Research Division in Electronics Communications and Microsystems. Activity Report , May 17th

Size: px
Start display at page:

Download "Research Division in Electronics Communications and Microsystems. Activity Report 2008-2009. 2010, May 17th"

Transcription

1 Research Division in Electronics Communications and Microsystems Activity Report , May 17th

2 INTRODUCTION The Research Division in Electronics, Communications and Microsystems was created in 2009 at ESIEE-Paris, together with two other divisions: the Informatics Division, and the Innovation Management Division. The Research Division in Electronics, Communications and Microsystems hosts the research activities of the Electronics System Department and the Telecommunication Department of ESIEE-Engineering. It is composed of 29 academic staff members and 28 PhD students. A major part of the research staff (18 permanent members and 24 PhD students) is also associated to the Laboratoire d Electronique Systèmes de Communication et Microsystèmes (ESYCOM), which is a joint research unit UPEMLV-ESIEE-CNAM (EA 2552) of Université Paris-Est. Two permanent members are associated to the Laboratoire de Micorélectronique ENSICAEN-NXP Semiconducteur (LAMIPS). During the period of two years , the research division has produced 167 publications: 44 journal articles, 13 patents, 107 articles in conference proceedings and three book chapters,. 7 PhD theses were defended and 60 contracts and funded projects were completed or are still ongoing,

3 The activities of the Research Division in Electronics, Communications and Microsystems fall into 3 main areas: Sensors: Multiphysics components, micro- and nanotechnology for environment sensing and life science. Communication: Architectures and components for RF and optical communication. Electronics: Electronic systems. The research topics adressed are summarized hereafter : SENSORS : MULTIPHYSICS COMPONENTS, MICRO- AND NANOTECHNOLOGY FOR ENVIRONMENT SENSING AND LIFE SCIENCE Micro Sensors for Biology and Health Neurosciences, Development of MEA for in-vitro and in-vivo application Energy harvesting/scavenging for powering (µ-)sensors Piezoelectric AlN thin film for MEMS application MEMS and NEMS for harsh environment: Application to oilfield exploration Microfluidic devices and Block Copolymer Nanolithography Miniaturized Devices for Environment Sensing and Analysis MEMS-based AFM probe fabrication and integration COMMUNICATION : ARCHITECTURES AND COMPONENTS FOR RF AND OPTICAL COMMUNICATION. MIMO radar systems Microwave Photonics Components Information, Communication and Localization environment for Travelers with Sensory Disabilities in Public Transports Wireless transceivers for mobile terminals: architectures, analysis and signal processing Transceiver architectures and circuits for radiocommunication systems Architectures and circuits for nomadic radiocommunication transmitter ELECTRONICS : ELECTRONIC SYSTEMS Integrated circuits for sensing: compact models and implementation of silicon vision chips and vibrating MEMS Digital ASIC Architectures : Realtime Time-Frequency Analysis and Radiation Hardening Modelling and simulation of multidisciplinary dynamic systems Nuclear Magnetic Resonance: Portable and integrated The different topics together with the corresponding involved poeple are presented in the next pages in the form of a one-page summary.

4 PEOPLE Faculty Emmanuelle Algré, assistant professor Dan Angelescu, professor Philippe Basset, associate professor Geneviève Baudoin, professor Gaëlle Bazin-Lissorgues, professor Corinne Berland, associate professor Yves Blanchard, associate professor Tarik Bourouina, professor Daniel Courivaud, associate professor Valérie Douay, associate professor Antoine Dupret, professor Abdelnasser Fakri, associate professor Cristian Florea, professor Farbod Ghassemi, engineer Frédéric Marty, engineer Bruno Mercier, engineer Florence Nadal, assistant professor Ludovic Noury, assistant professor Nicolas Pavy, engineer Jean-Luc Polleux, associate professor Patrick Poulichet, associate professor Christian Ripoll, associate professor Lionel Rousseau, engineer Patrick Sangouard, associate professor Martha Suarez Penaloza, teaching and research assistant Laurie Valbin, assistant professor Olivier Venard, assistant professor Martine Villegas, professor Férial Virolleau, associate professor

5 Ph.D Students Completed theses: Vincent Georgel, until june 2008 Baptiste Le Foulgoc, until october 2008 Martha Suarez Penaloza, until december 2009 Anand Summanwar, until december Ayyaz Mahmood Paracha, until december Jinane El Sayah, until december Lionel Rousseau, until january Ongoing theses: Rahma Abdaoui Luis Andia Montes Ajib Bahi Alexandre Bongrain Toufic Chmayssani Fadoua Guezzi Messaoud Raphaël Guillemet Pierre Guillot Yaël Joblin Sandeep Kowlgi Srinivasan Amandine Lesellier Abdelmadjid Maali Maurine Malak Karam Olivier Mareschal Stéphane Mebaley Ekome Ronald Montesinos Kinda Nachef Kim Ngoc Nguyen Julien Pagazani Jayalakshmi Parasuraman Fabien Robert Marc Rosales Yasser Sabry Julien Schiellein Maximilien Stoffel Vaclav Valenta Yefeng Yu Weiming Zhu

6 Sensors MULTIPHYSICS COMPONENTS, MICRO- AND NANOTECHNOLOGY FOR ENVIRONMENT SENSING AND LIFE SCIENCE

7 Micro Sensors for Biology and Health Lead: G. Lissorgues. Permanent members: L. Rousseau, L. Valbin, P. Poulichet, C. Ripoll. Associated researchers: S. Picaud, P. Bergonzo, E. Scorsone, F. De Dieuleveult, B. Yvert, C. Dolabdjian, S. Saez. Postdoctoral and PhD. students: A. Bongrain, O. Mareschal, C.T. Phua, A. Patoux. In recent years, many Micro Electro Mechanical Systems have been identified to fulfil applications in biology and health, requesting miniaturisation, biocompatibility, high sensitivity, specific limits of detection, and sometimes wireless transmission links or partially integrated electronics. We have focused in the past two last years on two main fields developing: - new technologies for biological micro sensors either based on diamond film growth or piezoelectric films - new micro sensors for improved health diagnosis Some recent contributions to these topics include: Diamond based micro sensors: For emerging applications such as for bio-sensing, diamond appears to be a promising alternative material for MEMS applications. Indeed, diamond exhibits outstanding mechanical properties such as a high Young's modulus implying that diamond based MEMS will exhibit superior sensitivities when sensing is based on resonating structures. Also, the carbon terminated surface of diamond offers a wide range of opportunities for covalent grafting of specific bioreceptors onto its surface. We have developed polycrystalline diamond micro-mechanical transducers (micro cantilevers, micro resonators) using a new process that requires the direct growth of diamond in silicon moulds involving diamond nano-particles. An emerging application concerns future retinal prostheses based on diamond micro electrode arrays (MEA) ensuring low intrinsic noise, robustness of the microelectrodes, and high current injection limits for the stimulation of neural tissues due to diamond larger electrochemical potential window. Fig. 1. Diamond micro-cantilevers Diamond based retinal implant Piezoelectric micro resonators: We investigated the TFEAR (Thin Film Elongation Acoustic Resonator) operating from 10 MHz to 50 MHz frequencies. This resonator is composed of a piezoelectric Aluminum Nitride (AlN) layer sandwiched between two aluminum (Al) electrodes and manufactured on a silicon substrate. In opposition to common resonator, such a TFEAR works in extensional (elongation) mode excited via the d 31 piezoelectric coefficient. Intraocular Pressure Sensors: Glaucoma is an ocular pathology, leading to the second cause of blindness in people over the age of 50, which is associated with an increase in intraocular pressure (IOP). In this context, a lot of therapies have been developed to lower the intraocular pressure, as elevated IOP is considered unanimously as the main risk factor for vision loss. We are developing disposable eye lenses to measure continuously IOP, using a pressure sensor included in the lens and communicating by radio frequency to an electronic chip located on a glass branch. The IOP information will be then available for ophthalmologists to generate safer diagnostics. Antenna + Sensor Recording circuit Fig. 2. IOP sensor operation principle Blood Pressure Sensors: We proposed a novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. This magnetic method of blood pulse acquisition is applied on the wrist in place of the finger leading to the development of devices capable of continuous blood pressure acquisition, which is unrestrictive for daily activities. Publications: journal articles [10, 12, 21, 24, 38], conference articles [69, 91, 126, 142, 147 ], patent [197]. Other results: Two grants from ANR: ANR Tecsan MEDINAS ( ), MATEO ( )

