# Different Energetic Techniques for Modelling Traction Drives

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Different Energetic Techniques for Modelling Traction Drives Roberto Zanasi DII- University of Modena and Reggio Emilia, Italy Technical University of Dresden (Germany) G. H. Geitner Electrotechnical Institute, Technische Universität Dresden, Germany University of Lille (France) A. Bouscayrol B. W. Lhomme L2EP Lille, University of Lille1 (USTL), France

2 Outline The traction system of an automatic subway is described using four different Energetic Graphical Techniques: 1) Bond-Graph (BG) 2) Energetic Macroscopic Representation (EMR) 3) Power-Oriented Graphs (POG) 4) Vectorial Bond-Graph (VBG). The paper highlight the analogies and the differences between these modelling techniques in the analysis and simulation of the considered automatic subway system. In Simulink, the four considered graphical techniques provides the same simulations.

3 Dynamic Modelling: power variables The BG, EMR and POG modelling techniques are based on the use of the Power and Energy variables. The physical elements (F.E.) interact with the external world through power sections characterized by two power variables v i e v o. Each power variable has its own positive direction. According to these definitions the power P entering the physical element can be positive or negative. v i v o P F.E. The power enters into the element: I I I P The power exits from the element: I I I P V Z V Z F.E. V Z V Z F.E. V V

4 Dynamic Modeling of Physical Systems Different Energy domains: 1) Electrical; 2) Mechanical (tras./rot.); 3) Hydraulic; etc. The same dynamic structure: 2 dynamic elements D 1, D 2 that store energy; 1 static element R that dissipates (or generates) energy; 2 energy variables q 1 (t), q 2 (t) used for describing the stored energy; 2 power variables v 1 (t), v 2 (t) used for moving the energy; POG: Across-variables Through-variables Bond Graphs: Efforts Flows

5 Bond Graphs (BG) The Bond Graphs are composed by the following basic elements: - A line representing the bond : effort above and flow below the line. - An arrow representing the positive direction of the power. - A stroke representing the integral or differential causality. - Three basic 1-port elements which store and/or dissipate the energy: capacitor C, inertia I and resistor R. - Four 2-port elements which simply transform the power: transformer TR, gyrator GY, modulated transformer MTR and modulated gyrator MGY. Stroke for causality e f e1 f1 e1 f1 C TR MTR e f e2 f2 e2 f2 e f Positive direction of the power. Power variables: effort and flow I e1 f1 e1 f1 GY MGY e f e2 f2 e2 f2 R - Two 3 port junctions for connecting the basic elements: 0-junction for the parallel connection and 1-junction for the series connection. e1 f1 e2 f2 1 e3 f3 e1 f1 e2 f2 0 e3 f3

6 Energetic Macroscopic Representation (EMR) Mechanical source of energy Element with energy accumulation Mechanical coupling (distribution of mechanical energy) Electrical coupling (distribution of electrical energy) Electromechanical coupling (distribution of electromechanical energy) Electrical source of energy Electrical converter (without energy accumulation) Mechanical converter (without energy accumulation) Electromechanical converter (without energy accumulation) Selector of models

7 Power-Oriented Graphs (POG) The Power-Oriented Graphs are ''block diagrams'' obtained by using a ''modular'' structure essentially based on the following two blocks: Positive power flows 3-Port Junctions: 0-Junction; 1-Junction; 1-Port Elements: Capacitor C; Inertia I; Resistor R; Elaboration block Connection block 2-Port Elements : Transformers TR; GiratorsGY; Modulated TR; Modulated GY; POG maintains a direct correspondence between pairs of system variables and real power flows: the product of the two variables involved in each dashed line of the graph has the physical meaning of ``power flowing through that section''. The Elaboration block can store and dissipate/generate energy. The Connection block can only ''transform'' the energy.

