Dynamics of current account in a small open economy

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Dynamics of current account in a small open economy"

Transcription

1 Dynamics of current account in a small open economy Ester Faia, Johann Wolfgang Goethe Universität Frankfurt a.m. March 2009 ster Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March 2009 / 5

2 Recursivity property of the optimal solution In t consumer chooses the consumption plan fc t g t=0 But if he re-maximizes in t + the utility function: U t+ = will he choose the same consumption plan? β s (t+) u(c s ) () + Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

3 Dynamic consistency Since optimization in any subsequent period is undertaken facing the same preferences and the same budget constraint, the optimal consumption plan will be the same In any subsequent period t + x consumption must satisfy the same Euler equation and the same intertemporal b.c.! This is a dynamic consistency property Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

4 Time-inconsistency, Strotz (956) Assume the following utility function: U t = ( + γ)u(c t ) + + This utility places a high weight on current consumption β s t u(c s ) (2) Let s choose the optimal consumption plan at time t. The Euler condition between time t + and all subsequent periods s, for any s > t + reads as following: β s t u0(c s ) u0(c t+ ) = () (s t ) (3) Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

5 Time-inconsistency, Strotz (956) (continued) Let s now re-optimize at t +.The utility function now reads as follows: U t+ = ( + γ)u(c t+ ) + +2 β s (t+) u(c s ) (4) The Euler condition between C t+ and C s,for any s > t +, is: β s t u0(c s ) ( + γ)u0(c t+ ) = () (s t ) (5) Since equation 4 is di erent than equation 5 the new optimal consumption plan will be di erent In this case the optimization problem is time-incosistent Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

6 Variables under permanent levels De ne the permanent level of a variable x as: Recall that: s t s t ex t = x s (6) lim s! s t = +r = r +r = r This implies that ex is the annuity value of the variable x s : ex t = r s t x s Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

7 Dynamic of the current account, Sachs (982) We start with the case in which consumption ís at the steady state In the steady state: β = +r. This implies that consumption is constant and reads as follows: " C t = C = r s t ()B t + (Y s G s I s )# (7) Let s now substitute the above consumption function into the intra-temporal budget constraint: We obtain: CA t = B t+ B t = Y t + rb t G t C t I t CA t = Y t + rb t G t I t (8) " r s t ()B t + (Y t G t I t )# ster Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

8 E ects of changes in current income or investment Let s now use of the de nition of a variable under permanent level (ex t = r s t xs ) into equation 8 +r +r From equation 8 we obtain: " r s t CA t = Y t (Y s G s I s )# = Y t ey t G t eg t I t ei t When current output is larger than the permanent level, Y t > ey t, agents will lend to the rest of the world,ca t > 0, since agents aim at consumption smoothing. If current output, Y t, grows,consumption, C t, stays constant and foreign asset accumulation grows If instead investment, I t, grows, consumption, C t, stays constant and agents have to borrow from abroad ster Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5 G t I t (9)

9 Dynamic of the current account outside the steady state Let s now consider the dynamic of the current account when consumption is obtained outside of the steady state If β 6= +r (outside of steady state) consumption is not constant and is given by: C t = r + θ " where θ = () σ β σ. ()B t + Substitute it into the current account equation: s t (Y s G s I s )# CA t = Y t + rb t G t I t (0) " r + θ s t ()B t + (Y s G s I s )# Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

10 Dynamic of the current account outside the steady state Let s de ne: ω t = ()B t + s t (Y s G s I s ) () After substituting the de nition of permanent level equivalent of each variable and ω t we get: CA t = Y t ey t G t eg t I t ei t {z } θ ω t {z } Due to the consumption smoothing motive agents want consumption to be constant along the balanced growth path Changes in consumption outside of the steady state, due to di erence between β and, induce changes in the current account (+r ) If β >, θ > 0 agents borrow from the rest of the world (+r ) ster Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

11 Variable interest rates Suppose now that, r t, the real interest rate changes over time The new compound discount factor, R t,s, between date t and a generic date s, is given by: R t,s = Π s v =t+ ( v ) (2) For instance: R t,t =, R t,t+ = ( t+ ) R t,t+2 = ( t+ )( t+2 ) The new current account equation (intra-temporal budget constraint) is: CA t = B s+ B s = Y s + r s B s C s G s I s (3) As before one can substitute recursively, B t+, and obtain the intertemporal budget constraint ster Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March 2009 / 5

12 Optimality conditions under variable interest rates The intertemporal budget constraint now reads as: R t,s (C s + I s ) = ( t )B t + The new transversality condition reads as: lim R t,t+b t+t + = 0 T! R t,s (Y s G s ) (4) To obtain the optimal consumption plan, as before, obtain consumption from equation 3 and substitute it into the utility function Given the production function, Y t = AF (K t ), the rst order conditions with respect to B t and K t now read as follows: u0(c s ) = ( s+ )βu0(c s+ ) (5) A s+ F 0(K s+ ) = r s+ (6) Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

