Conditions for Strong Synchronization In Concurrent Data Types

Size: px
Start display at page:

Download "Conditions for Strong Synchronization In Concurrent Data Types"

Transcription

1 Conditions for Strong Synchronization In Concurrent Data Types Maged Michael IBM TJ Watson Research Center Joint work with Martin Vechev and Vijay Sarsawat Joint work with Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, and Martin Vechev Dagstuhl Seminar on Consistency in Distributed Systems February Maged Michael Conditions for Strong Synchronization

2 Idempotent Work Stealing Joint work with Martin Vechev and Vijay Saraswat 2 Maged Michael Conditions for Strong Synchronization

3 Work Stealing Load Balancing T1 T2 Work stealing is a load balancing technique Three operations: Put a task in own work set Take a task from own work set Steal a task from another thread s work set T1 s Work Put T1 Steal T2 Take T2 s Work No More Work 3 Maged Michael Conditions for Strong Synchronization

4 Idempotent Work Stealing Observation: Some application semantics can tolerate the repetition of tasks. Such tasks are idempotent tasks. Conventional work stealing Each inserted task is eventually extracted exactly once Idempotent work stealing Each inserted task is eventually extracted at least once Example: Take and steal extract same task T1 Take t T1 s Work t Steal T2 Inserted once, extracted twice the same task 4 Maged Michael Conditions for Strong Synchronization

5 Work Stealing Algorithms Arora+ 1998, Frigo+ 1998, Hendler+ 2002, 2006, Chase-Lev 2005 Prior algorithms require a store-load ordering in the owner s critical path Example from Chase-Lev 2005 The owner s take operation public Object popbottom() { 20 long b = this.bottom; 21 CircularArray a = this.activearray; 22 b = b - 1; 23 this.bottom = b; store 24 long t = this.top; load... Store-load fence instructions and atomic instructions are typically slower than regular memory access instructions 5 Maged Michael Conditions for Strong Synchronization

6 Opportunity Design idempotent work stealing to exploit relaxed application semantics Owner s critical path uses no store-load fences and no atomic operations 6 Maged Michael Conditions for Strong Synchronization

7 Guarantees: Idempotent Work Stealing Algorithms No lost tasks No garbage tasks extracted Owner never extracts the same task twice Three Algorithms with three extraction policies LIFO FIFO H T H T Put Take Steal Put Put Take Take Steal Steal Double Ended LIFO: Owner and thieves extract tasks from tail FIFO: Owner and thieves extract tasks from head Double-Ended: Owner extracts from tail. Thieves extract from head. H T 7 Maged Michael Conditions for Strong Synchronization

8 Structures anchor: <integer,integer> // <tail,tag> tasks: task array LIFO Algorithm packed word tail tag Put (task) No StoreLoad order and no atomic ops by owner 1 <t,g> := anchor 2 if (t == tasks.size) EXPAND... 3 tasks.array[t] := task 4 anchor := <t+1,g+1> Steal () 1 <t,g> := anchor 2 if (t == 0) return EMPTY Take () 1 <t,g> := anchor 2 if (t == 0) return EMPTY 3 task := tasks.array[t-1] 4 anchor := <t-1,g> 5 return task Order read in 1 before read in 3 3 a := tasks 4 task := a.array[t-1] Order read in 4 before CAS in 5 5 if!cas(anchor,<t,g>,<t-1,g>) CONFLICT... 6 return task only thieves need atomic ops 8 Maged Michael Conditions for Strong Synchronization

9 How steals may be lost LIFO Algorithm Losing Steals Put (Y) 1 1 <t,g> := anchor t,g == 2,100 2 if (t == capacity) EXPAND tasks[t] := task tasks[2] == Y Order write in 3 before write in anchor := <t+1,g+1> anchor == 3,101 Tail Tag W T X T Y 2 Steal X The steal of X is lost Similarly, steals concurrent with a slow take may be lost But, steals not concurrent with owner ops are never lost 9 Maged Michael Conditions for Strong Synchronization

10 FIFO Algorithm Structures head: integer tail: integer tasks: task array Put (task) 1 h := head 2 t := tail 3 if (t == h + tasks.size) EXPAND... 4 tasks.array[t % tasks.size] := task 5 tail := t + 1 Take () 1 h := head 2 t := tail 3 if (t == h) return EMPTY 4 task := tasks.array[h % tasks.size] 5 head := h return task No packed tags. No size limit No StoreLoad order and no atomic ops by owner Steal () head tail 1 h := head Order read in 1 before read in 2 2 t := tail 3 if (t == h) return EMPTY Order read in 1 before read in 4 4 a := tasks 5 task := a.array[h % a.size] Order read in 5 before CAS in 6 6 if!cas(head,h,h+1) CONFLICT... 7 return task only thieves need atomic ops 10 Maged Michael Conditions for Strong Synchronization