8 The Traction System of a Automatic Subway Input filter Choppers Motor windings Power link Bogies + Chassis The electrical energy is filtered and stored The control redistribute the energy Two DC electrical motors with the armatures in parallel The mechanical energy is given to the subway

9 Traction System: state space equations Input filter: Choppers: Switching functions: Field and armature windings: Power links: subway-bogies: Power links between DC motor and bogies: Total force: Subways dynamics: Resistive force:

10 BG description of the Subway System Input filter Choppers Motor windings Power link Bogies + Chassis - The graphical description is planar - Each singular element is shown - Exact mathematical description - Not easy to read for beginners

11 EMR description of the Subway System Input filter Choppers Motor windings Power link Bogies +Chassis - The physical connections between the energy domains are clearly shown - The structure is easy to understand - No mathematical details

12 POG description of the Subway System Input filter Choppers Motor windings Power link Bogies + Chassis - Exact mathematical description - It is scalar and/or vectorial - Easy to read for beginners - Linear graphical description

13 POG modelling: matrices and vectors Switching functions: Chopper voltages: Motor currents: DC Motor inductances: DC Motor resistances: EMF voltages: Motors-Bogies power link: Motor torque vector: Bogies-Subway power link: Bogies velocity vector:

14 VBG description of the Subway System Input filter Choppers Motor windings Power link Bogies + Chassis - Exact mathematical description - It is scalar and/or vectorial - The graphs are linear and/or planar - No mixed effort/flow variables

15 Comparison: the input filter The physical system: The BG: The EMR: The POG: The VBG:

16 Comparison: the choppers The physical system: The BG: The EMR: The POG: The VBG:

17 Comparison: the eletrical motors The physical system: The BG: The EMR: The POG: The VBG:

18 Comparison: the bogies and the chassis The physical system: The BG: The POG: The EMR: The VBG:

19 Simulation results System parameters: de-flux constant filed flux increasing armature flux

20 Simulation results All the four modelling techniques (BG, EMR, POG, VBG) provides the same simulation results. The field currents are proportional to the field switching functions. The armature current becomes constant because of the increasing the f.e.m. due to the rotor velocity which is proportional to the subway velocity. The total force acting on the subway mass is proportional to its acceleration

21 Comparison between BG, EMR and POG Mnemonic EMR POG BG/VBG Title Energetic Macroscopic Representation Power Oriented Graphs (Vectorial) Bond Graphs Author A. Bouscayrol R. Zanasi H. M. Paynter Year Energy domains Electrical - Mechanical (extensible) All known All known Power variables Scalar or vectorial Scalar or vectorial Scalar or vectorial Causality Exclusive integral Integral (preferably) or differential Integral (preferably) or differential Basic elements 9 Electrical - Mechanical 2 8

22 Comparison between BG, EMR and POG Mnemonic EMR POG BG/VBG Visibility of both directions graphically visible graphically visible not graphically visible Assistance for the control Causal Ordering Graph (J. P. Hautier) none none Reference direction for power flow no yes (Implicitly) yes Displacement / momentum explicitly no yes yes Mathematical model from graphical description partially obtainable directly obtainable (explicit in the graph) directly obtainable (implicit in the graph) Simulink library icon library none add-on block library BG V.2.1 Usage hints user defined subsystems always standard blocks blocks and editor as usual Main objective Simulation and control Simulation and analysis Simulation and design

23 Conclusions 1) All the four Energetic Graphical Techniques: - Bond-Graph (BG) - Energetic Macroscopic Representation (EMR) - Power-Oriented Graphs (POG) - Vectorial Bond-Graph (VBG) are very good for modelling physical systems 2) Each technique has its own advantages and limitations A final personal hope: the development of a joined program that automatically converts the graphical schemes from one energetic technique to the others.

### Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application

Hybrid Modeling and Control of a Power Plant using State Flow Technique with Application Marwa M. Abdulmoneim 1, Magdy A. S. Aboelela 2, Hassen T. Dorrah 3 1 Master Degree Student, Cairo University, Faculty

### «EMR and energy management of a Hybrid ESS of an Electric Vehicle»

EMR 14 Coimbra June 2014 Summer School EMR 14 Energetic Macroscopic Representation «EMR and energy management of a Hybrid ESS of an Electric Vehicle» Dr. J. Trovão, F. Machado, Prof. A. Bouscayrol, Dr.

### EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy)

EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) A completely analogous procedure can be used to find the state equations of electrical systems (and, ultimately, electro-mechanical systems

### «Introduction to the Seminar on EMR»

Seminar On EMR Sept. 2014 Seminar Sept. 2014 Energetic Macroscopic Representation «Introduction to the Seminar on EMR» Prof. A. Bouscayrol University Lille1, L2EP, MEGEVH, France Dr. Philippe Barrade LEI,

### What Is Regeneration?

What Is Regeneration? Braking / Regeneration Manual Regeneration Overview Revision 1.0 When the rotor of an induction motor turns slower than the speed set by the applied frequency, the motor is transforming

### Teaching drive control using Energetic Macroscopic Representation - expert level

Teaching drive control using Energetic Macroscopic Representation - expert level Alain Bouscayrol, Philippe Delarue, Fréderic Giraud, Xavier Guillaud, Xavier Kestelyn, Betty Lemaire-Semail, Walter Lhomme

### SIMULATION AND EMR» Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France) Aalto University Finland May 2011

Aalto University Finland May 2011 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» «HARDWARE- IN-THE-LOOP (HIL) SIMULATION AND EMR» Prof. A. Bouscayrol (University Lille1, L2EP,

### 8 Speed control of Induction Machines

8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

### Application Information

Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

### Slide 10.1. Basic system Models

Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

### Motors and Generators

Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed

### Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive

### DEDUCED FROM EMR» Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH, France)

Aalto University Finland May 2011 «Energy Management of EVs & HEVs using Energetic Macroscopic Representation» «INVERSION-BASED CONTROL DEDUCED FROM EMR» Prof. A. Bouscayrol (University Lille1, L2EP, MEGEVH,

### «EMR AND ENERGY MANAGEMENT FOR HEAVY-DUTY HYBRID VEHICLES USING DOUBLE PLANETARY GEARTRAIN»

EMR 15 Lille June 2015 Summer School EMR 15 Energetic Macroscopic Representation «EMR AND ENERGY MANAGEMENT FOR HEAVY-DUTY HYBRID VEHICLES USING DOUBLE PLANETARY GEARTRAIN» Dr. Walter LHOMME, Prof. Alain

### Students will need about 30 minutes to complete these constructed response tasks.

Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of

### subsystem for a hybrid locomotive»

EMR 13 Lille Sept. 2013 Summer School EMR 13 Energetic Macroscopic Representation «Different models of an energy storage subsystem for a hybrid locomotive» C. Mayet 1,2,4, A. Bouscayrol 1,2,4, J. Pouget

### Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

### BICYCLE ICYCLE TRAINERRAINER

Workshop EMR 09 Trois-Rivières September 2009 «Modelling and control using Energetic Macroscopic Representation» EMR AND INVERSION-BASED CONTROL OF A VIRTUAL IRTUAL REALITY EALITY BICYCLE ICYCLE TRAINERRAINER

### AP2 Electrostatics. Three point charges are located at the corners of a right triangle as shown, where q 1. are each 1 cm from q 3.

Three point charges are located at the corners of a right triangle as shown, where q 1 = q 2 = 3 µc and q 3 = -4 µc. If q 1 and q 2 are each 1 cm from q 3, what is the magnitude of the net force on q 3?