13 Dynamic of current account with variable interest rates With iso-elastic preferences, u0(c ) = C σ σ. Euler condition between date t and date s implies Ct = Rt,s β (s t) σ C s. Raise both sides to the power of σ and invert to obtain C s = Rt,s σ β σ(s t) C t. Substitute C s into 4 and obtain: ( t )B t + R t,s (Y s I s G s ) C t = R t,s h R σ t,s β σ(s t)i (7) With variable interest rates the permanent level of a variable is given by: R t,s ex t = R t,s x s ; ex t = R t,s x s R t,s ster Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

14 Dynamic of current account with variable interest rates (continued) De ne eγ t as the discount-rate-weighted average of consumption growth rates between date t and any date s : = R t,s h R σ t,s β σ(s R t,s Write the consumption function, as obtained from equation 4, as: t)i C t = ( t )B t g Γ t R t,s + g Γ t(y s I s G s ) Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

15 Dynamic of current account with variable interest rates After substituting the above consumtpion function in the CA we obtain: ~ CA t = (r t r t )B t + Y t ey t G t eg t I t ei t + +( e Γ t eγ t )( ~ r t B t + ey t ei t eg t ) Ester Faia, (Johann Wolfgang Goethe Universität Dynamics Frankfurt of current a.m.) account in a small open economy March / 5

Intertemporal approach to current account: small open economy

Intertemporal approach to current account: small open economy Intertemporal approach to current account: small open economy Ester Faia Johann Wolfgang Goethe Universität Frankfurt a.m. March 2009 ster Faia (Johann Wolfgang Goethe Universität Intertemporal Frankfurt

More information

The Real Business Cycle Model

The Real Business Cycle Model The Real Business Cycle Model Ester Faia Goethe University Frankfurt Nov 2015 Ester Faia (Goethe University Frankfurt) RBC Nov 2015 1 / 27 Introduction The RBC model explains the co-movements in the uctuations

More information

Lecture 1: The intertemporal approach to the current account

Lecture 1: The intertemporal approach to the current account Lecture 1: The intertemporal approach to the current account Open economy macroeconomics, Fall 2006 Ida Wolden Bache August 22, 2006 Intertemporal trade and the current account What determines when countries

More information

The Macroeconomics of External Debt

The Macroeconomics of External Debt The Macroeconomics of External Debt Prof. Ester Faia, Ph.D. Goethe University Frankfurt June 2010 rof. Ester Faia (Goethe University Frankfurt) The Macroeconomics of External Debt 06/10 1 / 15 Debt Crisis

More information

Relative prices and Balassa Samuleson e ect

Relative prices and Balassa Samuleson e ect Relative prices and Balassa Samuleson e ect Prof. Ester Faia, Ph.D. Johann Wolfgang Goethe Universität Frankfurt a.m. March 2009 rof. Ester Faia, Ph.D. (Johann Wolfgang Goethe Relative Universität prices

More information

A Two-Period Model of the Current Account Obstfeld and Rogo, Chapter 1

A Two-Period Model of the Current Account Obstfeld and Rogo, Chapter 1 A Two-Period Model of the Current Account Obstfeld and Rogo, Chapter 1 1 Small Open Endowment Economy 1.1 Consumption Optimization problem maximize U i 1 = u c i 1 + u c i 2 < 1 subject to the budget constraint

More information

Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2

Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 Current Accounts in Open Economies Obstfeld and Rogoff, Chapter 2 1 Consumption with many periods 1.1 Finite horizon of T Optimization problem maximize U t = u (c t ) + β (c t+1 ) + β 2 u (c t+2 ) +...

More information

Dynamics of Small Open Economies

Dynamics of Small Open Economies Dynamics of Small Open Economies Lecture 2, ECON 4330 Tord Krogh January 22, 2013 Tord Krogh () ECON 4330 January 22, 2013 1 / 68 Last lecture The models we have looked at so far are characterized by:

More information

Lecture 1: current account - measurement and theory

Lecture 1: current account - measurement and theory Lecture 1: current account - measurement and theory What is international finance (as opposed to international trade)? International trade: microeconomic approach (many goods and factors). How cross country

More information

ECON 20310 Elements of Economic Analysis IV. Problem Set 1

ECON 20310 Elements of Economic Analysis IV. Problem Set 1 ECON 20310 Elements of Economic Analysis IV Problem Set 1 Due Thursday, October 11, 2012, in class 1 A Robinson Crusoe Economy Robinson Crusoe lives on an island by himself. He generates utility from leisure

More information

Solutions Problem Set 2 Macro II (14.452)

Solutions Problem Set 2 Macro II (14.452) Solutions Problem Set 2 Macro II (4.452) Francisco A. Gallego 4/22 We encourage you to work together, as long as you write your own solutions. Intertemporal Labor Supply Consider the following problem.

