Duration Analysis. Econometric Analysis. Dr. Keshab Bhattarai. April 4, Hull Univ. Business School

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Duration Analysis. Econometric Analysis. Dr. Keshab Bhattarai. April 4, 2011. Hull Univ. Business School"

Transcription

1 Duration Analysis Econometric Analysis Dr. Keshab Bhattarai Hull Univ. Business School April 4, 2011 Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

2 What is Duration Analysis? There are several economic questions in which the investigator is interested to know how long a certain thing will last given that it has survived/existed for so long time. Duration of these events is a random variable that depends on chances and duration analysis aims to analyse what factors determine the length of duration of occurrence for period up to T period (t 6 T ) or survival after period T (t > T )or what is probability of transition or the hazard rate between T and T + period. Modelling duration has been used to determine the duration or probability of termination of strikes, unemployment, marriage, disaster spells, heart attacks or many other ill-spells, likelihood of bankruptcy of a rm, technological breakthrough, probability of maintaining championship titles in sports. Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

3 Example of Duration Analysis Main question is to study that if an event existed so far how long will it last or what is the rate of survival next period? For instance manager of a company would be interested to know how long will a certain machine last given that it has been running so far? A life insurance company would be interested in probability of death of an individual with certain medical record or physical characteristic in the next T + years given that the person has survived up to T years. A union leader or the management negotiator will be interested about the probability of withdrawal of a strike given that the strike has continued up to T periods. Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

4 Duration Density The starting point of duration analysis is cumulative density function for duration which gives the distribution of duration variable starting from an initial state 0 up to period t as following: Pr (t 6 T ) = F (t) = More interesting is the survival rate which is: Z t 0 f (t) (1) S (t) = 1 F (t) = Pr (t > T ) (2) Probability of transition from one state to another (from unemployment of to employment, life to death, working condition to break down) is given by a hazard rate or probability of termination. Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

5 Survival and Duration 1.2 Survival Duration Estimated Survival Function Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

6 Hazard Rate Hazard rate F (t + ) F (t) λ (t) = lim!0 S (t) = f (t) S (t) (3) f (t) = S (t).λ (t) (4) Hazard function is linked to the survival function as log [1 λ (t) = F (t)] = F (t) 1 F (t) = f (t) S (t) It is possible to derive the duration function by integrating the survival function (5) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

7 Duration and Survival Functions It is possible to derive the duration function by integrating the hazard function Z t 0 λ (t) = log [1 F (s)] + log [1 F (0)] = log [1 F (s)] (6) F (s) = 1 Z t exp λ (t) 0 Therefore modelling hazard function is the main element in the duration models. Proportional hazard model: λ (t, x i ) = λ 0 (t) exp x 0 i, β (8) (7) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

8 Main Points in the Duration Analysis Important element in this is modelling the duration dependence, that gives the likelihood of how much hazard rate depends on the duration variable. There is positive duration dependence if the longer the time spent in a given state, the higher the probability of leaving it soon. For instance, longer a light bulb works the higher the probability that it fails next period. Negative duration dependence implies longer the time spent in a given state, the lower the probability of leaving it soon. For instance, the longer the job search lasts, the less chance an unemployed person has nding a job. Absence of duration dependence is observed if the duration does not impact on the hazard rate, but this case is less appealing than the positive or negative duration dependence. Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

9 Main Points in Duration Analysis Duration dependence λ(t) > 0 indicates positive duration dependence and λ(t) < 0 indicates negative duration dependence. Whereas λ(t) = 0 indicates no duration dependence. There are a number of ways of modelling the hazard functions; 1 exponential models are more popular in the literature (See Wooldridge (2002: chapter 20); Green (2008), Chap 25).see Dixon-Bihan (2011) paper in Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

10 Main Points in Duration Analysis Duration dependence λ(t) > 0 indicates positive duration dependence and λ(t) < 0 indicates negative duration dependence. Whereas λ(t) = 0 indicates no duration dependence. There are a number of ways of modelling the hazard functions; 1 exponential 2 Weibull models are more popular in the literature (See Wooldridge (2002: chapter 20); Green (2008), Chap 25).see Dixon-Bihan (2011) paper in Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

11 Main Points in Duration Analysis Duration dependence λ(t) > 0 indicates positive duration dependence and λ(t) < 0 indicates negative duration dependence. Whereas λ(t) = 0 indicates no duration dependence. There are a number of ways of modelling the hazard functions; 1 exponential 2 Weibull 3 log-normal models are more popular in the literature (See Wooldridge (2002: chapter 20); Green (2008), Chap 25).see Dixon-Bihan (2011) paper in Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

12 Main Points in Duration Analysis Duration dependence λ(t) > 0 indicates positive duration dependence and λ(t) < 0 indicates negative duration dependence. Whereas λ(t) = 0 indicates no duration dependence. There are a number of ways of modelling the hazard functions; 1 exponential 2 Weibull 3 log-normal 4 logistic models are more popular in the literature (See Wooldridge (2002: chapter 20); Green (2008), Chap 25).see Dixon-Bihan (2011) paper in Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

13 Main Points in Duration Analysis Duration dependence λ(t) > 0 indicates positive duration dependence and λ(t) < 0 indicates negative duration dependence. Whereas λ(t) = 0 indicates no duration dependence. There are a number of ways of modelling the hazard functions; 1 exponential 2 Weibull 3 log-normal 4 logistic 5 GAMMA models are more popular in the literature (See Wooldridge (2002: chapter 20); Green (2008), Chap 25).see Dixon-Bihan (2011) paper in Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