### CNC Machine Control Unit

NC Hardware a NC Hardware CNC Machine Control Unit Servo Drive Control Hydraulic Servo Drive Hydraulic power supply unit Servo valve Servo amplifiers Hydraulic motor Hydraulic Servo Valve Hydraulic Servo

### Object-Oriented Modeling and Simulation of Mechatronic Systems with 20-sim 3.0

Mechatronics 98 J. Adolfsson and J. Karlsén (Editors) 1998 Elsevier Science Ltd. All rights reserved 873 Object-Oriented Modeling and Simulation of Mechatronic Systems with 20-sim 3.0 P.B.T. Weustink,

### Experiment 1 The DC Machine

Experiment 1 The DC Machine ECEN 4517 R. W. Erickson and D. Maksimovic The purpose of this experiment is to become familiar with operating principles, equivalent circuit models, and basic characteristics

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Magnetic electro-mechanical machines

Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity

### ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional

### DCMS DC MOTOR SYSTEM User Manual

DCMS DC MOTOR SYSTEM User Manual release 1.3 March 3, 2011 Disclaimer The developers of the DC Motor System (hardware and software) have used their best efforts in the development. The developers make

### ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical

### GUI/Simulink Based Interactive Interface for a DC Motor with PI Controller

International Journal of Scientific & Engineering Research Volume 2, Issue 12, December-2011 1 GUI/Simulink Based Interactive Interface for a DC Motor with PI Controller Bishwajit Dash and Vibindeepak

### ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

### Online Tuning of Artificial Neural Networks for Induction Motor Control

Online Tuning of Artificial Neural Networks for Induction Motor Control A THESIS Submitted by RAMA KRISHNA MAYIRI (M060156EE) In partial fulfillment of the requirements for the award of the Degree of MASTER

### Brush DC Motor Basics. by Simon Pata Business Unit Manager, Brushless DC

thinkmotion Brush DC Motor Basics by Simon Pata Business Unit Manager, Brushless DC Ironless DC Motor Basics Technical Note Brushed DC ironless motors are found in a large variety of products and applications

### Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A

Extra Questions - 1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated

### AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

### Brushed DC Motor Control: Parameter characterization, open loop and PI controller simulation

Brushed DC Motor Control: Parameter characterization, open loop and PI controller simulation Dave Seaton EE Student ECE480 Design Team 4 Michigan State University Introduction During the Fall Semester

### LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR

LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR Sergiu Ivanov Mihai Rdulescu University of Craiova, Romania INDA Craiova Faculty of Electrical Engineering 30, Mr#e#ti Street 107, Decebal

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique B.Hemanth Kumar 1, Dr.G.V.Marutheshwar 2 PG Student,EEE S.V. College of Engineering Tirupati Senior Professor,EEE dept.

### Interactive simulation of an ash cloud of the volcano Grímsvötn

Interactive simulation of an ash cloud of the volcano Grímsvötn 1 MATHEMATICAL BACKGROUND Simulating flows in the atmosphere, being part of CFD, is on of the research areas considered in the working group

### METHODOLOGICAL CONSIDERATIONS OF DRIVE SYSTEM SIMULATION, WHEN COUPLING FINITE ELEMENT MACHINE MODELS WITH THE CIRCUIT SIMULATOR MODELS OF CONVERTERS.

SEDM 24 June 16th - 18th, CPRI (Italy) METHODOLOGICL CONSIDERTIONS OF DRIVE SYSTEM SIMULTION, WHEN COUPLING FINITE ELEMENT MCHINE MODELS WITH THE CIRCUIT SIMULTOR MODELS OF CONVERTERS. Áron Szûcs BB Electrical

### Manufacturing Equipment Modeling

QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,

### INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS

INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS This is a stand alone tutorial on electric motors and actuators. The tutorial is of interest to any student studying control systems and in particular

### APPLICATION NOTE - 017

APPLICATION NOTE - 017 PWM Motor Drives Theory and Measurement Considerations Pulse Width Modulated (PWM) power electronic techniques represent a large and increasing proportion of modern power electronics.

