This chapter explains how to update device drivers and apply hotfix.

This chapter explains how to update device drivers and apply hotfix. MegaRAID SAS User's Guide Areas Covered Before Reading This Manual This section explains the notes for your safety and conventions used in this manual. Chapter 1 Overview This chapter explains an overview

More information

HARDWARE GUIDE. MegaRAID SCSI 320-1 RAID Controller

HARDWARE GUIDE. MegaRAID SCSI 320-1 RAID Controller HARDWARE GUIDE MegaRAID SCSI 320-1 RAID Controller September 2002 This document contains proprietary information of LSI Logic Corporation. The information contained herein is not to be used by or disclosed

More information

RAID 5 rebuild performance in ProLiant

RAID 5 rebuild performance in ProLiant RAID 5 rebuild performance in ProLiant technology brief Abstract... 2 Overview of the RAID 5 rebuild process... 2 Estimating the mean-time-to-failure (MTTF)... 3 Factors affecting RAID 5 array rebuild

More information

A Dell Technical White Paper Dell Compellent

A Dell Technical White Paper Dell Compellent The Architectural Advantages of Dell Compellent Automated Tiered Storage A Dell Technical White Paper Dell Compellent THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL

More information

Solution Brief Availability and Recovery Options: Microsoft Exchange Solutions on VMware

Solution Brief Availability and Recovery Options: Microsoft Exchange Solutions on VMware Introduction By leveraging the inherent benefits of a virtualization based platform, a Microsoft Exchange Server 2007 deployment on VMware Infrastructure 3 offers a variety of availability and recovery

More information

Contents. SnapComms Data Protection Recommendations

Contents. SnapComms Data Protection Recommendations Contents Abstract... 2 SnapComms Solution Environment... 2 Concepts... 3 What to Protect... 3 Database Failure Scenarios... 3 Physical Infrastructure Failures... 3 Logical Data Failures... 3 Service Recovery

More information

Identifying the Hidden Risk of Data Deduplication: How the HYDRAstor TM Solution Proactively Solves the Problem

Identifying the Hidden Risk of Data Deduplication: How the HYDRAstor TM Solution Proactively Solves the Problem Identifying the Hidden Risk of Data Deduplication: How the HYDRAstor TM Solution Proactively Solves the Problem Advanced Storage Products Group Table of Contents 1 - Introduction 2 Data Deduplication 3

More information

Improving Data Center Performance Through Virtualization of SQL Server Databases

Improving Data Center Performance Through Virtualization of SQL Server Databases Improving Data Center Performance Through Virtualization of SQL Server Databases Contents Abstract. 1 SQL Server s Role Inside SMBs. 2 IT s Biggest Data Center Concerns. 2 Virtualization is the Solution.

More information

Technology Update White Paper. High Speed RAID 6. Powered by Custom ASIC Parity Chips

Technology Update White Paper. High Speed RAID 6. Powered by Custom ASIC Parity Chips Technology Update White Paper High Speed RAID 6 Powered by Custom ASIC Parity Chips High Speed RAID 6 Powered by Custom ASIC Parity Chips Why High Speed RAID 6? Winchester Systems has developed High Speed

More information

Compaq Batch Scheduler for Windows NT

Compaq Batch Scheduler for Windows NT Compaq Batch Scheduler for Windows NT Mainframe-Caliber Automated Job Scheduling Software for Windows NT This white paper addresses extending the capabilities of Windows NT to include automated job scheduling

More information