11 Double-Ended Algorithm Structures anchor: <integer,integer,integer> // <head,size,tag> tasks: task array Put (task) 1 <h,s,g> := anchor No StoreLoad order and no atomic ops by owner packed word limited max size head size tag head head + size 2 if (s == tasks.size) EXPAND... 3 tasks.array[h+s % tasks.size] := task Order write in 3 before write in 4 4 anchor := <h,s+1,g+1> Steal () 1 <h,s,g> := anchor 2 if (s == 0) return EMPTY Order read in 1 before read in 3 Take () 1 <h,s,g> := anchor 2 if (s == 0) return EMPTY 3 task := tasks.array[h+s-1 % tasks.size] 4 anchor := <h,s-1,g> 5 return task 3 a := tasks 4 task := a.array[h % a.size] 5 h2 := h+1 % MAXSIZE Order read in 4 before CAS in 6 6 if!cas(anchor,<h,s,g>,<h2,s-1,g>) CONFLICT 7 return task 11 Maged Michael Conditions for Strong Synchronization

12 Conditions for Strong Synchronization Joint work with Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, and Martin Vechev 12 Maged Michael Conditions for Strong Synchronization

13 Motivation There are good algorithms with good features except for the requirement of strong synchronization Read After Write (RAW) Order StoreLoad order Atomic Write After Read (AWAR) Strong synchronization is typically slower than regular instructions Are there conditions under which the avoidance of both RAW and AWAR is impossible? 13 Maged Michael Conditions for Strong Synchronization

14 Strong Non-Commutativity Given a sequential specification Spec, a complete invocation s 1 of a method m 1 is strongly non-commutative (SNC) if there exist a method m 2, histories base and s 2, such that: s 2 is a complete invocation of m 2 processes executing s 1 and s 2 differ base is a complete sequential history base Spec, base s 1 Spec, base s 2 Spec base s 1 s 2 Spec, base s 2 s 1 Spec s 1 influences s 2 AND s 2 influences s 1 Any SNC invocation must contain strong synchronization Acknowledgement to Sebastian Burckhardt for suggesting the improved form of the SNC definition 14 Maged Michael Conditions for Strong Synchronization

15 Common Examples of SNC Invocations Set Add(v) : true // Returns true iff v was not in the set Remove(v) : true // Returns true iff v was in the set LIFO Stack Pop() : Nonempty Value FIFO Queue Dequeue() : Nonempty Value CAS Data Type CAS(expected,newval) : true Work Stealing Take() : Nonempty Task Steal() : Nonempty Task Counter FetchAndAdd(v) : value 15 Maged Michael Conditions for Strong Synchronization

16 Avoiding SNC: Limited Concurrency E.g., single-consumer FIFO queue Successful multi-consumer dequeue is SNC Successful single-consumer dequeue is not SNC 16 Maged Michael Conditions for Strong Synchronization

17 Avoiding SNC: Limited API E.g., Set Add without return value Set Add : true is SNC Set Add : void is not SNC E.g., Counter Add without returning value FetchAndAdd : integer is SNC AtomicAdd : void is not SNC 17 Maged Michael Conditions for Strong Synchronization

18 Avoiding SNC: Idempotent Types E.g., idempotent work stealing Conventional (non-idempotent) Take is SNC SNC with Steal Idempotent Take is not SNC 18 Maged Michael Conditions for Strong Synchronization

19 Implications Algorithm Design Guidance on when avoiding RAW/AWAR is futile Hardware Design Added motivation to lower overheads of RAW/AWAR API Design Sometimes return values in APIs dictate RAW/AWAR Specifications and Correctness Conditions Motivation to examine requirements for linearizability Formal Verification and Algorithm Synthesis Avoid useless work on non-raw/awar algorithms when RAW/AWAR is required THANK YOU 19 Maged Michael Conditions for Strong Synchronization

Laws of Order: Expensive Synchronization in Concurrent Algorithms Cannot be Eliminated

Laws of Order: Expensive Synchronization in Concurrent Algorithms Cannot be Eliminated Laws of Order: Expensive Synchronization in Concurrent Algorithms Cannot be Eliminated Hagit Attiya Technion hagit@cs.technion.il Rachid Guerraoui EPFL rachid.guerraoui@epfl.ch Danny Hendler Ben-Gurion

More information

Towards Relaxing STM. Christoph M. Kirsch, Michael Lippautz! University of Salzburg. Euro-TM Workshop, April 2014

Towards Relaxing STM. Christoph M. Kirsch, Michael Lippautz! University of Salzburg. Euro-TM Workshop, April 2014 Towards Relaxing STM Christoph M. Kirsch, Michael Lippautz! University of Salzburg! Euro-TM Workshop, April 2014 Problem linear scalability positive scalability good performance throughput (#transactions/time)

More information

Transactional Support for SDN Control Planes "