14 Hazard Functions Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

15 Exponential hazard model Here T has exponential distribution. 1 F (t) = 1 exp ( λ.t). This distribution does not have memory λ (t) = λ, the hazard rate does not depend on duration, it is constant λ (t) = λ. f (t) = λ exp ( λ.t) for (t > 0) λ (t) = log [1 F (t)] = log S (t) (9) ln S (t) = k λ (t) = k λ.t (10) S (t) = K exp ( λt) (11) Estimation of λ is simple; expected duration E (t) = 1 λ and the maximum likelihood estimation of λ is. 1 t Integrated hazard function is written as Λ (t) = R t λ 0 (t) or S (t) = exp ( Λ (t)) or Λ (t) = ln S (t) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

16 CDF: density: Survival function Hazard function: S (t) = 1 F (t) = 1 F (t) = 1 e ht (12) f (t) = F 0 (t) = he ht (13) 1 e ht = e ht (14) h(t) = f (t) he ht = S(t) e ht = h (15) See examples in STATA and LIMDEP: Spell, duration, aps, BHPS, recid_jw. Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

17 Exponential Hazard Model Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

18 Weibull The CDF of T is given by F (t) = 1 exp ( λ.t α )where λ and α are nonnegative parameters; and the density is given by f (t) = αλt α 1 exp ( λ.t α ) (16) and the hazard function is.λ (t) = f (t) S (t) = αλt α 1 exp( λ.t α ) = αλt exp( λ.t α ) α 1 When α = 1, the Weibull distribution reduces to the exponential distribution with λ (t) = λ; if α > 1, the hazard is monotonically increasing, λ (t) = αλt α 1, which shows positive duration dependence. If α < 1, the hazard, is continuously decreasing, λ (t) = αλt α gives negative duration dependance. 1 this Thus the Weibull distribution is better to capture the duration variable and transition between states if the hazard is monotonically increasing or decreasing. Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

19 Weibull Hazard Model Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

20 Log Normal Log normal distributions of durations give non-monotonic hazard functions; rst the hazard rate increases with duration and then decreases. This type of analysis is good in modelling bankruptcy rates. When it follows a normal distribution with mean m and variance σ, its density is given by: f (t) = 1 log T m σ.t φ (17) σ and the survivor function is S (t) = 1 Φ log T m σ with Φ denoting the CDF of a standard normal. The hazard function using λ (t) = f (t) s(t) λ (t) = f (t) s (t) = 1 T 1 σ φ log T σ 1 Φ log T σ m m (18) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

21 Log Normal Hazard Models Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

22 Log logistic Log logistic hazard function is where the α and γ are positive parameters. λ (t) = f (t) s (t) = γαtα γt α (19) Z 0 λ (st) s = Using F (s) = 1 Z 0 exp γαt α γt α s = log (1 + γtα ) = Di erentiating with respect to t gives: R t 0 λ (t) condition derived above hlog (1 + γt α ) 1i (20) F (t) = 1 (1 + γt α ) 1 for t > 0 (21) f (t) = αγt α 1 (1 + γt α ) 2 (22) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

23 GAMMA and Summary f (t) = a v t v 1 exp ( at) Γ (v) where Γ (v) = Z 0 exp ( t) t v 1 s (23) Summary of popular distributions for duration model Exponential functions for survival. S (t) = exp ( Λ (t)) λ (t) = λ F (t) = 1 exp ( λ.t) f (t) = λ exp ( Logistic S (t) = 1 1 σ λ.t) Φ log T m σ log T φ( m σ ) σ ) λ (t) = 1 T 1 Φ( log T m F (t) = 1 (1 + αt α ) 1 f (t) = αγt α 1 (1 + λt α ) 2 Weibull ;S (t) = exp ( λ.t α ); ; λ (t) = αλt α 1 F (t) = 1 exp ( λ.t α ) f (t) = αλt α 1 exp ( λ.t α ) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

24 Estimation of Hazard Models Issue of ow versus stock sampling and left versus right truncation. Log linear models: Parameters of above models θ = (λ, γ) can be estimated using the maximum likelihood function for uncensored and censored observations. ln L = ln f (t/θ) + ln s (t/θ) (24) It is easily estimated by BHHH (Berdt-Hall-Hall-Hauseman (1974) estimator (See Greene ( )). Proportional hazard models, ln L = ln λ (t/θ) + ln s (t/θ) (25) λ (t) = e β(t,θ) λ 0 (t i ) (26) where the λ (t) is proportional to the baseline hazard function λ 0 (t i ). Empirical implementation (STATA10, Greene (2000); Chapter 20; Using Limdep) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

25 Estimation of Duration in STATA See the log le hazard and hazard1 from the Annual Population Survey streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl gross99 grsexp, dist(weibull) failure _d: 1 (meaning all fail) analysis time _t: durun streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl gross99 > grsexp, dist(exponential) streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl gross99 > grsexp, dist(gompertz) streg tpben31 tpben32 tpben33 tpben34 tpben35 tpben36 self1 self2 self3 self4 sex ethas ethbl gross99 > grsexp, dist(lognormal) Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