More information

4. Only one asset that can be used for production, and is available in xed supply in the aggregate (call it land).

4. Only one asset that can be used for production, and is available in xed supply in the aggregate (call it land). Chapter 3 Credit and Business Cycles Here I present a model of the interaction between credit and business cycles. In representative agent models, remember, no lending takes place! The literature on the

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON4310 Intertemporal macroeconomics Date of exam: Thursday, November 27, 2008 Grades are given: December 19, 2008 Time for exam: 09:00 a.m. 12:00 noon

More information

14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth

14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth 14.452 Economic Growth: Lectures 6 and 7, Neoclassical Growth Daron Acemoglu MIT November 15 and 17, 211. Daron Acemoglu (MIT) Economic Growth Lectures 6 and 7 November 15 and 17, 211. 1 / 71 Introduction

More information

A Model of the Current Account

A Model of the Current Account A Model of the Current Account Costas Arkolakis teaching assistant: Yijia Lu Economics 407, Yale January 2011 Model Assumptions 2 periods. A small open economy Consumers: Representative consumer Period

More information

14.451 Lecture Notes 10

14.451 Lecture Notes 10 14.451 Lecture Notes 1 Guido Lorenzoni Fall 29 1 Continuous time: nite horizon Time goes from to T. Instantaneous payo : f (t; x (t) ; y (t)) ; (the time dependence includes discounting), where x (t) 2

More information

This is a simple guide to optimal control theory. In what follows, I borrow freely from Kamien and Shwartz (1981) and King (1986).

This is a simple guide to optimal control theory. In what follows, I borrow freely from Kamien and Shwartz (1981) and King (1986). ECON72: MACROECONOMIC THEORY I Martin Boileau A CHILD'S GUIDE TO OPTIMAL CONTROL THEORY 1. Introduction This is a simple guide to optimal control theory. In what follows, I borrow freely from Kamien and

More information

Lesson 1. Net Present Value. Prof. Beatriz de Blas

Lesson 1. Net Present Value. Prof. Beatriz de Blas Lesson 1. Net Present Value Prof. Beatriz de Blas April 2006 1. Net Present Value 1 1. Introduction When deciding to invest or not, a rm or an individual has to decide what to do with the money today.

More information

Universidad de Montevideo Macroeconomia II. The Ramsey-Cass-Koopmans Model

Universidad de Montevideo Macroeconomia II. The Ramsey-Cass-Koopmans Model Universidad de Montevideo Macroeconomia II Danilo R. Trupkin Class Notes (very preliminar) The Ramsey-Cass-Koopmans Model 1 Introduction One shortcoming of the Solow model is that the saving rate is exogenous

More information

Real Business Cycle Models

Real Business Cycle Models Real Business Cycle Models Lecture 2 Nicola Viegi April 2015 Basic RBC Model Claim: Stochastic General Equlibrium Model Is Enough to Explain The Business cycle Behaviour of the Economy Money is of little

More information

Noah Williams Economics 312. University of Wisconsin Spring 2013. Midterm Examination Solutions

Noah Williams Economics 312. University of Wisconsin Spring 2013. Midterm Examination Solutions Noah Williams Economics 31 Department of Economics Macroeconomics University of Wisconsin Spring 013 Midterm Examination Solutions Instructions: This is a 75 minute examination worth 100 total points.

More information

Common sense, and the model that we have used, suggest that an increase in p means a decrease in demand, but this is not the only possibility.

Common sense, and the model that we have used, suggest that an increase in p means a decrease in demand, but this is not the only possibility. Lecture 6: Income and Substitution E ects c 2009 Je rey A. Miron Outline 1. Introduction 2. The Substitution E ect 3. The Income E ect 4. The Sign of the Substitution E ect 5. The Total Change in Demand

More information

In ation Tax and In ation Subsidies: Working Capital in a Cash-in-advance model

In ation Tax and In ation Subsidies: Working Capital in a Cash-in-advance model In ation Tax and In ation Subsidies: Working Capital in a Cash-in-advance model George T. McCandless March 3, 006 Abstract This paper studies the nature of monetary policy with nancial intermediaries that

More information

Discrete Dynamic Optimization: Six Examples

Discrete Dynamic Optimization: Six Examples Discrete Dynamic Optimization: Six Examples Dr. Tai-kuang Ho Associate Professor. Department of Quantitative Finance, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013,

More information

Endogenous Growth Models

Endogenous Growth Models Endogenous Growth Models Lorenza Rossi Goethe University 2011-2012 Endogenous Growth Theory Neoclassical Exogenous Growth Models technological progress is the engine of growth technological improvements

More information

Macroeconomics 2. Technological progress and growth: The general Solow model. Mirko Wiederholt. Goethe University Frankfurt.