8 Neurosciences, Development of MEA for in-vitro and in-vivo application Lead: L. Rousseau Permanent members: G. Lissorgues, L. Rousseau. Associated researchers: B. Yvert, J. Sahel, S. Picaud, A. Bendali, E Scorsonne, S. Saada, P.Berbonzo. Postdoctoral and PhD. students: A. Bongrain, L. Rousseau. One challenge of the XXI ème century will be to understand dynamics of large neural networks either in vitro or in vivo and give the possibility to deliver appropriate electrical stimulations to neuronal networks. Today microelectrodes arrays (MEAs) positioned in contact with the neural tissue offer the opportunity to record and simulate neuronal tissue for research and to develop neuroprothesis implant (ex retinal implant, cochlear implant). After to have developed a new type of high density MEA and proposed a new configuration of MEA specifically designed to achieve a local stimulation, we work on two axis : - First axis : Today MEAs offer only a two-dimensional sampling of the neural tissue, while information is distributed in all dimensions of the Central Nervous System. We have developed a true 3D MEA probes. These arrays are built by assembling comb-like 2D arrays. Each comb, composed of several multi-sites shanks, and assembled vertically on specific microconnecting device to perform a 3D array (cf : Fig. 1). - Second axis : Conventional metal MEA electrodes have two majors problems : Intrinsic noise becomes a major limitation when dense arrays of small size microelectrodes are considered and if the injected stimulating current used to the neuronal networks is too high, then irreversible reactions can take place and water is hydrolyzed, which results in the deterioration of both the electrode and the neural tissue. The challenge is therefore to build new types of electrodes that exhibit both a high potential window with respect to water electrolysis, and possess a high electrode reactivity which is important to obtain high signal to noise ratios. We fabricate novel types of MEAs and flexible retinal implant (cf : Fig 2), which are based on artificial nanocrystalline diamond (NCD) layers. Fig. 1 Fig. 2 Publications: journal articles [10,12,22,27,40 ], conference articles [75,92,141 ] patent [195]. Other results: Two grants from Association Nationale de la Recherche (ANR):ANR BLANC «MEA3D», ANR TecSan «MEDINAS».

9 Energy harvesting/scavenging for powering (µ-)sensors Lead: P. Basset. Permanent members: F. Marty, D. Angelescu, T. Bourouina. Associated researchers: D. Galayko (LIP6), Y. Leprince (LPMDI), E. Richalot (ESYCOM/MLV) Postdoctoral and PhD. students: J. Parasuraman, K. Ngoc Nguyen, R. Guillemet. The applications envisaged for wireless and autonomous sensors are increasing every day and address any kind of monitoring systems. However the main bottleneck is the power self-sufficiency of the system. Energy harvesting from the ambient environment could extend the battery running life or better to be rid of battery. Several collaborative projects are ongoing, addressing various energy sources: Smart multi-source Energy Scavenger for Autonomous Microsystems (SESAM): The objective is the elaboration of an energy harvester system able to power multiple loads and dealing with various energy sources. In a previous project ESIEE Paris has fabricated the first fully batch-processed silicon-based vibration energy harvester using electrostatic transduction. The measured converted power was 60 nw with mechanical vibrations of 0.25 g at 250 Hz and for a device of 27 mm 3. In the SESAM project we target 10 µw in the same conditions, and with our colleague from the LIP6 we work on an smart adaptive conditioning electronic to improve the transducer s efficiency when the external vibrations change. COllective Fabrication of Inexpensive Superlattices In Silicon for SiP and SoC thermal management (COFISIS): Hot spots in IC circuits can easily go up to several tens of degrees Celsius above the average temperature of the device and can be a source of tampering some of the features of the component. COFISIS goal is using nanotechnology to reduce the temperature of the localized hot spots with acceptable manufacturing costs and/or recover this thermal energy "wasted" by the components. We are working on the fabrication of thermoelectric vertical superlattices fabricated directly into the silicon substrat. To obtain large layers whose widths are below 100 nm, we experiment an innovative lithography approach based on di-block co-polymer patterning. Thermoelectric/thermoionic micro Energy Source Enhanced by Electromagnetic Radiation (TESEER): In this project we elaborate a 3D structuration of a silicon surface in order to maximized the absorption of the incident light. We already obtained a reflectivity below 1% in the 400 nm 1 µm range, on a full 4-inch wafer with this so-called black-silicon. First objective is to maximize the warm-up of a thermoelectric element, like the one developed in the project COFISIS for instance. Second objective is to combine this absorbent surface with a photovoltaic cell to increase its efficiency. Fig. 1 a) 3D-schematic view of a batch-fabricated Si-based vibration energy harvester, b) pictures of fabricated devices. Fig. 2 Tilted and top views of a black Silicon surface having a 1% light reflection in the visible range Publications: journal articles [20, 26], conference articles [61, 81, 88, 89, 90, 102, 105, 118, 134, 146,161, 162, 163, 172, 174, 175, 176] patent [193] Other results: 3 grants from Association Nationale de la Recherche (ANR) + 1 grant from the EADS Enterprise Fundation

10 Piezoelectric AlN thin film for MEMS application Lead: L. Valbin Permanent members: G. Lissogues, L. Rousseau. Associated researchers ; C. Dolabdjian, S. Saez (greyc ENSICAEN), R. Bouregba, G. Poullain (crismat ENSICAEN), P. Gamand (NXP). Postdoctoral and PhD. students: O. Mareschal, S. Loiseau. In recent years, piezoelectric thin film for MEMS application has been developed. Some recent contributions to this area of research include : Piezoelectric AlN thin film technology: AlN has been deposited on Al thin film to reach cmos compatible process. Then AlN has been used to realise MEMS like resonators and pressure sensors. AlN process has been transfer to NXP fab in Caen. Piezoelectric micro-resonators: piezoelectric micro-resonator named TFEAR (Thin Film Elongation Acoustic Resonator) using AlN thin film has been developed with ENSICAEN and NXP. These resonators using elongation mode are in the MHz range. Due to their small size, these resonators may be integrated in IC package (SiP: System in package) to replace quartz in high volume application. Piezoelectric pressure micro-sensors ANR program for Intra Ocular Pressure measurement is in progress. Piezoelectric pressure micro-sensor is being developed. Piezoelectric thin film characterization Using piezoelectric micro-resonators electrical and mechanical measurements, elastic, electric and piezoelectric constants extraction is done. Then these constant values are used for simulation to predict MEMS comportement. Fig. 1 TFEAR model (2183 cover) and sem view. Publications: journal articles [38], conference articles [69, 110, 119].

11 MEMS and NEMS for harsh environment Application to oilfield exploration Lead: F.Marty Permanent members: B.Mercier Associated researchers: E.Donzier, K.Danaie, Hua Chen Postdoctoral and PhD. students: K.Nachef Strategic markets need MEMS and NEMS that can operate in the presence of high temperature, high pressure, corrosive media. Oild field services is one of them, where efficiency of exploration and production activities increasingly depends on implementing new sensors technologies with high performances that can survive harsh environment. We have been developing technologies to fulfil requirements for such sensors in a wide range of physical measurements like pressure, acceleration, or chemical detection. Our technological developments combines the use of standard microelectronics layers such as silicon nitride, silicon oxide or polysilicon to create circuitry and specific etching and packaging steps to fabricate MEMS,MOEMS or NEMS. We proposed new possibilities in terms of size reduction, high performances and reliability by developing advanced Deep Reactive Ion Etching (DRIE) processes and associated steps on SOI wafers. In particular, high aspect ratio moving structures were fabricated using modified bosch process. Specific packages including silicon to pyrex bonding, Si direct bonding and Si to plastics bonding were evaluated. Wafer level packaging was also investigated with hermetic sealing under vacuum using getter films. The combination of these process steps have enabled, for example, prototyping of accelerometers, density/viscosity sensors, piezoresistive pressure sensors, resonant pressure sensors, silicon resonators or micro-chromatographs. Fig. 1 Density/Viscosity MEMS at wafer level and individually packaged. Publications: journal articles [5, 8, 16, 45], conference articles [58, 144].