26 Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

27 Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

28 Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

29 Estimation of Duration in STATA _t j Haz. Ratio Std. Err. z P>jzj [95% Conf. Interval] -+ - tpben31 j tpben32 j tpben33 j tpben34 j tpben35 j tpben36 j (omitted) self1 j self2 j self3 j self4 j sex j ethas j ethbl j Dr. Bhattarai gross99(hull j (omitted) Univ. Business School) Duration April 4, / 27

30 LIMDEP Commands /*========================================= Example Log-Linear Survival Models for Strike Duration */========================================= Read ; Nobs = 62 ; Nvar = 2 ; Names = T,Prod $ T Prod ? Four survival models for duration? Create ; logt = Log(T) $ Surv; Lhs=logT ; Rhs = One ; Model=Exponential ; Plot$ Surv; Lhs=logT ; Rhs = One ; Model=Weibull ; Plot$ Surv; Lhs=logT ; Rhs = One ; Model=Logistic ; Plot$ Surv; Lhs=logT ; Rhs = One ; Model=Normal ; Plot $ Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

31 Chesher A (1984) Improving the e ciency of Probit estimators, Review of Economic Studies,66:3: Elbers C. and G. Ridder (1982) True and spurious duration dependence: the identi ability of proportional hazard model, Review of Economic Studies, 49:3:July: Greene W. (2008) Econometric Analysis, Prentice Hall, 6th edition. Greene W.H. (1998) LIMDEP Version 7: User Manual, Econometric Software Inc. Hausman J.A., (1978), Speci cation Tests in Econometrics, Econometrica, Vol. 46, No. 6, pp Heckman J. J., (1979), Sample Selection Bias as a Speci cation Error, Econometrica, Vol. 47, No. 1, pp Imbens G. W. and T Lancaster (1994) Combining Micro and Macro Data in Microeconometric Models, Review of Economic Studies, 61:4: Keifer N (1988) Economic duration data and hazard functions, Journal of Economic Literature, 26: Lancaster T (1979) Econometric Methods for Duration of Unemployment, Econometrica, 47:4: Lancaster T (1990) Econometric Analysis of Transition Data, Blackwell Lancaster T and A Chesher (1983) The Estimation of Models of Labour Market Behviour Review of Economic Studies, 50:4: Orme C. (1989) On the uniqueness of the maximum likelihood estimator in the truncated regression models. Econometric Review, 8:2: Staigler D., Stock J. H., (1997), Instrumental Variables Regression with Weak Instruments, Econometrica, Vol. 65, No. 3, pp Verbeek M. (2004) A Guide to Modern Econometrics, Wiley. Wooldridge J. M. (2002) Econometric Analysis of Cross Section and Panel Data, MIT Press. Dr. Bhattarai (Hull Univ. Business School) Duration April 4, / 27

Parametric Models. dh(t) dt > 0 (1)

Parametric Models. dh(t) dt > 0 (1) Parametric Models: The Intuition Parametric Models As we saw early, a central component of duration analysis is the hazard rate. The hazard rate is the probability of experiencing an event at time t i

More information

Lecture 15 Introduction to Survival Analysis

Lecture 15 Introduction to Survival Analysis Lecture 15 Introduction to Survival Analysis BIOST 515 February 26, 2004 BIOST 515, Lecture 15 Background In logistic regression, we were interested in studying how risk factors were associated with presence

More information

Parametric Survival Models

Parametric Survival Models Parametric Survival Models Germán Rodríguez grodri@princeton.edu Spring, 2001; revised Spring 2005, Summer 2010 We consider briefly the analysis of survival data when one is willing to assume a parametric

More information

Statistical Analysis of Life Insurance Policy Termination and Survivorship

Statistical Analysis of Life Insurance Policy Termination and Survivorship Statistical Analysis of Life Insurance Policy Termination and Survivorship Emiliano A. Valdez, PhD, FSA Michigan State University joint work with J. Vadiveloo and U. Dias Session ES82 (Statistics in Actuarial

More information

Introduction to Event History Analysis DUSTIN BROWN POPULATION RESEARCH CENTER

Introduction to Event History Analysis DUSTIN BROWN POPULATION RESEARCH CENTER Introduction to Event History Analysis DUSTIN BROWN POPULATION RESEARCH CENTER Objectives Introduce event history analysis Describe some common survival (hazard) distributions Introduce some useful Stata

More information

SUMAN DUVVURU STAT 567 PROJECT REPORT

SUMAN DUVVURU STAT 567 PROJECT REPORT SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.

More information

Survival Analysis Using SPSS. By Hui Bian Office for Faculty Excellence

Survival Analysis Using SPSS. By Hui Bian Office for Faculty Excellence Survival Analysis Using SPSS By Hui Bian Office for Faculty Excellence Survival analysis What is survival analysis Event history analysis Time series analysis When use survival analysis Research interest

More information

Econometrics II. Lecture 9: Sample Selection Bias

Econometrics II. Lecture 9: Sample Selection Bias Econometrics II Lecture 9: Sample Selection Bias Måns Söderbom 5 May 2011 Department of Economics, University of Gothenburg. Email: mans.soderbom@economics.gu.se. Web: www.economics.gu.se/soderbom, www.soderbom.net.