### 2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 1 TUTORIAL 1 - DIRECT CURRENT CIRCUIT THEOREMS

EDEXCE NATIONA CERTIFICATE/DIPOMA UNIT 67 - FURTHER EECTRICA PRINCIPES NQF EVE 3 OUTCOME 1 TUTORIA 1 - DIRECT CURRENT CIRCUIT THEOREMS Unit content 1 Be able to apply direct current (DC) circuit analysis

### COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and

### AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

### EET272 Worksheet Week 9

EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming

### KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

ADVANCED ENGINEERING 3(2009)1, ISSN 1846-5900 KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE Cibulka, J. Abstract: This paper deals with the design of Kinetic Energy Recovery Systems

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

### Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

### Energy, Work, and Power

Energy, Work, and Power This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Available online at www.sciencedirect.com Available online at www.sciencedirect.com

Available online at www.sciencedirect.com Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering () 9 () 6 Procedia Engineering www.elsevier.com/locate/procedia International

### UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. Group # First Name Last Name UserID @uwaterloo.ca Experiment #3: DIRECT CURRENT

### ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING:

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS DATE DUE: 23:59:59 PM, APRIL 07, 2016 WARNING: Please be extremely cautious to precisely follow the procedures described

### How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has

### AP R Physics C Electricity and Magnetism Syllabus

AP R Physics C Electricity and Magnetism Syllabus 1 Prerequisites and Purposes of AP R C E & M AP R Physics C Electricity and Magnetism is the second course in a two-course sequence. It is offered in the

### Motor Fundamentals. DC Motor

Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

### dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor

dspace DSP DS-1104 based State Observer Design for Position Control of DC Servo Motor Jaswandi Sawant, Divyesh Ginoya Department of Instrumentation and control, College of Engineering, Pune. ABSTRACT This

### Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist MHER GRIGORIAN, TAREK SOBH Department of Computer Science and Engineering, U. of Bridgeport, USA ABSTRACT Robot

### Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches

Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches SD 65 John McPhee Systems Design Engineering University of Waterloo, Canada Summary of Course: 1. Review of kinematics and dynamics.

### Motor/Transformer Winding Repair

Workshop Practice Title and topics of HKSE 1 03.1.1.01.1 Fundamentals of specific trade Workshop organisation, industrial safety, quality assurance, introduction to accident prevention 2 03.1.1.21.1 Preparation

### CONVENTIONALLY reduced order models are being

Co-Simulation of an Electric Traction Drive Christoph Schulte and Joachim Böcker Abstract For the simulation of electrical drives, reducedorder models or simple look-up tables are often used in order to

### EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

### Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

### DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

### PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

### Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current

Summary Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current Joachim Härsjö, Massimo Bongiorno and Ola Carlson Chalmers University of Technology Energi och Miljö,

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3 - MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:

### Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM

Freescale Semiconductor Document Number:AN4642 Application Note Rev. 1, 01/2013 Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM by: Marek Stulrajter, Pavel Sustek 1 Introduction This application

### Principles of Adjustable Frequency Drives

What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part I)

00-00-//\$0.00 (c) IEEE IEEE Industry Application Society Annual Meeting New Orleans, Louisiana, October -, Modeling and Analysis of DC Link Bus Capacitor and Inductor Heating Effect on AC Drives (Part

### Control circuit. gathering and reporting fault messages. carrying out of protective functions for the frequency converter and motor.

Control circuit The control circuit, or control card, is the fourth main component of the frequency converter and has four essential tasks: control of the frequency converter semi-conductors. data exchange

### Physical Modeling with SimScape

Physical Modeling with SimScape Saving energy with Physical Modeling Adriaan van den Brand Mday 29-4-2011 V1.4 A. Van den Brand, Mday 29-4-2011 1 Bio Adriaan van den Brand System architect Sogeti High

### Electric motor emulator versus rotating test rig

DEVELOPMENT E l e c t r i c m o t o r s Electric motor emulator versus rotating test rig A controversial issue among experts is whether real-time model-based electric motor emulation can replace a conventional

### E&I MAINTENANCE ENTRY TEST ENABLING OBJECTIVES. DESCRIBE hazards and precautions taken to avoid injury in the workplace.