Macroeconomics 2. Technological progress and growth: The general Solow model. Mirko Wiederholt. Goethe University Frankfurt. Macroeconomics 2 Technological progress and growth: The general Solow model Mirko Wiederholt Goethe University Frankfurt Lecture 3 irko Wiederholt (Goethe University Frankfurt) Macroeconomics 2 Lecture

More information

Cross-Border Tax Externalities: Are Budget Deficits Too Small? *

Cross-Border Tax Externalities: Are Budget Deficits Too Small? * Cross-Border Tax Externalities: Are Budget Deficits Too Small? * Willem H. Buiter ** and Anne C. Sibert *** Revised October 2005 Willem H. Buiter and Anne C. Sibert. The authors would like to thank Jordi

More information

Real Business Cycle Theory. Marco Di Pietro Advanced () Monetary Economics and Policy 1 / 35

Real Business Cycle Theory. Marco Di Pietro Advanced () Monetary Economics and Policy 1 / 35 Real Business Cycle Theory Marco Di Pietro Advanced () Monetary Economics and Policy 1 / 35 Introduction to DSGE models Dynamic Stochastic General Equilibrium (DSGE) models have become the main tool for

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 2. Cashflows. c 29. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 29 Edition,

More information

capital accumulation and growth. Luisa Fuster y January 1998

capital accumulation and growth. Luisa Fuster y January 1998 Eects of uncertain lifetime and annuity insurance on capital accumulation and growth. Luisa Fuster y January 1998 I am indebted to Jordi Caballe for his advice and encouragement. I am also very grateful

More information

ECON 5010 Class Notes Business Cycles and the Environment

ECON 5010 Class Notes Business Cycles and the Environment ECON 5010 Class Notes Business Cycles and the Environment Here, I outline a forthcoming paper by Garth Heutel in the Review of Economic Dynamics. The title is "How Should Environmental Policy Respond to

More information

Homogeneity Learners grouped in one kind of educational institution are perceived to be similar and therefore get the same treatment. Heterogeneity Learners are perceived to be di erent. Adjustments are

More information

CAPM, Arbitrage, and Linear Factor Models

CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors

More information

Margin Requirements and Equilibrium Asset Prices

Margin Requirements and Equilibrium Asset Prices Margin Requirements and Equilibrium Asset Prices Daniele Coen-Pirani Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA Abstract This paper studies

More information

Lecture 2 Dynamic Equilibrium Models : Finite Periods

Lecture 2 Dynamic Equilibrium Models : Finite Periods Lecture 2 Dynamic Equilibrium Models : Finite Periods 1. Introduction In macroeconomics, we study the behavior of economy-wide aggregates e.g. GDP, savings, investment, employment and so on - and their

More information

Prep. Course Macroeconomics

Prep. Course Macroeconomics Prep. Course Macroeconomics Intertemporal consumption and saving decision; Ramsey model Tom-Reiel Heggedal tom-reiel.heggedal@bi.no BI 2014 Heggedal (BI) Savings & Ramsey 2014 1 / 30 Overview this lecture

More information

3 The Standard Real Business Cycle (RBC) Model. Optimal growth model + Labor decisions

3 The Standard Real Business Cycle (RBC) Model. Optimal growth model + Labor decisions Franck Portier TSE Macro II 29-21 Chapter 3 Real Business Cycles 36 3 The Standard Real Business Cycle (RBC) Model Perfectly competitive economy Optimal growth model + Labor decisions 2 types of agents

More information

ECON 305 Tutorial 7 (Week 9)

ECON 305 Tutorial 7 (Week 9) H. K. Chen (SFU) ECON 305 Tutorial 7 (Week 9) July 2,3, 2014 1 / 24 ECON 305 Tutorial 7 (Week 9) Questions for today: Ch.9 Problems 15, 7, 11, 12 MC113 Tutorial slides will be posted Thursday after 10:30am,

More information

Time Preference and the Distributions of Wealth and. Income

Time Preference and the Distributions of Wealth and. Income Time Preference and the Distributions of Wealth and Income Richard M. H. Suen This Version: February 2010 Abstract This paper presents a dynamic competitive equilibrium model with heterogeneous time preferences