12 Microfluidic devices and Block Copolymer Nanolithography Lead: D. Angelescu Permanent members: B. Mercier, N. Pavy, F. Marty, E. Algre, T. Bourouina, P. Basset Associated researchers: R. Hohler, Y. Leprince, E. Lorenceau, P. Chaikin, R. Register Postdoctoral and PhD. students: M. Stoffel, J. Parasuraman, X. Yuan One of our activities in microfluidics involves the design of a microfluidic system which measures pressure drops along microfluidic channels involving different types of constrictions using embedded MEMS microsensors. We have achieved a design (Figure 1) which will allow us to gain important information about the complex rheology of the fluid passing through a microchannel, and are currently in the manufacturing phase. When a fluid is forced through a channel at a given (known) flow rate, there is a pressure gradient which develops along the channel which depends on the rheology of the fluid, on the type of particles that may be suspended in the fluid, and on the channel s geometrical details. The pressure drop between two sampling points on the channel can be measured using the deflection of an elastic silicon membrane (used as a differential pressure transducer). Pressure, flowrate, surface effects, temperature, viscosity are all fluid parameters which influence the response of the membrane. By controlling the majority of these parameters, we attempt to demonstrate that the membrane response can be used to recognize different types of particles, and particularly to detect elastic vesicles such as emulsion droplets or cells. Onother activity in microfluidics is centered around developing sensors for monitoring water quality in urban areas, and particularly for monitoring the chlorine concentration in the water. There are no sensors currently on the market which allow the in-line monitoring of chlorine concentration in urban water pipes. Our activity here is centered on the development, in conjunction with several industrial partners, of a microfluidic chlorine sensor based on an original idea and design. Figure 1 : Current design of the microfluidic rheology sensor Figure 2 : Preliminary results showing 3 :1 and higher aspect ratio etchning obtained at ESIEE using block copolymer templates Block copolymers are self-assembled systems which present a viable route to bottom-up nanofabrication. They are able to reach scales of nm, with controlled periodicity, and therefore are seen as a potential replacement for certain top-down technologies such as electron beam lithography, which lack both the resolution and the cost benefits of block copolymer techniques. The use of block copolymer templates as nanolithography masks has been long performed using isotropic roomtemperature reactive ion etching techniques. These allow a certain selectivity over the species, however their possibilities are reaching the limits of the technology : aspect ratios are limited to numbers close to 1. We are currently trying to leverage the expertise accumulated at ESIEE and Princeton in both copolymer processing and exotic plasma etching techniques, and to improve the state of the art for etch depth using copolymer templates, thus providing viable routes to nanofabrication of useful devices (nanoresonator arrays to be used in applications such as ultra-sensitive mass sensors, chemical and biological detection). Our current progress includes succesful trials, using cryogenic etching techniques, on block copolymer templates provided by our Princeton collaborators. We have already been able to achieve aspect ratios of 3 to 1 for nanostructures with 40nm pitch, which are superior to anything published in the literature. We are currently developing the pattern transfer process using commercially available block copolymers. The future plan is to include alignment steps in the fabrication protocol, more specifically to provide aligned copolymer templates which would allow the manufacturing of ultra-dense nanoresonator arrays. Publications: journal articles [16, 39], conference articles [58, 171] patents [184, 185, 186, 187, 188, 189]

13 Multiphysics Devices for Environment Sensing and Analysis Lead: T. Bourouina. Permanent members: E. Algré, D. Angelescu, P. Basset, V. Douay, N. Fakri, F. Ghassemi, F. Marty, B. Mercier, N. Pavy. Associated researchers: E. Donzier, S. Moularat, F. Neuilly, B. Saadany, D. Khalil, A.Q. Liu, Y. Mita. PhD. students: E. Tavernier, B. Le Foulgoc, A. Summanwar, K. Nachef, Y. Joblin, Y.Yu, W Zhu, M. Malak-Karam,. As the last interface between nature and the digital world, sensors are at the source of all modern information and communication systems. Their deployment in large numbers in almost all fields of science and technology is made possible today due to the booming miniaturization capabilities. However dealing with such small sensors brings new exciting scientific interest as well as technological challenges. Performance of such sensors is the first concern, the objective being to reach at least similar characteristics as macroscopic sensors, while the opportunity is to take advantage of some favourable downscaling laws, and also of some specific (nano)materials and of novel technological processes as well as original operation principles. Another feat is the wide diversity of information that one can get from a given environment, which calls for multiphysics coupling, sometimes with interactions to chemistry and biology as well. This diversity of information also suggests a need of selectivity for those sensors, which makes us thinking on evolving from the concept of micro-sensors to that of analysis microsystems. Our recent contributions in this area include: High-Q resonant sensors. The quality factor Q of a resonator plays a key role on the performance of a sensor based on frequency output; high Q value has a direct impact on performance. Theoretical and experimental investigations conducted on silicon have shown that this material offers a much better compromise than quartz does at the microscale. Q values of 10 6 up to 10 8, are predicted while the typical values found in the literature are only The identified ultimate limit is due to thermoelastic loss; however, reaching such level requires getting rid of other sources of energy dissipation, especially operation under moderate vacuum and excellent mechanical decoupling. Baptiste Le Foulgoc defended his Ph.D thesis on this topic in the frame of a collaboration with ONERA and IEF with a support from DGA. Experimental Q values of 2,10 5 have been reached, well within the state of the art of resonators operating in bending mode. This study also highlighted the importance of controlling technological processes (etching DRIE and KOH) and the expression of surface effects. Photonic MEMS are being studied for the potential superior measurement capabilities provided by optics. The laboratory innovation is related to a major building block which consists of highly reflective Bragg mirrors made by stacks of silicon and air thin vertical layers obtained by DRIE. This was at the basis of several studies on different device architectures, including optical resonators and interferometers. A Fourier Transform Infrared optical spectrometer (µ-ftir), which may be used for chemical analysis, was developed based on this knowledge and was successfully transferred to industry. On the other hand, optofluidics offers other kinds of highly performing photonic devices with potential applications to biological measurements under liquid environment. There are three ongoing Ph D thesis on this topic : Weiming Zhu, Maurine Malak and Yefeng Yu. Micro Gas Chromatography (GC) is a very promising technique for analyzing gas mixtures. It is selective enough, sensitive enough and potentially versatile enough, to address very different applications such as natural gas analysis (Ph D thesis of Kinda Nachef with Schlumberger) detection of biological process through COV analysis (Ph D thesis of Yaël Joblin with CSTB) and air quality monitoring (IMMANENT project underway with LCPC and LNE) Fig. 1(a) Ultra-compact, all silicon FTIR micro-optical spectrometer. Fig. 1(b) Recorded interferogram and its Fourier transform leading to the optical spectrum of input light. Publications: journal articles [8, 9, 13, 17, 18, 19, 34, 36, 37, 45] conference articles [71, 82, 83, 93, 101, 106, 121, 122, 123, 132, 144, 145, 158, 159, 173], patents [190, 194]. Other results: Long-term industrial research contract with SWS with technology transfer to a big international group on photonic MEMS, 2 CIFRE Grants with Schlumberger, 1 CIFRE Grant with NXP, 1 CIFRE Grant with CSTB, 1 Grant from MEDDM, 1 international Grant from EGIDE, 1 Grant from DGA.

14 MEMS-based AFM probe fabrication and integration Permanent member: E. Algré, Associate researcher: B. Legrand, M. Faucher, L. Buchaillot, PhD Student: B. Walter, Z. Xuong This work was done while Emmanuelle Algré worked in the IEMN Laboratory. ( ) This project is supported by the European Research Council and by the French National research Agency. The aim is to replace conventional Atomic Force Microscope (AFM) probe by high performing probe constituted of electromechanical silicon ring resonator. Since its invention by Binnig in 1986, AFM microscopy has been improved to realize nanoscale surface imaging and force spectroscopy. But conventional AFM probes are still not well performing to realize real-time imaging of biological nanosystem. Indeed their performances are degraded by viscosity forces in liquid and rate imaging is limited by their low resonance frequency. Moreover detection mode of the probe displacement, which uses a laser reflexion, is not well adapted to measurement in liquid. We proposed a new concept of AFM probes using bulk-mode silicon resonators (Fig. 1). There are formed of ring resonator which exhibit high resonance frequency. Then the sense and drive of resonator is integrated close to the ring thanks to capacitive actuation. So we fabricated devices with resonance frequencies at about 1MHz in order to accommodate at first the bandwidth limitation of the commercial AFM set-up in which the probes were integrated. The aim was to demonstrate AFM microscopy with these new kinds of probes. The clean room fabrication process was optimized to achieve high performances. MEMS-Based AFM probes were fabricated from SOI wafers using photolithography and deep reactive ion etching. They were characterized electrically and implemented on a commercially available AFM set-up (Fig. 2). The commercial set-up was modified by adding a dedicated circuit board supporting the MEMS probe. We have realized AFM images with MEMS-probe on nanometric patterns and characterized the probe sensitivity (Fig.3). Figure 1 : Working principle of AFM Microscopy using a MEMS-based AFM probe Figure 2 : Overview of the experimental set- Figure 3 : AFM images of 100nm large, 30nm high and spaced by 400nm lines Publications: journal article [35], conference articles [124, 160].