Transactional Support for SDN Control Planes Transactional Support for SDN Control Planes Petr Kuznetsov Telecom ParisTech WTTM, 2015 Software Defined Networking An emerging paradigm in computer network management Separate forwarding hardware (data

More information

Dynamic Load Balancing. Using Work-Stealing 35.1 INTRODUCTION CHAPTER. Daniel Cederman and Philippas Tsigas

Dynamic Load Balancing. Using Work-Stealing 35.1 INTRODUCTION CHAPTER. Daniel Cederman and Philippas Tsigas CHAPTER Dynamic Load Balancing 35 Using Work-Stealing Daniel Cederman and Philippas Tsigas In this chapter, we present a methodology for efficient load balancing of computational problems that can be easily

More information

The Computability of Relaxed Data Structures: Queues and Stacks as Examples

The Computability of Relaxed Data Structures: Queues and Stacks as Examples The Computability of Relaxed Data Structures: Queues and Stacks as Examples Nir Shavit 1 and Gadi Taubenfeld 2 1 MIT and Tel-Aviv University 2 The Interdisciplinary Center, P.O.Box 167, Herzliya 46150,

More information

Hagit Attiya and Eshcar Hillel. Computer Science Department Technion

Hagit Attiya and Eshcar Hillel. Computer Science Department Technion Hagit Attiya and Eshcar Hillel Computer Science Department Technion !!" What are highly-concurrent data structures and why we care about them The concurrency of existing implementation techniques Two ideas

More information

Linked Lists, Stacks, Queues, Deques. It s time for a chainge!

Linked Lists, Stacks, Queues, Deques. It s time for a chainge! Linked Lists, Stacks, Queues, Deques It s time for a chainge! Learning Goals After this unit, you should be able to... Differentiate an abstraction from an implementation. Define and give examples of problems

More information

CHAPTER 4 ESSENTIAL DATA STRUCTRURES

CHAPTER 4 ESSENTIAL DATA STRUCTRURES CHAPTER 4 ESSENTIAL DATA STRUCTURES 72 CHAPTER 4 ESSENTIAL DATA STRUCTRURES In every algorithm, there is a need to store data. Ranging from storing a single value in a single variable, to more complex

More information

SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (I)

SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (I) SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (I) Shan He School for Computational Science University of Birmingham Module 06-19321: SSC Outline Outline of Topics

More information

Monitors, Java, Threads and Processes

Monitors, Java, Threads and Processes Monitors, Java, Threads and Processes 185 An object-oriented view of shared memory A semaphore can be seen as a shared object accessible through two methods: wait and signal. The idea behind the concept

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Lecture 4 2016 Stacks and... 1/28 1 2 Circular Linked 3 Queue Syntax and Functions in C++ 4 Stacks and... 2/28 FIFO and LIFO Outline Data structures can be specialized versions

More information

Software-Based Replication for Fault Tolerance

Software-Based Replication for Fault Tolerance Theme Feature Software-Based Replication for Fault Tolerance Replication handled by software on off-the-shelf hardware costs less than using specialized hardware. Although an intuitive concept, replication

More information

Data Structures and Algorithms Stacks and Queues

Data Structures and Algorithms Stacks and Queues Data Structures and Algorithms Stacks and Queues Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/23 6-0: Stacks and

More information

Concurrent Data Structures

Concurrent Data Structures 1 Concurrent Data Structures Mark Moir and Nir Shavit Sun Microsystems Laboratories 1.1 Designing Concurrent Data Structures............. 1-1 Performance Blocking Techniques Nonblocking Techniques Complexity

More information

Wait-Free Queues With Multiple Enqueuers and Dequeuers

Wait-Free Queues With Multiple Enqueuers and Dequeuers Wait-Free Queues With Multiple Enqueuers and Dequeuers Alex Kogan Department of Computer Science Technion, Israel sakogan@cs.technion.ac.il Erez Petrank Department of Computer Science Technion, Israel

More information

Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification

Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification Introduction Overview Motivating Examples Interleaving Model Semantics of Correctness Testing, Debugging, and Verification Advanced Topics in Software Engineering 1 Concurrent Programs Characterized by

More information

Avoid a single point of failure by replicating the server Increase scalability by sharing the load among replicas

Avoid a single point of failure by replicating the server Increase scalability by sharing the load among replicas 3. Replication Replication Goal: Avoid a single point of failure by replicating the server Increase scalability by sharing the load among replicas Problems: Partial failures of replicas and messages No

More information

INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER

INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER Course on: Advanced Computer Architectures INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER Prof. Cristina Silvano Politecnico di Milano cristina.silvano@polimi.it Prof. Silvano, Politecnico di Milano