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

Lecture 9: Keynesian Models

Lecture 9: Keynesian Models Lecture 9: Keynesian Models Professor Eric Sims University of Notre Dame Fall 2009 Sims (Notre Dame) Keynesian Fall 2009 1 / 23 Keynesian Models The de ning features of RBC models are: Markets clear Money

More information

Long-run and Cyclic Movements in the Unemployment Rate in Hong Kong: A Dynamic, General Equilibrium Approach

Long-run and Cyclic Movements in the Unemployment Rate in Hong Kong: A Dynamic, General Equilibrium Approach Long-run and Cyclic Movements in the Unemployment Rate in Hong Kong: A Dynamic, General Equilibrium Approach Michael K. Salemi March 15, 2007 Abstract Prior to the late 1990s, low unemployment was a standard

More information

Capital Trading, StockTrading, andthe In ationtaxon Equity

Capital Trading, StockTrading, andthe In ationtaxon Equity Capital Trading, StockTrading, andthe In ationtaxon Equity Ralph Chami y IMF Institute Thomas F. Cosimano z University of Notre Dame and Connel Fullenkamp x Duke University May 1998; Revision October 2000

More information

14.452 Economic Growth: Lecture 11, Technology Diffusion, Trade and World Growth

14.452 Economic Growth: Lecture 11, Technology Diffusion, Trade and World Growth 14.452 Economic Growth: Lecture 11, Technology Diffusion, Trade and World Growth Daron Acemoglu MIT December 2, 2014. Daron Acemoglu (MIT) Economic Growth Lecture 11 December 2, 2014. 1 / 43 Introduction

More information

Financial Development and Macroeconomic Stability

Financial Development and Macroeconomic Stability Financial Development and Macroeconomic Stability Vincenzo Quadrini University of Southern California Urban Jermann Wharton School of the University of Pennsylvania January 31, 2005 VERY PRELIMINARY AND

More information

Technology and Economic Growth

Technology and Economic Growth Growth Accounting Formula Technology and Economic Growth A. %ΔY = %ΔA + (2/3) %ΔN + (1/3) %ΔK B. Ex. Suppose labor, capital, and technology each grow at 1% a year. %ΔY = 1 + (2/3) 1 + (1/3) 1 = 2 C. Growth

More information

Optimal Paternalism: Sin Taxes and Health Subsidies

Optimal Paternalism: Sin Taxes and Health Subsidies Optimal Paternalism: Sin Taxes and Health Subsidies Thomas Aronsson and Linda Thunström Department of Economics, Umeå University SE - 901 87 Umeå, Sweden April 2005 Abstract The starting point for this

More information

Money and Public Finance

Money and Public Finance Money and Public Finance By Mr. Letlet August 1 In this anxious market environment, people lose their rationality with some even spreading false information to create trading opportunities. The tales about

More information

10. Fixed-Income Securities. Basic Concepts

10. Fixed-Income Securities. Basic Concepts 0. Fixed-Income Securities Fixed-income securities (FIS) are bonds that have no default risk and their payments are fully determined in advance. Sometimes corporate bonds that do not necessarily have certain

More information

Mathematics. Rosella Castellano. Rome, University of Tor Vergata

Mathematics. Rosella Castellano. Rome, University of Tor Vergata and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings

More information

The Intertemporal Approach to the Current Account and Currency Crises

The Intertemporal Approach to the Current Account and Currency Crises Darwin College Research Report DCRR-005 The Intertemporal Approach to the Current Account and Currency Crises Sergejs Saksonovs June 2006 Darwin College Cambridge University United Kingdom CB3 9EU www.dar.cam.ac.uk/dcrr

More information

GROWTH, INCOME TAXES AND CONSUMPTION ASPIRATIONS

GROWTH, INCOME TAXES AND CONSUMPTION ASPIRATIONS GROWTH, INCOME TAXES AND CONSUMPTION ASPIRATIONS Gustavo A. Marrero Alfonso Novales y July 13, 2011 ABSTRACT: In a Barro-type economy with exogenous consumption aspirations, raising income taxes favors

More information

Two examples of structural modelling. Notes for "Structural modelling".