More information

Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models

Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models Abstract This paper considers the modeling of claim durations for existing claimants under income

More information

200609 - ATV - Lifetime Data Analysis

200609 - ATV - Lifetime Data Analysis Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 200 - FME - School of Mathematics and Statistics 715 - EIO - Department of Statistics and Operations Research 1004 - UB - (ENG)Universitat

More information

Introduction. Survival Analysis. Censoring. Plan of Talk

Introduction. Survival Analysis. Censoring. Plan of Talk Survival Analysis Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 01/12/2015 Survival Analysis is concerned with the length of time before an event occurs.

More information

7.1 The Hazard and Survival Functions

7.1 The Hazard and Survival Functions Chapter 7 Survival Models Our final chapter concerns models for the analysis of data which have three main characteristics: (1) the dependent variable or response is the waiting time until the occurrence

More information

Exam C, Fall 2006 PRELIMINARY ANSWER KEY

Exam C, Fall 2006 PRELIMINARY ANSWER KEY Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14

More information

Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance. Chapter 6: Behavioural models Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

More information

Interpretation of Somers D under four simple models

Interpretation of Somers D under four simple models Interpretation of Somers D under four simple models Roger B. Newson 03 September, 04 Introduction Somers D is an ordinal measure of association introduced by Somers (96)[9]. It can be defined in terms

More information

Survival Analysis of Left Truncated Income Protection Insurance Data. [March 29, 2012]

Survival Analysis of Left Truncated Income Protection Insurance Data. [March 29, 2012] Survival Analysis of Left Truncated Income Protection Insurance Data [March 29, 2012] 1 Qing Liu 2 David Pitt 3 Yan Wang 4 Xueyuan Wu Abstract One of the main characteristics of Income Protection Insurance

More information

Lecture 4 PARAMETRIC SURVIVAL MODELS

Lecture 4 PARAMETRIC SURVIVAL MODELS Lecture 4 PARAMETRIC SURVIVAL MODELS Some Parametric Survival Distributions (defined on t 0): The Exponential distribution (1 parameter) f(t) = λe λt (λ > 0) S(t) = t = e λt f(u)du λ(t) = f(t) S(t) = λ

More information

Survival Distributions, Hazard Functions, Cumulative Hazards

Survival Distributions, Hazard Functions, Cumulative Hazards Week 1 Survival Distributions, Hazard Functions, Cumulative Hazards 1.1 Definitions: The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution of a

More information

From the help desk: hurdle models

From the help desk: hurdle models The Stata Journal (2003) 3, Number 2, pp. 178 184 From the help desk: hurdle models Allen McDowell Stata Corporation Abstract. This article demonstrates that, although there is no command in Stata for

More information

Entry of Foreign Life Insurers in China: A Survival Analysis

Entry of Foreign Life Insurers in China: A Survival Analysis Entry of Foreign Life Insurers in China: A Survival Analysis M.K. Leung * This paper uses survival analysis to examine the firm-specific factors determining the decision of a foreign firm to establish

More information

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

More information

An Empirical Investigation of Passenger Wait Time Perceptions Using Hazard-Based Duration Models

An Empirical Investigation of Passenger Wait Time Perceptions Using Hazard-Based Duration Models An Empirical Investigation of Passenger Wait Time Perceptions An Empirical Investigation of Passenger Wait Time Perceptions Using Hazard-Based Duration Models Ioannis Psarros, Konstantinos Kepaptsoglou,

More information

HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009

HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Introduction 2. A General Formulation 3. Truncated Normal Hurdle Model 4. Lognormal

More information

Empirical Study of effect of using Weibull. NIFTY index options

Empirical Study of effect of using Weibull. NIFTY index options Empirical Study of effect of using Weibull distribution in Black Scholes Formula on NIFTY index options 11 th Global Conference of Actuaries Harsh Narang Vatsala Deora Overview NIFTY NSE index options

More information

On Marginal Effects in Semiparametric Censored Regression Models

On Marginal Effects in Semiparametric Censored Regression Models On Marginal Effects in Semiparametric Censored Regression Models Bo E. Honoré September 3, 2008 Introduction It is often argued that estimation of semiparametric censored regression models such as the

More information

Tips for surviving the analysis of survival data. Philip Twumasi-Ankrah, PhD

Tips for surviving the analysis of survival data. Philip Twumasi-Ankrah, PhD Tips for surviving the analysis of survival data Philip Twumasi-Ankrah, PhD Big picture In medical research and many other areas of research, we often confront continuous, ordinal or dichotomous outcomes

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Inequality, Mobility and Income Distribution Comparisons

Inequality, Mobility and Income Distribution Comparisons Fiscal Studies (1997) vol. 18, no. 3, pp. 93 30 Inequality, Mobility and Income Distribution Comparisons JOHN CREEDY * Abstract his paper examines the relationship between the cross-sectional and lifetime

More information

Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.)

Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Logistic regression generalizes methods for 2-way tables Adds capability studying several predictors, but Limited to

More information

Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes

Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, Discrete Changes JunXuJ.ScottLong Indiana University August 22, 2005 The paper provides technical details on

More information

Distribution (Weibull) Fitting

Distribution (Weibull) Fitting Chapter 550 Distribution (Weibull) Fitting Introduction This procedure estimates the parameters of the exponential, extreme value, logistic, log-logistic, lognormal, normal, and Weibull probability distributions

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

Econometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England

Econometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England Econometric Analysis of Cross Section and Panel Data Second Edition Jeffrey M. Wooldridge The MIT Press Cambridge, Massachusetts London, England Preface Acknowledgments xxi xxix I INTRODUCTION AND BACKGROUND

More information

Standard errors of marginal effects in the heteroskedastic probit model

Standard errors of marginal effects in the heteroskedastic probit model Standard errors of marginal effects in the heteroskedastic probit model Thomas Cornelißen Discussion Paper No. 320 August 2005 ISSN: 0949 9962 Abstract In non-linear regression models, such as the heteroskedastic

More information

Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach

Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach Refik Soyer * Department of Management Science The George Washington University M. Murat Tarimcilar Department of Management Science

More information

Distance to Event vs. Propensity of Event A Survival Analysis vs. Logistic Regression Approach

Distance to Event vs. Propensity of Event A Survival Analysis vs. Logistic Regression Approach Distance to Event vs. Propensity of Event A Survival Analysis vs. Logistic Regression Approach Abhijit Kanjilal Fractal Analytics Ltd. Abstract: In the analytics industry today, logistic regression is

More information

DURATION ANALYSIS OF FLEET DYNAMICS

DURATION ANALYSIS OF FLEET DYNAMICS DURATION ANALYSIS OF FLEET DYNAMICS Garth Holloway, University of Reading, garth.holloway@reading.ac.uk David Tomberlin, NOAA Fisheries, david.tomberlin@noaa.gov ABSTRACT Though long a standard technique

More information

Lecture 2 ESTIMATING THE SURVIVAL FUNCTION. One-sample nonparametric methods

Lecture 2 ESTIMATING THE SURVIVAL FUNCTION. One-sample nonparametric methods Lecture 2 ESTIMATING THE SURVIVAL FUNCTION One-sample nonparametric methods There are commonly three methods for estimating a survivorship function S(t) = P (T > t) without resorting to parametric models:

More information

Panel Data Econometrics

Panel Data Econometrics Panel Data Econometrics Master of Science in Economics - University of Geneva Christophe Hurlin, Université d Orléans University of Orléans January 2010 De nition A longitudinal, or panel, data set is

More information

Statistical Methods for research in International Relations and Comparative Politics

Statistical Methods for research in International Relations and Comparative Politics James Raymond Vreeland Dept. of Political Science Assistant Professor Yale University E-Mail: james.vreeland@yale.edu Room 300 Tel: 203-432-5252 124 Prospect Avenue Office hours: Wed. 10am to 12pm New

More information

CEIS Tor Vergata RESEARCH PAPER SERIES. Vol. 6, Issue 5, No. 119 March 2008. Dual Labour Markets and Matching Frictions

CEIS Tor Vergata RESEARCH PAPER SERIES. Vol. 6, Issue 5, No. 119 March 2008. Dual Labour Markets and Matching Frictions CEIS Tor Vergata RESEARCH PAPER SERIES Vol. 6, Issue 5, No. 119 March 2008 Dual Labour Markets and Matching Frictions Dario Sciulli, Antonio Gomes de Menezes and José Cabral Vieira This paper can be downloaded

More information

**BEGINNING OF EXAMINATION** The annual number of claims for an insured has probability function: , 0 < q < 1.

**BEGINNING OF EXAMINATION** The annual number of claims for an insured has probability function: , 0 < q < 1. **BEGINNING OF EXAMINATION** 1. You are given: (i) The annual number of claims for an insured has probability function: 3 p x q q x x ( ) = ( 1 ) 3 x, x = 0,1,, 3 (ii) The prior density is π ( q) = q,

More information

Operational Risk Modeling Analytics

Operational Risk Modeling Analytics Operational Risk Modeling Analytics 01 NOV 2011 by Dinesh Chaudhary Pristine (www.edupristine.com) and Bionic Turtle have entered into a partnership to promote practical applications of the concepts related

More information

Enhancing Business Resilience under Power Shortage: Effective Allocation of Scarce Electricity Based on Power System Failure and CGE Models

Enhancing Business Resilience under Power Shortage: Effective Allocation of Scarce Electricity Based on Power System Failure and CGE Models Enhancing Business Resilience under Power Shortage: Effective Allocation of Scarce Electricity Based on Power System Failure and CGE Models Yoshio Kajitani *1, Kazuyoshi Nakano 2 and Ayumi Yuyama 1 1Civil

More information

Vocational high school or Vocational college? Comparing the Transitions from School to Work

Vocational high school or Vocational college? Comparing the Transitions from School to Work Vocational high school or Vocational college? Comparing the Transitions from School to Work Cristina Lopez-Mayan Autònoma de Barcelona Catia Nicodemo Autònoma de Barcelona XERAP and IZA June 7, 2011 Abstract

More information

SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg

SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg SPSS TRAINING SESSION 3 ADVANCED TOPICS (PASW STATISTICS 17.0) Sun Li Centre for Academic Computing lsun@smu.edu.sg IN SPSS SESSION 2, WE HAVE LEARNT: Elementary Data Analysis Group Comparison & One-way

More information

From the help desk: Swamy s random-coefficients model

From the help desk: Swamy s random-coefficients model The Stata Journal (2003) 3, Number 3, pp. 302 308 From the help desk: Swamy s random-coefficients model Brian P. Poi Stata Corporation Abstract. This article discusses the Swamy (1970) random-coefficients

More information

Review of Random Variables

Review of Random Variables Chapter 1 Review of Random Variables Updated: January 16, 2015 This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

A Stochastic Frontier Model on Investigating Efficiency of Life Insurance Companies in India