15 Communication ARCHITECTURES AND COMPONENTS FOR RF AND OPTICAL COMMUNICATION.

16 MIMO radar systems Permanent members: F. Nadal, P. Jardin. Associated researcher: S. Middleton. Multiple-input and multiple-output (MIMO) radar systems use arrays of transmitting and receiving antennas like phased array radars but while a phased array transmits highly correlated signals which form a beam, MIMO antennas transmit signals from a diverse set and independence between the signals is exploited. These systems can increase the radar resolution, the number of targets that can be identified, and the flexibility in beampattern design in comparison with standard phased array radars. In particular they offer the possibility of sending the transmitted power towards the directions of multiple targets (Figure 1). To date, most of the work on MIMO radar has been performed assuming the signals are narrowband. We started our study in september 2008 under this narrowband configuration to familiarize ourselves with this subject. However, wideband signals can improve radar resolution, among other benefits, and are sometimes unavoidable when stringent range resolution specifications must be met. Therefore we have proposed a method for extending the MIMO narrowband model to a wideband model. This method implements a wideband beamformer which includes a filter on each channel of the receive array. The new model we derived allows the adaptation of well-known adaptive techniques (Capon, GLRT) for the target parameter identification (Direction Of Arrival and reflexion coefficient β) (Figure 2). Furthermore we designed a suboptimal transmit beampattern synthesis technique, which can be used in the context of wideband signals (Figure 1). This technique is derived from the exact expression of the spatial power distribution involving the CSDM (Cross-Spectral power Density Matrix) beampattern DOA in Fig. 1 Transmit beampattern. 1 Capon (β) GLRT DOA ( ) Fig. 2 Capon and GLRT spectra with an omnidirectional transmitted beampattern with narrowband (dashed line) and wideband (solid line) processing. Publications: conference article [155, 170].

17 Microwave Photonics Components Lead: J.L. Polleux Permanent members: JL.Polleux Associated researchers: C.Algani, A.L. Billabert, C. Rumelhard Postdoctoral and PhD. students: M. Rosales, J. Schiellein, F.Duport. Microwave Photonics is a field at the frontier of RF/Microwaves and Photonics that has long been associated to niche markets such as military applications and was not sufficiently powerful to sustain tough specific components technological developments. From 2001, the group have contributed to develop the field both toward new applications with wider markets such as Radio-over-Fibre in local home networks and as well toward new functions that electronic cannot compete with. Though, the development of novel components has gain better promises addressing efficiently specific requirements of analog microwave-photonic. Satisfying the need in direct compatibility with standard microelectronic or photonic industrial technologies is one of the main chances of success of that approach. Some recent contributions of the group from 2008 to 2009 to this area of research include: Microwave Phototransistors. This action is the specialty of the group to which we put a target of international excellence. Theory of the behavior of heterojunction bipolar transistors (HPTs) has been developed to take into account from about 10years now from the group. The team has significantly contributed to the development of novel characterization techniques. Main developments are conducted on SiGe HPTs to address wavelength between nm, while InP/InGaAs have gained an opportunity to be reexamined for active antenna applications. Novel InP/InGaAs HPTs: InP/InGaAs HPTs have been studied up to about 2004 in Europe. In the group, we fostered to re-examine this component in collaboration with THALES and the Alcatel-Thales III-V lab while proposing to design a phototransistor in a conventional electrical InP technology. As layout only was modified, optical absorption layers are thus limited to the base InGaAs region. Somehow low efficiency of less than 1A/W is then obtained with however two main expected advantages: - the three port structure of the phototransistor will enable such a signal to lock a freerunning oscillating signal with enhanced phase noise capabilities, even with low responsivity; - the vertical stack nature of the component in the base-collector region, close to those of UTC-PD, will prevent from high optical injection slowing-down effects. The former may benefit to wireless PON networks, and the latter to the distribution of ultra-pure clock/oscillator signals. Optoelectronic load pull effect: Matching a phototransistor need to have in consideration that photo-generated carriers flow in directions of both the collector and the base. Such a consideration indicates that the overall gain of the HPT could be optimized with purely reactive base load impedance. Three-port theory helps to determine the phase of such a load though a numerical analysis. Nevertheless such a precise knowledge of the two paths cannot be achieved directly with existing standard measurement techniques. We therefore proposed in an indirect technique called optoelectronic load-pull in which the base load impedance is tuned over a wide range of frequency as closely as possible to the border of the Smith chart. Direct validation of the theory expectations has thereby been obtained and gains improvements as high as 20dB on SiGe HPTs and 10dB in InGaAs HPTs have been demonstrated. Spatial effects in the opto-microwave response of Phototransistors: It is also important to analyze how the position of an optical beam injection in the phototransistor will affect the dynamic response. Mapping of SiGe HPTs and InGaAs HPTs response were therefore conducted with the use of nano-controlled optical probe (focusing lensed fibers) scanning the optical window of the component. Low frequency gain and cutoff frequency across the whole detection area of the phototransistor were extracted. These characterizations leaded to better understanding of the impact of electrode positions in SiGe HPTs. Efforts are continued on that promising technique. Silicon Photonic for Microwave Photonics. Deep etched 1D photonic crystals are successfully developed in another team of the lab, conducted by Pr. T. Bourouina, with the purpose to drive the light into a collimated path across Bragg mirrors and Bragg resonant cavities. Transverse confinement could be a key advantage of that building bricks. The microwave photonic group did contribute therefore in a reinforcement of this latter team in designing and modeling original structures. This item should benefit more deeply in the following years. Integration within system applications and opto-electronic integrated circuits (OEIC). This action was strongly conducted in collaborative projects with the ESYCOM team, CNAM and ESIEE, and with Orange labs and partners of the ANR BILBAO project from 2005 to The group did contribute mainly to advanced simulations of noise and nonlinearities properties of the Radio-over-Fibre link to provide an optimized Optical infrastructure for wireless local home networks with Dr. AL. Billabert and Pr. C. Algani. Hybrid components on the shelf were successfully used to demonstrate the concept of optical infrastructure to transmit 3-10GHz UWB signals. This should therefore enable to extend UWB wireless radio cell from one room to the whole home network. Novel quantities were defined so as to afford a better understanding of components individually. Mainly equivalent power gain and noise figure were developed extended from the microwave to the microwave-domain. Publications: journal articles [11, 17, 23, 29], international conference articles [72, 73, 80], national conference articles [113, 114, 128, 129, 130, 140]. Other results: One grant from DGCIS : FUI «ORIGIN». Two industrial grants from VECTRAWAVE 2010 «ROHYLAB» and from THALES Air Systems «PHOSI»

18 Information, Communication and Localization environment for Travelers with Sensory Disabilities in Public Transports Lead: G. Baudoin and O. Venard. Permanent members: B. El Hassan Associated researchers M.-F. Dessaigne, G. Uzan, Y. Lemaitre, P. Orvain, G. Hendryckx Postdoctoral and PhD. Students, engineers: J. Sayah, S. Pretorius, D. Hnilica + many students + for a part of their work T. Chmayssani, A. Maali Despite the progress of information, localization and communication technologies (ICT), traveler information is still very difficult to access for people with sensory disabilities (visual or auditory) during their journeys in urban public transports and in cities Several aspects are to be taken into account for the design and the wide deployment of transport information systems accessible to sensory impaired persons: technical questions (information, communication, localization, energy), ergonomics, economics, legal and normative context. This research theme is a transversal subject supported by an ANR and a FEDER project: INFOMOVILLE (ANR PREDIT project) and WiKiWalk (FEDER project). We cooperate with specialists of ergonomics and different companies (LUMIPLAN? NOMADIC? GeoConcept, Natural Touch). Research at ESIEE is mainly focussed on technical aspects of localization, information and communications. The INFOMOVILLE project, in partnership with Lumiplan, ergonomos and inerec, aims to design a real time information, communication and localization environment for improving the mobility of travelers with visual or auditory disabilities in Public Transports. The system is based on user devices (smartphones) and fixed equipments installed at stops places or in connection links. These equipments are connected to a transport central server. The first experimentation of the system is done in Lyon in cooperation with SYTRAL (Transport authority). The Wikiwalk project, in partnership with Nomadic solution, GeoConcept and Natural Touch, aims to design a voice guidance system for pedestrians using only the voice channel of the phone to transmit GPS data to a central server. The central server uses a geographic information system to calculates a route and returns guidance instructions to the user. Our work is focused on the device connected to the user phone and on the GPS data transmission using the voice channel of the phone. We work on: - Localization techniques using WiFi, GPS or ultra wide band systems. - Modelization of transport Information for people with sensory impairments. - A new software framework for the design of vocal embedded applications on smartphones. - Wireless communications and networks for nomadic applications. Bus 53 arrival imminent Text to speech, Command keys, Screen, Vibrator Information Timetables, Routes, Maps, Guiding, Events WiFi connection Local information Maps, Guiding instructions Transport information Central server 3G GPS coordinates The infomoville system Publications: journal articles [28, 55], conference articles [63, 67, 78, 84, 85, 98, 104, 117, 131, 143, 112, 108, 109, 111, 133, 138, 154, 156, 157] patents [191, 192]. Other results:, 1 ANR project INFOMOVILLE, 1 FEDR project WiKiWalk