Two examples of structural modelling. Notes for Structural modelling. Two examples of structural modelling. Notes for "Structural modelling". Martin Browning Department of Economics, University of Oxford Revised, February 3 2012 1 Introduction. Structural models are models

More information

Introduction. Agents have preferences over the two goods which are determined by a utility function. Speci cally, type 1 agents utility is given by

Introduction. Agents have preferences over the two goods which are determined by a utility function. Speci cally, type 1 agents utility is given by Introduction General equilibrium analysis looks at how multiple markets come into equilibrium simultaneously. With many markets, equilibrium analysis must take explicit account of the fact that changes

More information

Reforming the Tax System Lecture II: The Taxation of Savings. December 2015 Richard Blundell University College London

Reforming the Tax System Lecture II: The Taxation of Savings. December 2015 Richard Blundell University College London Econ 3007 Economic Policy Analysis Reforming the Tax System Lecture II: The Taxation of Savings December 205 Richard Blundell niversity ollege London Teaching Resources at: http://www.ucl.ac.uk/~uctp39a/lect.html

More information

University of Saskatchewan Department of Economics Economics 414.3 Homework #1

University of Saskatchewan Department of Economics Economics 414.3 Homework #1 Homework #1 1. In 1900 GDP per capita in Japan (measured in 2000 dollars) was $1,433. In 2000 it was $26,375. (a) Calculate the growth rate of income per capita in Japan over this century. (b) Now suppose

More information

The Present-Value Model of the Current Account: Results from Norway

The Present-Value Model of the Current Account: Results from Norway The Present-Value Model of the Current Account: Results from Norway Vegard Høghaug Larsen Submitted for the degree of Master of Science in Economics Department of Economics NORWEGIAN UNIVERSITY OF SCIENCE

More information

Nonseparable Preferences and Optimal Social Security Systems

Nonseparable Preferences and Optimal Social Security Systems Minnesota Economics Research Reports Nonseparable Preferences and Optimal Social Security Systems by Borys Grochulski Federal Reserve Bank of Richmond and Narayana R. Kocherlakota University of Minnesota,

More information

Real Business Cycle Theory

Real Business Cycle Theory Real Business Cycle Theory Barbara Annicchiarico Università degli Studi di Roma "Tor Vergata" April 202 General Features I Theory of uctuations (persistence, output does not show a strong tendency to return

More information

14.452 Economic Growth: Lectures 2 and 3: The Solow Growth Model

14.452 Economic Growth: Lectures 2 and 3: The Solow Growth Model 14.452 Economic Growth: Lectures 2 and 3: The Solow Growth Model Daron Acemoglu MIT November 1 and 3, 2011. Daron Acemoglu (MIT) Economic Growth Lectures 2 and 3 November 1 and 3, 2011. 1 / 96 Solow Growth

More information

Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge

Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge Stefano Eusepi, Marc Giannoni and Bruce Preston The views expressed are those of the authors and are not necessarily re

More information

Cash-in-Advance Model

Cash-in-Advance Model Cash-in-Advance Model Prof. Lutz Hendricks Econ720 September 21, 2015 1 / 33 Cash-in-advance Models We study a second model of money. Models where money is a bubble (such as the OLG model we studied) have

More information

The Budget Deficit, Public Debt and Endogenous Growth

The Budget Deficit, Public Debt and Endogenous Growth The Budget Deficit, Public Debt and Endogenous Growth Michael Bräuninger October 2002 Abstract This paper analyzes the effects of public debt on endogenous growth in an overlapping generations model. The

More information

1 Present and Future Value

1 Present and Future Value Lecture 8: Asset Markets c 2009 Je rey A. Miron Outline:. Present and Future Value 2. Bonds 3. Taxes 4. Applications Present and Future Value In the discussion of the two-period model with borrowing and

More information

The Current Account Balance: Part One

The Current Account Balance: Part One The Current Account Balance: Part One Barry W. Ickes Econ 434 Fall 2008 1. Introduction The current account balance is a measure of a country s transactions with the rest of the world. It includes all

More information

4.6 Null Space, Column Space, Row Space

4.6 Null Space, Column Space, Row Space NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear

More information

Credit Decomposition and Business Cycles in Emerging Market Economies

Credit Decomposition and Business Cycles in Emerging Market Economies Credit Decomposition and Business Cycles in Emerging Market Economies Berrak Bahadir y University of Georgia Inci Gumus z Sabanci University July 24, 214 Abstract This paper analyzes di erent types of

More information

Real Business Cycle Theory

Real Business Cycle Theory Real Business Cycle Theory Guido Ascari University of Pavia () Real Business Cycle Theory 1 / 50 Outline Introduction: Lucas methodological proposal The application to the analysis of business cycle uctuations:

More information

EXOGENOUS GROWTH MODELS

EXOGENOUS GROWTH MODELS EXOGENOUS GROWTH MODELS Lorenza Rossi Goethe University 2011-2012 Course Outline FIRST PART - GROWTH THEORIES Exogenous Growth The Solow Model The Ramsey model and the Golden Rule Introduction to Endogenous

More information

Why Does Consumption Lead the Business Cycle?

Why Does Consumption Lead the Business Cycle? Why Does Consumption Lead the Business Cycle? Yi Wen Department of Economics Cornell University, Ithaca, N.Y. yw57@cornell.edu Abstract Consumption in the US leads output at the business cycle frequency.