A Stochastic Frontier Model on Investigating Efficiency of Life Insurance Companies in India A Stochastic Frontier Model on Investigating Efficiency of Life Insurance Companies in India R. Chandrasekaran 1a, R. Madhanagopal 2b and K. Karthick 3c 1 Associate Professor and Head (Retired), Department

More information

Research Article Crossing Reliability of Electric Bike Riders at Urban Intersections

Research Article Crossing Reliability of Electric Bike Riders at Urban Intersections Mathematical Problems in Engineering Volume 2013, Article ID 108636, 8 pages http://dx.doi.org/10.1155/2013/108636 Research Article Crossing Reliability of Electric Bike Riders at Urban Intersections Huan

More information

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

More information

ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics

ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics ESTIMATING AVERAGE TREATMENT EFFECTS: IV AND CONTROL FUNCTIONS, II Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Quantile Treatment Effects 2. Control Functions

More information

TESTING THE ONE-PART FRACTIONAL RESPONSE MODEL AGAINST AN ALTERNATIVE TWO-PART MODEL

TESTING THE ONE-PART FRACTIONAL RESPONSE MODEL AGAINST AN ALTERNATIVE TWO-PART MODEL TESTING THE ONE-PART FRACTIONAL RESPONSE MODEL AGAINST AN ALTERNATIVE TWO-PART MODEL HARALD OBERHOFER AND MICHAEL PFAFFERMAYR WORKING PAPER NO. 2011-01 Testing the One-Part Fractional Response Model against

More information

Competing-risks regression

Competing-risks regression Competing-risks regression Roberto G. Gutierrez Director of Statistics StataCorp LP Stata Conference Boston 2010 R. Gutierrez (StataCorp) Competing-risks regression July 15-16, 2010 1 / 26 Outline 1. Overview

More information

Does Internet Job Search Result in Better Matches?

Does Internet Job Search Result in Better Matches? Does Internet Job Search Result in Better Matches? Anila Prakash University of Arizona November 2014 Abstract The internet enables both employers and job seekers to gather valuable information about each

More information

Poisson Models for Count Data

Poisson Models for Count Data Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

More information

A Fractional Survival Model

A Fractional Survival Model Journal of Data Science 7(29), 487-495 A Fractional Survival Model Cheng K. Lee 1 and Jenq-Daw Lee 2 1 Bank of America and 2 National Cheng Kung University Abstract: A survival model is derived from the

More information

Modelling spousal mortality dependence: evidence of heterogeneities and implications

Modelling spousal mortality dependence: evidence of heterogeneities and implications 1/23 Modelling spousal mortality dependence: evidence of heterogeneities and implications Yang Lu Scor and Aix-Marseille School of Economics Lyon, September 2015 2/23 INTRODUCTION 3/23 Motivation It has

More information

This PDF is a selection from a published volume from the National Bureau of Economic Research. Volume Title: The Risks of Financial Institutions

This PDF is a selection from a published volume from the National Bureau of Economic Research. Volume Title: The Risks of Financial Institutions This PDF is a selection from a published volume from the National Bureau of Economic Research Volume Title: The Risks of Financial Institutions Volume Author/Editor: Mark Carey and René M. Stulz, editors

More information

Properties of Future Lifetime Distributions and Estimation

Properties of Future Lifetime Distributions and Estimation Properties of Future Lifetime Distributions and Estimation Harmanpreet Singh Kapoor and Kanchan Jain Abstract Distributional properties of continuous future lifetime of an individual aged x have been studied.

More information

Automated Biosurveillance Data from England and Wales, 1991 2011

Automated Biosurveillance Data from England and Wales, 1991 2011 Article DOI: http://dx.doi.org/10.3201/eid1901.120493 Automated Biosurveillance Data from England and Wales, 1991 2011 Technical Appendix This online appendix provides technical details of statistical

More information

An Application of the Cox Proportional Hazards Model to the Construction of Objective Vintages for Credit in Financial Institutions, Using PROC PHREG

An Application of the Cox Proportional Hazards Model to the Construction of Objective Vintages for Credit in Financial Institutions, Using PROC PHREG Paper 3140-2015 An Application of the Cox Proportional Hazards Model to the Construction of Objective Vintages for Credit in Financial Institutions, Using PROC PHREG Iván Darío Atehortua Rojas, Banco Colpatria

More information

( ) is proportional to ( 10 + x)!2. Calculate the

( ) is proportional to ( 10 + x)!2. Calculate the PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers

More information

Statistics 305: Introduction to Biostatistical Methods for Health Sciences

Statistics 305: Introduction to Biostatistical Methods for Health Sciences Statistics 305: Introduction to Biostatistical Methods for Health Sciences Modelling the Log Odds Logistic Regression (Chap 20) Instructor: Liangliang Wang Statistics and Actuarial Science, Simon Fraser

More information

Comparison of resampling method applied to censored data

Comparison of resampling method applied to censored data International Journal of Advanced Statistics and Probability, 2 (2) (2014) 48-55 c Science Publishing Corporation www.sciencepubco.com/index.php/ijasp doi: 10.14419/ijasp.v2i2.2291 Research Paper Comparison

More information

GLMs: Gompertz s Law. GLMs in R. Gompertz s famous graduation formula is. or log µ x is linear in age, x,