19 Wireless transceivers for mobile terminals: architectures, analysis and signal processing Lead: G. Baudoin. Permanent members: M. Villegas, M. Suarez (since November 2009). Associated researchers: A. Diet, R. Marsalek, D. Belot, J. Schwoerer Postdoctoral and PhD. students: R. Abdaoui, L. Andia, A. Bahi, S. Mebaley, M. Suarez ( ), V. Valenta, Multicarrier OFDM and multi-antenna MIMO techniques have emerged as enabling technologies for 4G communication systems. They have also generated new challenges in term of transmitter architectures with good efficiency and linearity, and in term of integration of transceiver and antennas in mobile user terminals. Smart everyday objects incorporating sensors, wireless communication and positioning devices, are supporting many new applications such as environment monitoring, machine-to-machine communications and body area networks. They require low cost, low power consumption smart transceivers. Our work focuses on wireless transceivers for multi-radio and future cognitive radio terminals, millimeter wave mobile communications with low power consumption and ultra-wide band transceivers (UWB). We address the problem with two complementary perspectives: RF technology and digital technology using signal processing. Association of digital technologies and signal processing is a very fruitful approach for baseband and RF parts of wireless transceivers in terms of integrability, reconfigurability, adaptativity and smart processing. Our main recent contributions are the following ones: High efficiency signal generation architectures with good linearity and flexibility for multi-frequency, multi-standard mobile transmitters: - Design of new architecture efficient and robust to power amplifier non-linearities based on a combination of EER (envelope elimination and restoration) and LINC (Linear amplification with non linear components). Theoretical analysis of components impairments of the performances of these architectures. - Use of switched power amplifiers in RF transmitters: Analysis of the influence of envelope coding on the performance of a class E power amplifier. Design of multi-band class E power amplifier. - Specifications of a polar sigma-delta architecture associated to a high efficiency switched mode power amplifier for multistandard mobile transmitters including Wimax or LTE standards. - Proposal of a cartesian transmitter architecture using baseband sigma-delta modulators and switched power amplifier. Analysis of the constraints and influence of sampling frequency. - Analysis of front end filtering requirements on a mobile cognitive multi-radio transmitter Frequency synthesis and PLL (Phase Locked loop) using digital signal processing for multistandard transmitters and future cognitive transmitters: - Exact calculation of phase noise of RF Digitally Controlled Oscillator with frequency resolution improved by dithering. - Study of frequency synthesis in a multistandard transmitter architecture: o design of a PLL based frequency synthesizer using switched loop bandwidth for mobile transmitters: optimization of the trade-off between bandwidth and lock-up time for switching of the loop filter; phase noise analysis; dual Mode Hybrid PLL Based Frequency Synthesizer for Cognitive Multi-Radio Applications. Towards cognitive radio networks: - Spectrum utilization measurements and Analysis of spectrum utilization in some urban and suburban environments. Evaluation of potentials for cognitive radio. Physical layer and transceiver architecture design for ultrawideband (UWB) communications - Millimetre wave mobile transceivers: specification and performance analysis of a Multi band, on-off keying, Impulse radio UWB transceiver for low cost, low power consumption mobile millimetre wave transceivers./ - Design of a physical layer for UWB impulse radio body area network. psd of DCO output signal 0-50 Theoretical psd psd estimated on simulated signal Cartesian Sigma Delta transmitter architecture frequency in Hz x 10 9 Power Spectral density (psd) of DCO output signal: theoretical and estimated on simulated signal Publications: book chapters [2, 3], journal articles [7, 15], conference articles [59, 60, 64, 65, 66, 68, 77, 87, 94, 99, 100, 108, 109, 111, 112, 115, 133, 136, 138, 154, 156, 157]. Other results: 3 Best paper awards, Chair of the EuWiT 2010 conference

20 Transceiver architectures and circuits for radiocommunication systems Lead: C.Berland, in association with J.F. Bercher Algorithm for polar and LINC transmitter architecture With J.F Bercher, we focused our work on on the specific point of the synchronization of signal in multipaths transmitter such as LINC and Polar architecture. For the polar architecture, the transceiver introduces two different delays on envelope and phase paths. This impacts directly the quality of the emitted signal, in terms of output spectrum and EVM (Error Vector Magnitude). In the case of LINC transmitter, the synchronisation between the original signal and the transmitted one has to be realised for the implementation of correction algorithms. We worked on a LMS (Least Mean Square) algorithm that allows through an iterative formulation to find the minimum of an error function. We defined two differents procedures, according to the architecture, to compensate for transmitter impairments. Generation of high frequency reference signals This work is realised in collaboration with NXP semiconductors has the form of a PHD funding (CIFRE) that has started in The subject, also in relation with transceiver architecture, is focused on the problematic of high frequency reference signals: generation and impact on architecture. We worked on the realization of a reference oscillator at 2 GHz based on the use of a Bulk Acoustic Wave solidly mounted resonator. Once this oscillator realized, we worked on the principle of the readjustment of the output frequency and to acheive this goal we applied Kalman filter techniques. Lead : C.Berland Low current consumption receivers This work is realised in collaboration with NXP semiconductors on the problematic of low current consumption receivers for automotive applications. The objective is the reduction by a factor 2 of current consumption compared to actual solutions (same functionality). We are investigating sub sampling architecture. Wideband VCO This work is realised in collaboration with NXP semiconductors on the problematic of the realization o f wideband VCO for radiocommunication systems. Lead C ;Berland, in association with O. Venard Transmitter architecture for cellular Base Station In the context of a European project, CATRENE PANAMA started in 2009, we are working on transmitter for multimode SDR base station. The focus of the work is the increase of the efficiency of wideband and/or tunable transmitter. We are investigating new transmitter solutions derived from LINC and Doherty principles. The work includes both signal processing and radio architecture, the optimization of the solution is realized considering jointly these aspects. In this project, we also setting up a validation platform based on a SDR development board and evaluation component kits available of the shelf. We intend to realize a demonstrator of the transmitter Sizing of 2G/3G receivers for hand portable with active filters This work is realised in the context of a French research ministry contract: ANR/RNRT in 2006, SRAMM. The objective of the project is to integrate actual external passive antenna filters in receiver ICs for applications such as GSM, 3G and digital broadcast systems. The project SRAMM (Systèmes de Réception Adaptatifs Multimodes Multistandards) is made in collaboration with NXP semiconductor, Thomson R&D France (Rennes), the research laboratory XLIM (Limoges), the research laboratory IREENA (Nantes) and AMCAD Engineering (small Company in Limoges). Our role in this project is the specification of filter templates for the studied applications. For this, we are developing a simulation environment for the sizing of receiver in the context of multimode system and duplex systems. Publications: journal articles [30, 31,41], conference articles [76, 86, 95, 96, 148, 149].