More information

International Debt Deleveraging

International Debt Deleveraging International Debt Deleveraging Luca Fornaro CREI and Universitat Pompeu Fabra 12 th Macroeconomic Policy Research Workshop Budapest, September 213 1 Motivating facts: Household debt/gdp Household debt/gdp

More information

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan

Economics 326: Duality and the Slutsky Decomposition. Ethan Kaplan Economics 326: Duality and the Slutsky Decomposition Ethan Kaplan September 19, 2011 Outline 1. Convexity and Declining MRS 2. Duality and Hicksian Demand 3. Slutsky Decomposition 4. Net and Gross Substitutes

More information

E cient Credit Policies in a Housing Debt Crisis

E cient Credit Policies in a Housing Debt Crisis Housing Credit E cient Credit Policies in a Housing Debt Crisis Janice Eberly and Arvind Krishnamurthy Kellogg School of Management, Northwestern University, and Stanford GSB May 2015 Housing Credit Introduction

More information

Lecture 14 More on Real Business Cycles. Noah Williams

Lecture 14 More on Real Business Cycles. Noah Williams Lecture 14 More on Real Business Cycles Noah Williams University of Wisconsin - Madison Economics 312 Optimality Conditions Euler equation under uncertainty: u C (C t, 1 N t) = βe t [u C (C t+1, 1 N t+1)

More information

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.

c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint. Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions

More information

Development Economics Lecture 5: Productivity & Technology

Development Economics Lecture 5: Productivity & Technology Development Economics Lecture 5: Productivity & Technology Måns Söderbom University of Gothenburg mans.soderbom@economics.gu.se www.soderbom.net 1 Measuring Productivity Reference: Chapter 7 in Weil. Thus

More information

A New Perspective on The New Rule of the Current Account

A New Perspective on The New Rule of the Current Account A New Perspective on The New Rule of the Current Account Cedric Tille Graduate Institute of International and Development Studies, Geneva CEPR 1 Eric van Wincoop University of Virginia NBER 2 1 Corresponding

More information

Optimal Unemployment and Disability Insurance*

Optimal Unemployment and Disability Insurance* Optimal Unemployment and Disability Insurance* Erik Höglin Stockholm School of Economics erik:hoglin@hhs:se July 2007 ABSTRACT. This paper considers optimal unemployment and disability insurance in an

More information

The Basics of Interest Theory

The Basics of Interest Theory Contents Preface 3 The Basics of Interest Theory 9 1 The Meaning of Interest................................... 10 2 Accumulation and Amount Functions............................ 14 3 Effective Interest

More information

Key elements of Monetary Policy

Key elements of Monetary Policy Key elements of Monetary Policy Part II Economic Policy Course for Civil Society June 2004 World Bank Institute Structure of the Presentation Introduction Current account Balance of Payments Debt Current

More information

We first solve for the present value of the cost per two barrels: (1.065) 2 = 41.033 (1.07) 3 = 55.341. x = 20.9519

We first solve for the present value of the cost per two barrels: (1.065) 2 = 41.033 (1.07) 3 = 55.341. x = 20.9519 Chapter 8 Swaps Question 8.1. We first solve for the present value of the cost per two barrels: $22 1.06 + $23 (1.065) 2 = 41.033. We then obtain the swap price per barrel by solving: which was to be shown.

More information

Midterm March 2015. (a) Consumer i s budget constraint is. c i 0 12 + b i c i H 12 (1 + r)b i c i L 12 (1 + r)b i ;

Midterm March 2015. (a) Consumer i s budget constraint is. c i 0 12 + b i c i H 12 (1 + r)b i c i L 12 (1 + r)b i ; Masters in Economics-UC3M Microeconomics II Midterm March 015 Exercise 1. In an economy that extends over two periods, today and tomorrow, there are two consumers, A and B; and a single perishable good,

More information

Introduction to Binomial Trees

Introduction to Binomial Trees 11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths

More information

Research Division Federal Reserve Bank of St. Louis Working Paper Series

Research Division Federal Reserve Bank of St. Louis Working Paper Series Research Division Federal Reserve Bank of St. Louis Working Paper Series Comment on "Taylor Rule Exchange Rate Forecasting During the Financial Crisis" Michael W. McCracken Working Paper 2012-030A http://research.stlouisfed.org/wp/2012/2012-030.pdf

More information

Chapter 1 The Measurement of Interest

Chapter 1 The Measurement of Interest Interest: the compensation that a borrower of capital pays to a lender of capital for its use. It can be viewed as a form of rent that the borrower pays to the lender to compensate for the loss of use

More information

Trading and rational security pricing bubbles Jean-Marc Bottazzi a Jaime Luque b Mário R. Páscoa c

Trading and rational security pricing bubbles Jean-Marc Bottazzi a Jaime Luque b Mário R. Páscoa c Working Paper 11-19 Departamento de Economía Economic Series Universidad Carlos III de Madrid May, 2011 Calle Madrid, 126 28903 Getafe (Spain) Fax (34) 916249875 Trading and rational security pricing bubbles

More information

Short-term Financial Planning and Management.