GLMs: Gompertz s Law. GLMs in R. Gompertz s famous graduation formula is. or log µ x is linear in age, x, Computing: an indispensable tool or an insurmountable hurdle? Iain Currie Heriot Watt University, Scotland ATRC, University College Dublin July 2006 Plan of talk General remarks The professional syllabus

More information

Multinomial and Ordinal Logistic Regression

Multinomial and Ordinal Logistic Regression Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,

More information

Testing for serial correlation in linear panel-data models

Testing for serial correlation in linear panel-data models The Stata Journal (2003) 3, Number 2, pp. 168 177 Testing for serial correlation in linear panel-data models David M. Drukker Stata Corporation Abstract. Because serial correlation in linear panel-data

More information

Estimation and attribution of changes in extreme weather and climate events

Estimation and attribution of changes in extreme weather and climate events IPCC workshop on extreme weather and climate events, 11-13 June 2002, Beijing. Estimation and attribution of changes in extreme weather and climate events Dr. David B. Stephenson Department of Meteorology

More information

IDENTIFICATION IN A CLASS OF NONPARAMETRIC SIMULTANEOUS EQUATIONS MODELS. Steven T. Berry and Philip A. Haile. March 2011 Revised April 2011

IDENTIFICATION IN A CLASS OF NONPARAMETRIC SIMULTANEOUS EQUATIONS MODELS. Steven T. Berry and Philip A. Haile. March 2011 Revised April 2011 IDENTIFICATION IN A CLASS OF NONPARAMETRIC SIMULTANEOUS EQUATIONS MODELS By Steven T. Berry and Philip A. Haile March 2011 Revised April 2011 COWLES FOUNDATION DISCUSSION PAPER NO. 1787R COWLES FOUNDATION

More information

Life Data Analysis using the Weibull distribution

Life Data Analysis using the Weibull distribution RELIABILITY ENGINEERING Life Data Analysis using the Weibull distribution PLOT Seminar October 2008 Ing. Ronald Schop Weibull: Reliability Engineering www.weibull.nl Content Why Reliability Weibull Statistics

More information

Statistics 104 Final Project A Culture of Debt: A Study of Credit Card Spending in America TF: Kevin Rader Anonymous Students: LD, MH, IW, MY

Statistics 104 Final Project A Culture of Debt: A Study of Credit Card Spending in America TF: Kevin Rader Anonymous Students: LD, MH, IW, MY Statistics 104 Final Project A Culture of Debt: A Study of Credit Card Spending in America TF: Kevin Rader Anonymous Students: LD, MH, IW, MY ABSTRACT: This project attempted to determine the relationship

More information

ESTIMATING AN ECONOMIC MODEL OF CRIME USING PANEL DATA FROM NORTH CAROLINA BADI H. BALTAGI*

ESTIMATING AN ECONOMIC MODEL OF CRIME USING PANEL DATA FROM NORTH CAROLINA BADI H. BALTAGI* JOURNAL OF APPLIED ECONOMETRICS J. Appl. Econ. 21: 543 547 (2006) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jae.861 ESTIMATING AN ECONOMIC MODEL OF CRIME USING PANEL

More information

Introduction to Survival Analysis

Introduction to Survival Analysis John Fox Lecture Notes Introduction to Survival Analysis Copyright 2014 by John Fox Introduction to Survival Analysis 1 1. Introduction I Survival analysis encompasses a wide variety of methods for analyzing

More information

A revisit of the hierarchical insurance claims modeling

A revisit of the hierarchical insurance claims modeling A revisit of the hierarchical insurance claims modeling Emiliano A. Valdez Michigan State University joint work with E.W. Frees* * University of Wisconsin Madison Statistical Society of Canada (SSC) 2014

More information

Do Supplemental Online Recorded Lectures Help Students Learn Microeconomics?*

Do Supplemental Online Recorded Lectures Help Students Learn Microeconomics?* Do Supplemental Online Recorded Lectures Help Students Learn Microeconomics?* Jennjou Chen and Tsui-Fang Lin Abstract With the increasing popularity of information technology in higher education, it has

More information

Hierarchical Insurance Claims Modeling

Hierarchical Insurance Claims Modeling Hierarchical Insurance Claims Modeling Edward W. (Jed) Frees, University of Wisconsin - Madison Emiliano A. Valdez, University of Connecticut 2009 Joint Statistical Meetings Session 587 - Thu 8/6/09-10:30

More information

Applied Reliability Page 1 APPLIED RELIABILITY. Techniques for Reliability Analysis

Applied Reliability Page 1 APPLIED RELIABILITY. Techniques for Reliability Analysis Applied Reliability Page 1 APPLIED RELIABILITY Techniques for Reliability Analysis with Applied Reliability Tools (ART) (an EXCEL Add-In) and JMP Software AM216 Class 5 Notes Santa Clara University Copyright

More information

Discussion Papers on Entrepreneurship, Growth and Public Policy

Discussion Papers on Entrepreneurship, Growth and Public Policy Discussion Papers on Entrepreneurship, Growth and Public Policy # 0507 FIRM COMPETITIVE STRATEGIES AND THE LIKELIHOOD OF SURVIVAL. THE SPANISH CASE by Raquel Ortega-Argilés University of Barcelona and

More information

Master programme in Statistics

Master programme in Statistics Master programme in Statistics Björn Holmquist 1 1 Department of Statistics Lund University Cramérsällskapets årskonferens, 2010-03-25 Master programme Vad är ett Master programme? Breddmaster vs Djupmaster