FPGAs in Next Generation Wireless Networks

FPGAs in Next Generation Wireless Networks FPGAs in Next Generation Wireless Networks March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 FPGAs in Next Generation

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Leti Introduction and Overview

Leti Introduction and Overview Leti Introduction and Overview Leti Day in Tokyo, October 3rd 2012 Laurent Malier 2012 Leti 2012 1 CEA The CEA at a glance Commissariat à l Énergie Atomique et aux Énergies Alternatives is one of the largest

More information

Micro Power Generators. Sung Park Kelvin Yuk ECS 203

Micro Power Generators. Sung Park Kelvin Yuk ECS 203 Micro Power Generators Sung Park Kelvin Yuk ECS 203 Overview Why Micro Power Generators are becoming important Types of Micro Power Generators Power Generators Reviewed Ambient Vibrational energy Radiant

More information

CONFERENCE SESSIONS MATRIX - MONDAY

CONFERENCE SESSIONS MATRIX - MONDAY CONFERENCE SESSIONS MATRIX - MONDAY 7 05 GaN Devices 11 Graphene & III-V Devices 8 04 OPENING SESSION 06 Millimetre-Wave Low Noise Amplifiers 12 Millimetre-Wave Transceiver 9 07 Millimetre-Wave and THz

More information

GaAs Switch ICs for Cellular Phone Antenna Impedance Matching

GaAs Switch ICs for Cellular Phone Antenna Impedance Matching GaAs Switch ICs for Cellular Phone Antenna Impedance Matching IWATA Naotaka, FUJITA Masanori Abstract Recently cellular phones have been advancing toward multi-band and multi-mode phones and many of them

More information

Mechanical Actuators. Mechanical MEMS. Electrostatic Actuators. Electrostatic Actuation Cantilever Actuators

Mechanical Actuators. Mechanical MEMS. Electrostatic Actuators. Electrostatic Actuation Cantilever Actuators Mechanical Actuators Mechanical MEMS Dr. Bruce K. Gale Fundamentals of Micromachining Actuation mechanisms: electrostatic = electrostatic attraction of charged plates thermal = expansion of solids or fluids

More information

Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch)

Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch) Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch) Summary POET s implementation of monolithic opto- electronic devices enables the

More information

LTE *2. For this reason, we have. been studying a single RF unit that can

LTE *2. For this reason, we have. been studying a single RF unit that can A PA for Mobile Terminals Supporting 9 Bands from 7 MHz to 2. GHz Multi-band PA Variable MN A PA for Mobile Terminals Supporting 9 Bands from 7 MHz to 2. GHz Commercially available mobile terminals currently

More information

MEMS mirror for low cost laser scanners. Ulrich Hofmann

MEMS mirror for low cost laser scanners. Ulrich Hofmann MEMS mirror for low cost laser scanners Ulrich Hofmann Outline Introduction Optical concept of the LIDAR laser scanner MEMS mirror requirements MEMS mirror concept, simulation and design fabrication process

More information

Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie

Recent developments in high bandwidth optical interconnects. Brian Corbett. www.tyndall.ie Recent developments in high bandwidth optical interconnects Brian Corbett Outline Introduction to photonics for interconnections Polymeric waveguides and the Firefly project Silicon on insulator (SOI)

More information

Eurotraining survey on Microsytems training requirements

Eurotraining survey on Microsytems training requirements Eurotraining survey on Microsytems training requirements Hervé Fanet CEA LETI Annette Locher FSRM Chantal Tardif CEA INSTN Abstract One objective of the Eurotraining MST project is to identify training

More information

L innovazione tecnologica dell industria italiana verso la visione europea del prossimo futuro

L innovazione tecnologica dell industria italiana verso la visione europea del prossimo futuro L innovazione tecnologica dell industria italiana verso la visione europea del prossimo futuro Mercoledì 2 Aprile 2014 Antonio D Errico, Francesco Testa, Roberto Sabella, Ericsson Silicon Photonics Opportunities

More information

EMC / EMI issues for DSM: new challenges

EMC / EMI issues for DSM: new challenges EMC / EMI issues for DSM: new challenges A. Boyer, S. Ben Dhia, A. C. Ndoye INSA Toulouse Université de Toulouse / LATTIS, France www.ic-emc.org Long Term Reliability in DSM, 3rd October, 2008 www.ic-emc.org

More information

STUDENT PROFILES 2014-15 M.TECH IN RADIO FREQUENCY DESIGN AND TECHNOLOGY

STUDENT PROFILES 2014-15 M.TECH IN RADIO FREQUENCY DESIGN AND TECHNOLOGY STUDENT PROFILES 2014-15 M.TECH IN RADIO FREQUENCY DESIGN AND TECHNOLOGY CENTRE FOR APPLIED RESEARCH IN ELECTRONICS INDIAN INSTITUTE OF TECHNOLOGY, DELHI http://care.iitd.ac.in Page 2 of 8 Dhritiman Kashyap

More information

Multipath fading in wireless sensor mote

Multipath fading in wireless sensor mote Multipath fading in wireless sensor mote Vaishali M.Tech (VLSI), IMSEC, Ghaziabad/MTU, Noida Abstract: In this paper we study about the new technology as to transfer the data with the help of smart device,

More information

Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor

Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor U. Hofmann, Fraunhofer ISIT Itzehoe M. Aikio, VTT Finland Abstract Low cost laser scanners for environment

More information

RF energy harvester based on MEMS

RF energy harvester based on MEMS 9/9/010 NiPS Summer School 010 Summer School: Energy Harvesting at micro and nanoscale, August 1 6, 010 NiPSWorkshop: Noiseindynamicalsystemsat themicro and nanoscale, August6 8, 010 La Tenuta dei Ciclamini,

More information

electro-mechanical deformable mirrors for Q-switched fiber laser systems

electro-mechanical deformable mirrors for Q-switched fiber laser systems Micro-electro electro-mechanical deformable mirrors for Q-switched Q fiber laser systems Aurelian Crunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. Couderc and A. Barthélemy Research Institute in Optical

More information

AMS/RF-CMOS circuit design for wireless transceivers

AMS/RF-CMOS circuit design for wireless transceivers AMS/RF-CMOS circuit design for wireless transceivers Mobile phones have evolved from simple devices allowing phone calls over a wireless link to all-in-one devices. Besides keeping us always best connected,

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Energy Harvesting Powered Wireless Sensor Node and Asset Tracking Solutions in Random Vibration Environments

Energy Harvesting Powered Wireless Sensor Node and Asset Tracking Solutions in Random Vibration Environments White Paper Energy Harvesting Powered Wireless Sensor Node and Asset Tracking Solutions in Random Vibration Environments by Anurag Kasyap, Ph.D. April 2009 Copyright 2009 AdaptivEnergy LLC. All rights

More information

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications

Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications Advancements in High Frequency, High Resolution Acoustic Micro Imaging for Thin Silicon Applications Janet E. Semmens Sonoscan, Inc. 2149 E. Pratt Boulevard Elk Grove Village, IL 60007 USA Phone: (847)

More information

Micro-Power Generation

Micro-Power Generation Micro-Power Generation Elizabeth K. Reilly February 21, 2007 TAC-meeting 1 Energy Scavenging for Wireless Sensors Enabling Wireless Sensor Networks: Ambient energy source Piezoelectric transducer technology

More information

Realization of a UV fisheye hyperspectral camera

Realization of a UV fisheye hyperspectral camera Realization of a UV fisheye hyperspectral camera Valentina Caricato, Andrea Egidi, Marco Pisani and Massimo Zucco, INRIM Outline Purpose of the instrument Required specs Hyperspectral technique Optical

More information

Motion sensors for hostile environmental applications or reliability under Harsh Environment

Motion sensors for hostile environmental applications or reliability under Harsh Environment Motion sensors for hostile environmental applications or reliability under Harsh Environment MNT Reliability Workshop May 2008 Colibrys, Jean-Mi Stauffer Colibrys in short Colibrys is a world-leading supplier

More information

A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS

A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS ICONIC 2007 St. Louis, MO, USA June 27-29, 2007 A NEAR FIELD INJECTION MODEL FOR SUSCEPTIBILITY PREDICTION IN INTEGRATED CIRCUITS Ali Alaeldine 12, Alexandre Boyer 3, Richard Perdriau 1, Sonia Ben Dhia

More information

Silicon-On-Glass MEMS. Design. Handbook

Silicon-On-Glass MEMS. Design. Handbook Silicon-On-Glass MEMS Design Handbook A Process Module for a Multi-User Service Program A Michigan Nanofabrication Facility process at the University of Michigan March 2007 TABLE OF CONTENTS Chapter 1...