Short-term Financial Planning and Management. Short-term Financial Planning and Management. This topic discusses the fundamentals of short-term nancial management; the analysis of decisions involving cash ows which occur within a year or less. These

More information

Comments on \Do We Really Know that Oil Caused the Great Stag ation? A Monetary Alternative", by Robert Barsky and Lutz Kilian

Comments on \Do We Really Know that Oil Caused the Great Stag ation? A Monetary Alternative, by Robert Barsky and Lutz Kilian Comments on \Do We Really Know that Oil Caused the Great Stag ation? A Monetary Alternative", by Robert Barsky and Lutz Kilian Olivier Blanchard July 2001 Revisionist history is always fun. But it is not

More information

Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model

Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model Brunel University Msc., EC5504, Financial Engineering Prof Menelaos Karanasos Lecture Notes: Basic Concepts in Option Pricing - The Black and Scholes Model Recall that the price of an option is equal to

More information

BORROWING CONSTRAINTS, THE COST OF PRECAUTIONARY SAVING AND UNEMPLOYMENT INSURANCE

BORROWING CONSTRAINTS, THE COST OF PRECAUTIONARY SAVING AND UNEMPLOYMENT INSURANCE BORROWING CONSTRAINTS, THE COST OF PRECAUTIONARY SAVING AND UNEMPLOYMENT INSURANCE Thomas F. Crossley McMaster University Hamish W. Low University of Cambridge and Institute for Fiscal Studies January

More information

Dynamics of the current account in a small open economy microfounded model

Dynamics of the current account in a small open economy microfounded model Dynamics of the current account in a small open economy microfounded model Lecture 4, MSc Open Economy Macroeconomics Birmingham, Autumn 2015 Tony Yates Main features of the model. Small open economy.

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Payment streams and variable interest rates

Payment streams and variable interest rates Chapter 4 Payment streams and variable interest rates In this chapter we consider two extensions of the theory Firstly, we look at payment streams A payment stream is a payment that occurs continuously,

More information

Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

More information

y t by left multiplication with 1 (L) as y t = 1 (L) t =ª(L) t 2.5 Variance decomposition and innovation accounting Consider the VAR(p) model where

y t by left multiplication with 1 (L) as y t = 1 (L) t =ª(L) t 2.5 Variance decomposition and innovation accounting Consider the VAR(p) model where . Variance decomposition and innovation accounting Consider the VAR(p) model where (L)y t = t, (L) =I m L L p L p is the lag polynomial of order p with m m coe±cient matrices i, i =,...p. Provided that

More information

Group Lending and Enforcement

Group Lending and Enforcement Group Lending and Enforcement October 2007 () Group lending October 2007 1 / 26 Group Lending in Theory Grameen I ("classic") 2:2:1 staggering at 4-6 week intervals 1 loan cycle = a year joint liability:

More information

Consumption and Savings Decisions: A Two-Period Setting

Consumption and Savings Decisions: A Two-Period Setting Consumption and Savings Decisions: A Two-Period Setting Dynamic Macroeconomic Analysis Universidad Autonóma de Madrid Fall 2012 Dynamic Macroeconomic Analysis (UAM) Consumption and Savings Fall 2012 1

More information

Unemployment insurance/severance payments and informality in developing countries

Unemployment insurance/severance payments and informality in developing countries Unemployment insurance/severance payments and informality in developing countries David Bardey y and Fernando Jaramillo z First version: September 2011. Tis version: November 2011. Abstract We analyze

More information

Unifying Time-to-Build Theory

Unifying Time-to-Build Theory Unifying Time-to-Build Theory M. Bambi, and F. Gori speaker: M. Bambi (University of York, U.K.) OFCE-SKEMA, Nice, 2010 Time to Build Time to Build (TtB) means that capital takes time to becomes productive.

More information

QUIZ 3 14.02 Principles of Macroeconomics May 19, 2005. I. True/False (30 points)

QUIZ 3 14.02 Principles of Macroeconomics May 19, 2005. I. True/False (30 points) QUIZ 3 14.02 Principles of Macroeconomics May 19, 2005 I. True/False (30 points) 1. A decrease in government spending and a real depreciation is the right policy mix to improve the trade balance without

More information