SAFETY Industrial DESCRIBE hazards and precautions taken to avoid injury in the workplace. Example #1: All of the following are common PPE used to perform maintenance activities EXCEPT: a. Safety Glasses

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### Getting a handle on brushed DC motor current

Getting a handle on brushed DC motor current Ross Eisenbeis, Systems Engineer, Texas Instruments - November 11, 2015 Systems that have controlled parameters and closed-loop feedback mechanisms are generally

### GenTech Practice Questions

GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

### Computer Controlled Generating Stations Control and Regulation Simulator, with SCADA SCE

Technical Teaching Equipment Computer Controlled Generating Stations Control and Regulation Simulator, with SCADA SCE EDIBON SCADA System Teaching Technique used 4 5 2 Data Acquisition Board Cables and

### 2.1 Introduction. 2.2 Terms and definitions

.1 Introduction An important step in the procedure for solving any circuit problem consists first in selecting a number of independent branch currents as (known as loop currents or mesh currents) variables,

### Schematic diagrams depict the construction of a circuit Uses symbols to represent specific circuit elements Documents how elements are connected so

Circuits Schematic diagrams depict the construction of a circuit Uses symbols to represent specific circuit elements Documents how elements are connected so that anyone reading diagram can understand the

### A toy model for teaching the concept of EMF, terminal voltage and internal resistance

A toy model for teaching the concept of EMF, terminal voltage and internal resistance S. K. Foong Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University,

### Springs and Dampers. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 2 Fall 2011

MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 2 Fall 2011 Spring Law : One End Fixed Ideal linear spring law: f = kx. What are the units of k? More generally: f = F(x) nonlinear

### EFC 3600. Frequency converters

2 Bosch Rexroth AG Electric Drives and Controls Documentation Compact and complete: space saving side-by-side assembly, plug-in I/O terminals, with brake chopper and mains filter for ultra-simple installation

### Objective: Part 1: Open-Loop System. ITI SimulationX Page 1 of 20 ITI GmbH 2003

ITI SimulationX Page 1 of 20 ITI GmbH 2003 Tutorial 2: Hydraulic Cylinder Drive Objective: In this tutorial you will create a model for a simple hydraulic cylinder drive, which is controlled by a proportional

### Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink

Transient analysis of integrated solar/diesel hybrid power system using ATLAB Simulink Takyin Taky Chan School of Electrical Engineering Victoria University PO Box 14428 C, elbourne 81, Australia. Taky.Chan@vu.edu.au

### People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

### SYSTEM ANALOGIES. Mechanical Analogy I: Intuitive

Engs Systems SYSTEM ANALOGIES There are simple and straightfward analogies between electrical, thermal, and fluid systems that we have been using as we study thermal and fluid systems. They are detailed

### Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Padma Chaturvedi 1, Amarish Dubey 2 1 Department of Electrical Engineering, Maharana Pratap Engineering College,

### MECE 102 Mechatronics Engineering Orientation

MECE 102 Mechatronics Engineering Orientation Mechatronic System Components Associate Prof. Dr. of Mechatronics Engineering Çankaya University Compulsory Course in Mechatronics Engineering Credits (2/0/2)

### Labview VI Example Virtual Filters Written by: Dan Lankow 2014

PH-315 Portland State University Labview VI Example Virtual Filters Written by: Dan Lankow 2014 1. ABSTRAT For this lab, you will be introduced to Labview. You will be implementing a Low Pass, High Pass,

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

### ELECTRICAL ENGINEERING

EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite

### Electrical Power & Machines

d.c. Machines a.c. Single & Three Phase Machines Dissectible Machines Single & Three phase Transformers Measurement & Control Power Electronics Conventional & Virtual (PC based) Instrumentation Renewable

### EFFICIENCY COMPARISON OF MODERN VARIABLE SPEED DRIVE TECHNOLOGIES

EFFICIENCY COMPARISON OF MODERN VARIABLE SPEED DRIVE TECHNOLOGIES JUNE 1993 BY EDWARD C. LEE POWERTEC INDUSTRIAL CORPORATION Abstract: Brushless D.C. technology is new to the general industrial maketplace