More information

How PLL Performances Affect Wireless Systems

How PLL Performances Affect Wireless Systems May 2010 Issue: Tutorial Phase Locked Loop Systems Design for Wireless Infrastructure Applications Use of linear models of phase noise analysis in a closed loop to predict the baseline performance of various

More information

DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS

DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS DESIGN OF MIXED SIGNAL CIRCUITS AND SYSTEMS FOR WIRELESS APPLICATIONS Vladimir LANTSOV Computer Engineering Department, Vladimir State University, Gorky Street, 87, 600026, VLADIMIR, Russia, phone: +7

More information

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight

Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency

More information

Volumes. Goal: Drive optical to high volumes and low costs

Volumes. Goal: Drive optical to high volumes and low costs First Electrically Pumped Hybrid Silicon Laser Sept 18 th 2006 The information in this presentation is under embargo until 9/18/06 10:00 AM PST 1 Agenda Dr. Mario Paniccia Director, Photonics Technology

More information

Broadband Push-Pull Power Amplifier Design at Microwave Frequencies

Broadband Push-Pull Power Amplifier Design at Microwave Frequencies Broadband Push-Pull Power Amplifier Design at Microwave Frequencies Robert Smith and Prof. Steve Cripps Centre for High Frequency Engineering, Cardiff University smithrm3@cardiff.ac.uk A broadband, high

More information

Compact Multiband MIMO Antenna for Future Wireless Applications

Compact Multiband MIMO Antenna for Future Wireless Applications Compact Multiband MIMO Antenna for Future Wireless Applications Sarah Hassan Khalaf 1, Yousif Mohsin Hasan 2 1 Ministry of Education, Vocational Education, Baghdad, Iraq 2 University of Al-Qadisiyah, College

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

BIOMEDICAL ULTRASOUND

BIOMEDICAL ULTRASOUND BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic

More information

LTE release 13. ericsson White paper Uen 284 23-8267 April 2015

LTE release 13. ericsson White paper Uen 284 23-8267 April 2015 ericsson White paper Uen 284 23-8267 April 2015 LTE release 13 EXPANDING THE NETWORKED SOCIETY LTE evolution is a key component in the realization of the Networked Society, where everyone and everything

More information

Small Terminal Antennas for Mobile Applications: Design Considerations and Specific Examples.

Small Terminal Antennas for Mobile Applications: Design Considerations and Specific Examples. Small Terminal Antennas for Mobile Applications: Design Considerations and Specific Examples. # Juan R.Mosig 1, Anja K.Skrivervik 1, Marta Martinez-Vazquez 2 1 EPFL, CH-1015, Lausanne, Switzerland, juan.mosig@epfl.ch

More information

Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities

Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities Session S14: Safeguards Needs at Geological Repositories and Encapsulation Facilities Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities Richard E. Twogood Dirac

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

High-Frequency Integrated Circuits

High-Frequency Integrated Circuits High-Frequency Integrated Circuits SORIN VOINIGESCU University of Toronto CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface, page xiii Introduction l 1.1 High-frequency circuits in wireless, fiber-optic, and

More information

October 1, 2015. (Press release) Nippon Telegraph and Telephone Corporation

October 1, 2015. (Press release) Nippon Telegraph and Telephone Corporation (Press release) October 1, 2015 Nippon Telegraph and Telephone Corporation High-density simultaneous compensation of distortion in wavelength-multiplexed signals using a time-reversal operation: World

More information

Propsim enabled Mobile Ad-hoc Network Testing

Propsim enabled Mobile Ad-hoc Network Testing www.anite.com Propsim enabled Mobile Ad-hoc Network Testing Anite is now part of Keysight Technologies Lab-based, end-to-end performance testing of systems using Propsim MANET channel emulation A Mobile

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

Depth and Excluded Courses

Depth and Excluded Courses Depth and Excluded Courses Depth Courses for Communication, Control, and Signal Processing EECE 5576 Wireless Communication Systems 4 SH EECE 5580 Classical Control Systems 4 SH EECE 5610 Digital Control

More information

Single Protein Nanobiosensor. Grid Array (SPOT-NOSED)

Single Protein Nanobiosensor. Grid Array (SPOT-NOSED) Single Protein Nanobiosensor Grid Array (SPOT-NOSED) Single Protein Nanobiosensor! Abstract Recent advances in bio- and nano-technology have opened the possibility to develop bio-electronic sensors based

More information

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM. Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General

More information

Integration of a passive micro-mechanical infrared sensor package with a commercial smartphone camera system

Integration of a passive micro-mechanical infrared sensor package with a commercial smartphone camera system 1 Integration of a passive micro-mechanical infrared sensor package with a commercial smartphone camera system Nathan Eigenfeld Abstract This report presents an integration plan for a passive micro-mechanical

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

MEMS devices application based testing

MEMS devices application based testing MEMS devices application based testing CEEES Seminar 18-10-2012 RDM Campus Rotterdam NL by Kees Revenberg MASER Engineering Enschede NL Outline Introduction MEMS classification Sensing & Actuating Manufacturing

More information

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator Kenji MAWATARI, Koich SAMESHIMA, Mitsuyoshi MIYAI, Shinya MATSUDA Abstract We developed a new inkjet head by applying MEMS

More information

Article from Micrel. A new approach to the challenge of powering cellular M2M modems By Anthony Pele Senior Field Applications Engineer, Micrel

Article from Micrel. A new approach to the challenge of powering cellular M2M modems By Anthony Pele Senior Field Applications Engineer, Micrel Article from Micrel A new approach to the challenge of powering cellular M2M modems By Anthony Pele Senior Field Applications Engineer, Micrel www.micrel.com Industrial applications for machine-to-machine

More information

Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2

Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2 Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2 1 PG Student (M. Tech), Dept. of ECE, Chirala Engineering College, Chirala., A.P, India. 2 Assistant Professor, Dept.

More information

Ridurre i costi energetici in azienda: dagli scenari ai meccanismi di incentivazione. Workshop

Ridurre i costi energetici in azienda: dagli scenari ai meccanismi di incentivazione. Workshop Logo azienda/università BC1 Le tecnologie Elettroniche e Informatiche al servizio della gestione energetica Enrico Sangiorgi Workshop Diapositiva 1 BC1 inserire i propri riferimenti Nome e Cognome relatore

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

Curriculum and Concept Module Development in RF Engineering

Curriculum and Concept Module Development in RF Engineering Introduction Curriculum and Concept Module Development in RF Engineering The increasing number of applications students see that require wireless and other tetherless network solutions has resulted in

More information

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite

More information

SAW and MWC filters key components for mobile terminals and base-stations

SAW and MWC filters key components for mobile terminals and base-stations SAW and MWC filters key components for mobile terminals and base-stations Dr. Quincy Chen and Mr. C. K. Lim Epcos Pte Ltd., Singapore Mr. Juergen Machui,Dr. Gerd Riha Siemens Matsushita Components (S+M),

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

Simulation of Mobile Phone Antenna Performance

Simulation of Mobile Phone Antenna Performance Tough technical requirements are being put on handsets. Mobile phones have to deal with an ever increasing number of services, while at the same time the cost of the systems is being reduced. RD in the

More information

Glossary of RTLS/RFID Terms

Glossary of RTLS/RFID Terms Glossary of RTLS/RFID Terms A Active tag: An RFID tag that has a transmitter to send back information, rather than reflecting back a signal from the reader, as a passive tag does. Most active tags use

More information

Graduate Student Presentations

Graduate Student Presentations Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly

More information

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY (Study Paper by FLA Division) Ram Krishna Dy. Director General (FLA) TEC New Delhi, DoT, Govt. of India. E-mail: ddgfla.tec@gov.in Mrs.

More information

We know how to write nanometer. extreme lithography. extreme lithography. xlith Gesellschaft für Hochauflösende Lithografie Support & Consulting mbh

We know how to write nanometer. extreme lithography. extreme lithography. xlith Gesellschaft für Hochauflösende Lithografie Support & Consulting mbh extreme lithography extreme lithography xlith Gesellschaft für Hochauflösende Lithografie Support & Consulting mbh Wilhelm-Runge-Str. 11 89081 Ulm Germany phone +49 731 505 59 00 fax +49 731 505 59 05

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

NATIONAL SUN YAT-SEN UNIVERSITY

NATIONAL SUN YAT-SEN UNIVERSITY NATIONAL SUN YAT-SEN UNIVERSITY Department of Electrical Engineering (Master s Degree, Doctoral Program Course, International Master's Program in Electric Power Engineering) Course Structure Course Structures

More information

MMIC Design and Technology. Fabrication of MMIC

MMIC Design and Technology. Fabrication of MMIC MMIC Design and Technology Fabrication of MMIC Instructor Dr. Ali Medi Substrate Process Choice Mobility & Peak Velocity: Frequency Response Band-Gap Energy: Breakdown Voltage (Power-Handling) Resistivity:

More information

Piezoelectric Simulations

Piezoelectric Simulations Piezoelectric Simulations Outline Overview Examples Relevant Products Useful Features Overview Industries Using Piezoelectric Devices Aerospace Oil & Gas Automotive Piezoelectric Devices MEMS Acoustics

More information

Photonic Networks for Data Centres and High Performance Computing

Photonic Networks for Data Centres and High Performance Computing Photonic Networks for Data Centres and High Performance Computing Philip Watts Department of Electronic Engineering, UCL Yury Audzevich, Nick Barrow-Williams, Robert Mullins, Simon Moore, Andrew Moore

More information

Applications and Benefits of Multi-Walled Carbon Nanotubes (MWCNT)

Applications and Benefits of Multi-Walled Carbon Nanotubes (MWCNT) I Applications and Benefits of Multi-Walled Carbon Nanotubes (MWCNT) Table of Content 1 Introduction...1 2 Improved Properties...1 3 Potential Applications...1 3.1 Current / short-term applications...3

More information

Application Note AN1

Application Note AN1 TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 799A USA Patent App. No. 9/78,7 World Patents Pending SENSOR OVERVIEW Application Note AN The Dynament

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Contactless pin-flange adapter for high-frequency measurements This document has been downloaded from Chalmers Publication Library (CPL). It is the author s version of a work

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Keywords: Slot antenna, ultra wideband (UWB), Microstrip line feeding, HFSS Simulation software.