More information

LOGIT AND PROBIT ANALYSIS

LOGIT AND PROBIT ANALYSIS LOGIT AND PROBIT ANALYSIS A.K. Vasisht I.A.S.R.I., Library Avenue, New Delhi 110 012 amitvasisht@iasri.res.in In dummy regression variable models, it is assumed implicitly that the dependent variable Y

More information

DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS

DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS DETERMINANTS OF CAPITAL ADEQUACY RATIO IN SELECTED BOSNIAN BANKS Nađa DRECA International University of Sarajevo nadja.dreca@students.ius.edu.ba Abstract The analysis of a data set of observation for 10

More information

Long-term mobility decisions during the life course: Experiences with a retrospective survey

Long-term mobility decisions during the life course: Experiences with a retrospective survey Hazard rate 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 Residence Education Employment Education and employment Car: always available Car: partially available National annual ticket ownership Regional annual

More information

Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry

Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry Paper 12028 Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry Junxiang Lu, Ph.D. Overland Park, Kansas ABSTRACT Increasingly, companies are viewing

More information

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Presented by Work done with Roland Bürgi and Roger Iles New Views on Extreme Events: Coupled Networks, Dragon

More information

5 Modeling Survival Data with Parametric Regression

5 Modeling Survival Data with Parametric Regression 5 Modeling Survival Data with Parametric Regression Models 5. The Accelerated Failure Time Model Before talking about parametric regression models for survival data, let us introduce the accelerated failure

More information

Survival analysis methods in Insurance Applications in car insurance contracts

Survival analysis methods in Insurance Applications in car insurance contracts Survival analysis methods in Insurance Applications in car insurance contracts Abder OULIDI 1-2 Jean-Marie MARION 1 Hérvé GANACHAUD 3 1 Institut de Mathématiques Appliquées (IMA) Angers France 2 Institut

More information

Portfolio Using Queuing Theory

Portfolio Using Queuing Theory Modeling the Number of Insured Households in an Insurance Portfolio Using Queuing Theory Jean-Philippe Boucher and Guillaume Couture-Piché December 8, 2015 Quantact / Département de mathématiques, UQAM.

More information

Quantitative Methods for Economics Tutorial 9. Katherine Eyal

Quantitative Methods for Economics Tutorial 9. Katherine Eyal Quantitative Methods for Economics Tutorial 9 Katherine Eyal TUTORIAL 9 4 October 2010 ECO3021S Part A: Problems 1. In Problem 2 of Tutorial 7, we estimated the equation ŝleep = 3, 638.25 0.148 totwrk

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

Confidence Intervals for Exponential Reliability

Confidence Intervals for Exponential Reliability Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion

More information

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008 Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

More information

Estimating survival functions has interested statisticians for numerous years.

Estimating survival functions has interested statisticians for numerous years. ZHAO, GUOLIN, M.A. Nonparametric and Parametric Survival Analysis of Censored Data with Possible Violation of Method Assumptions. (2008) Directed by Dr. Kirsten Doehler. 55pp. Estimating survival functions

More information

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4.

Continuous Random Variables. and Probability Distributions. Continuous Random Variables and Probability Distributions ( ) ( ) Chapter 4 4. UCLA STAT 11 A Applied Probability & Statistics for Engineers Instructor: Ivo Dinov, Asst. Prof. In Statistics and Neurology Teaching Assistant: Neda Farzinnia, UCLA Statistics University of California,

More information

Survival Analysis, Software

Survival Analysis, Software Survival Analysis, Software As used here, survival analysis refers to the analysis of data where the response variable is the time until the occurrence of some event (e.g. death), where some of the observations

More information

DOES LIFE INSURANCE PROMOTE ENTREPRENEURSHIP? Lisa L. Verdon Department of Economics College of Wooster (330) 263-2216 lverdon@wooster.

DOES LIFE INSURANCE PROMOTE ENTREPRENEURSHIP? Lisa L. Verdon Department of Economics College of Wooster (330) 263-2216 lverdon@wooster. DOES LIFE INSURANCE PROMOTE ENTREPRENEURSHIP? Lisa L. Verdon Department of Economics College of Wooster (330) 263-2216 lverdon@wooster.edu March 8, 2010 Abstract Entrepreneurs are often considered the

More information

Comparing Features of Convenient Estimators for Binary Choice Models With Endogenous Regressors

Comparing Features of Convenient Estimators for Binary Choice Models With Endogenous Regressors Comparing Features of Convenient Estimators for Binary Choice Models With Endogenous Regressors Arthur Lewbel, Yingying Dong, and Thomas Tao Yang Boston College, University of California Irvine, and Boston

More information

Parametric survival models

Parametric survival models Parametric survival models ST3242: Introduction to Survival Analysis Alex Cook October 2008 ST3242 : Parametric survival models 1/17 Last time in survival analysis Reintroduced parametric models Distinguished

More information

Student Performance in Traditional vs. Online Format: Evidence from an MBA Level Introductory Economics Class

Student Performance in Traditional vs. Online Format: Evidence from an MBA Level Introductory Economics Class University of Connecticut DigitalCommons@UConn Economics Working Papers Department of Economics 3-1-2007 Student Performance in Traditional vs. Online Format: Evidence from an MBA Level Introductory Economics

More information