Keywords: Slot antenna, ultra wideband (UWB), Microstrip line feeding, HFSS Simulation software. IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design of Compact UWB Printed Slot Antenna for GPS, GSM &Bluetooth Applications S.P.Shinde *1, M. M. Jadhav 2 *1, 2 Electronics

More information

Delivering 4x4 MIMO for LTE Mobile Devices. March 2014. SkyCross Dual imat 4x4 MIMO Technology for LTE. Introduction

Delivering 4x4 MIMO for LTE Mobile Devices. March 2014. SkyCross Dual imat 4x4 MIMO Technology for LTE. Introduction Delivering 4x4 MIMO for LTE Mobile Devices SkyCross Dual imat 4x4 MIMO Technology for LTE March 2014 Introduction With the rise of low-cost smartphones on the horizon, creating differentiation by leveraging

More information

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

More information

Evaluating Cell Phone and Personal Communications Equipment and their EMC Effects on Automotive Audio and In-Cabin Modules

Evaluating Cell Phone and Personal Communications Equipment and their EMC Effects on Automotive Audio and In-Cabin Modules Evaluating Cell Phone and Personal Communications Equipment and their EMC Effects on Automotive Audio and In-Cabin Modules Craig W. Fanning Elite Electronic Engineering, Inc. 1516 Centre Circle Downers

More information

Course code Course name ECTS Autumn Spring. ELEC-E8101 Digital and Optimal Control 5 X. ELEC-E8102 Distributed and Intelligent Automation Systems 5 X

Course code Course name ECTS Autumn Spring. ELEC-E8101 Digital and Optimal Control 5 X. ELEC-E8102 Distributed and Intelligent Automation Systems 5 X COURSES LECTURED IN ENGLISH 2015-2016, AALTO UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING This list is subject to change. Please check the WebOodi portal in August for up-to-date information. Course code

More information

Design of an U-slot Folded Shorted Patch Antenna for RF Energy Harvesting

Design of an U-slot Folded Shorted Patch Antenna for RF Energy Harvesting Design of an U-slot Folded Shorted Patch Antenna for RF Energy Harvesting Diponkar Kundu, Ahmed Wasif Reza, and Harikrishnan Ramiah Abstract Novel optimized U-slot Folded Shorted Patch Antenna (FSPA) is

More information

Research in Nanotechnologies and Sensing

Research in Nanotechnologies and Sensing Eemeli työpaja nro 12, Micronova Research in Nanotechnologies and Sensing Tapani Ryhänen Nokia Research Center, Sensor and Material Technologies Laboratory (Cambridge, Otaniemi, Skolkovo) November 12,

More information

RF Switches Guide Signals In Smart Phones

RF Switches Guide Signals In Smart Phones RF Switches Guide Signals In Smart Phones The myriad of different bands, modes, radios, and functionality found in a modern smart phone calls for the increased use of simple, high-performance RF switches

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

Case Study Competition 2013. Be an engineer of the future! Innovating cars using the latest instrumentation!

Case Study Competition 2013. Be an engineer of the future! Innovating cars using the latest instrumentation! Case Study Competition 2013 Be an engineer of the future! Innovating cars using the latest instrumentation! The scenario You are engineers working on a project team that is tasked with the development

More information

Non-Contact Vibration Measurement of Micro-Structures

Non-Contact Vibration Measurement of Micro-Structures Non-Contact Vibration Measurement of Micro-Structures Using Laser Doppler Vibrometry (LDV) and Planar Motion Analysis (PMA) to examine and assess the vibration characteristics of micro- and macro-structures.

More information

Maximizing Range and Battery Life in Low-Cost Wireless Networks

Maximizing Range and Battery Life in Low-Cost Wireless Networks Maximizing Range and Battery Life in Low-Cost Wireless Networks The proliferation of cost-effective wireless technology has led to the rise of entirely new types of networks across a wide range of applications

More information

INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING

INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING Helmut Jorke, Markus Fritz INFITEC GmbH, Lise-Meitner-Straße 9, 89081 Ulm info@infitec.net Phone +49 731 550299 56 Fax _

More information

mm-wave System-On-Chip & System-in-Package Design for 122 GHz Radar Sensors

mm-wave System-On-Chip & System-in-Package Design for 122 GHz Radar Sensors mm-wave System-On-Chip & System-in-Package Design for 122 GHz Radar Sensors 12th International Symposium on RF MEMS and RF Microsystems Athens, Greece J. C. Scheytt 1, Y. Sun 1, S. Beer 2, T. Zwick 2,

More information

IBS - Ion Beam Services

IBS - Ion Beam Services IBS - Ion Beam Services Profile Technologies Devices & sensor fabricat ion Participation to R&D programs Researched partnership Présentation activité composant 1 Profile : Products and services Product

More information

Micro enano energy harvesting

Micro enano energy harvesting Micro enano energy harvesting Helios Vocca NiPS Lab, Physics Dept., University of Perugia, IT & Wisepower srl helios.vocca@unipg.it Who are we? www.wisepower.it In Arcadia, California The NiPS experience

More information

Thermal Antenna for Passive THz Security Screening System and Current- Mode Active-Feedback Readout Circuit for Thermal Sensor

Thermal Antenna for Passive THz Security Screening System and Current- Mode Active-Feedback Readout Circuit for Thermal Sensor Department of Electrical Engineering Thermal Antenna for Passive THz Security Screening System and Current- Mode Active-Feedback Readout Circuit for Thermal Sensor 1. Background Alon Rotman and Roy Nicolet

More information

Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking

Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking Reducing EMI and Improving Signal Integrity Using Spread Spectrum Clocking Electromagnetic interference (EMI), once the exclusive concern of equipment designers working with high-speed signals, is no longer

More information

The Department of Electrical and Computer Engineering (ECE) offers the following graduate degree programs:

The Department of Electrical and Computer Engineering (ECE) offers the following graduate degree programs: Note that these pages are extracted from the full Graduate Catalog, please refer to it for complete details. College of 1 ELECTRICAL AND COMPUTER ENGINEERING www.ece.neu.edu SHEILA S. HEMAMI, PHD Professor

More information

Technology Developments Towars Silicon Photonics Integration

Technology Developments Towars Silicon Photonics Integration Technology Developments Towars Silicon Photonics Integration Marco Romagnoli Advanced Technologies for Integrated Photonics, CNIT Venezia - November 23 th, 2012 Medium short reach interconnection Example:

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Evolving Bar Codes. Y398 Internship. William Holmes

Evolving Bar Codes. Y398 Internship. William Holmes Evolving Bar Codes Y398 Internship By William Holmes Table of contents Introduction: What is RFID? Types of Tags: Advantages of Tags: RFID applications Conclusion: Introduction: Bar codes have evolved

More information

State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop

State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop Photos placed in horizontal position with even amount of white space between photos and header State-of-Art (SoA) System-on-Chip (SoC) Design HPC SoC Workshop Michael Holmes Manager, Mixed Signal ASIC/SoC

More information

Analysis of Immunity by RF Wireless Communication Signals

Analysis of Immunity by RF Wireless Communication Signals 64 PIERS Proceedings, Guangzhou, China, August 25 28, 2014 Analysis of Immunity by RF Wireless Communication Signals Hongsik Keum 1, Jungyu Yang 2, and Heung-Gyoon Ryu 3 1 EletroMagneticwave Technology

More information