More information

Linked Lists Linked Lists, Queues, and Stacks

Linked Lists Linked Lists, Queues, and Stacks Linked Lists Linked Lists, Queues, and Stacks CSE 10: Introduction to C Programming Fall 200 Dynamic data structure Size is not fixed at compile time Each element of a linked list: holds a value points

More information

Common Data Structures

Common Data Structures Data Structures 1 Common Data Structures Arrays (single and multiple dimensional) Linked Lists Stacks Queues Trees Graphs You should already be familiar with arrays, so they will not be discussed. Trees

More information

Chapter 3: Restricted Structures Page 1

Chapter 3: Restricted Structures Page 1 Chapter 3: Restricted Structures Page 1 1 2 3 4 5 6 7 8 9 10 Restricted Structures Chapter 3 Overview Of Restricted Structures The two most commonly used restricted structures are Stack and Queue Both

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON THE USAGE OF OLD AND NEW DATA STRUCTURE ARRAYS, LINKED LIST, STACK,

More information

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++

1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The

More information

Compiling Object Oriented Languages. What is an Object-Oriented Programming Language? Implementation: Dynamic Binding

Compiling Object Oriented Languages. What is an Object-Oriented Programming Language? Implementation: Dynamic Binding Compiling Object Oriented Languages What is an Object-Oriented Programming Language? Last time Dynamic compilation Today Introduction to compiling object oriented languages What are the issues? Objects

More information

7.1 Our Current Model

7.1 Our Current Model Chapter 7 The Stack In this chapter we examine what is arguably the most important abstract data type in computer science, the stack. We will see that the stack ADT and its implementation are very simple.

More information

Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances

Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances Bounded Cost Algorithms for Multivalued Consensus Using Binary Consensus Instances Jialin Zhang Tsinghua University zhanggl02@mails.tsinghua.edu.cn Wei Chen Microsoft Research Asia weic@microsoft.com Abstract

More information

Dynamic Load Balancing using Graphics Processors

Dynamic Load Balancing using Graphics Processors I.J. Intelligent Systems and Applications, 2014, 05, 70-75 Published Online April 2014 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijisa.2014.05.07 Dynamic Load Balancing using Graphics Processors

More information

1 The Java Virtual Machine

1 The Java Virtual Machine 1 The Java Virtual Machine About the Spec Format This document describes the Java virtual machine and the instruction set. In this introduction, each component of the machine is briefly described. This

More information

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Algorithms and Data Structures (ADS) Bachelor in Informatics Engineering Computer Science Department Lists, Stacks and Queues. Authors: Isabel Segura Bedmar April 2011

More information

Scheduling Task Parallelism" on Multi-Socket Multicore Systems"

Scheduling Task Parallelism on Multi-Socket Multicore Systems Scheduling Task Parallelism" on Multi-Socket Multicore Systems" Stephen Olivier, UNC Chapel Hill Allan Porterfield, RENCI Kyle Wheeler, Sandia National Labs Jan Prins, UNC Chapel Hill Outline" Introduction

More information

This lecture. Abstract data types Stacks Queues. ADTs, Stacks, Queues 1. 2004 Goodrich, Tamassia

This lecture. Abstract data types Stacks Queues. ADTs, Stacks, Queues 1. 2004 Goodrich, Tamassia This lecture Abstract data types Stacks Queues ADTs, Stacks, Queues 1 Abstract Data Types (ADTs) An abstract data type (ADT) is an abstraction of a data structure An ADT specifies: Data stored Operations

More information

D06 PROGRAMMING with JAVA

D06 PROGRAMMING with JAVA Cicles Formatius de Grau Superior Desenvolupament d Aplicacions Informàtiques D06 PROGRAMMING with JAVA Ch20 Data Structures I PowerPoint presentation, created by Angel A. Juan - ajuanp(@)gmail.com, for

More information

Timing of a Disk I/O Transfer

Timing of a Disk I/O Transfer Disk Performance Parameters To read or write, the disk head must be positioned at the desired track and at the beginning of the desired sector Seek time Time it takes to position the head at the desired

More information

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we learned about the ADT Priority Queue. A

More information

A Comparison Of Shared Memory Parallel Programming Models. Jace A Mogill David Haglin

A Comparison Of Shared Memory Parallel Programming Models. Jace A Mogill David Haglin A Comparison Of Shared Memory Parallel Programming Models Jace A Mogill David Haglin 1 Parallel Programming Gap Not many innovations... Memory semantics unchanged for over 50 years 2010 Multi-Core x86

More information

QUEUES. Primitive Queue operations. enqueue (q, x): inserts item x at the rear of the queue q

QUEUES. Primitive Queue operations. enqueue (q, x): inserts item x at the rear of the queue q QUEUES A queue is simply a waiting line that grows by adding elements to its end and shrinks by removing elements from the. Compared to stack, it reflects the more commonly used maxim in real-world, namely,

More information

Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1

Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1 Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion

More information

Geo-Replication in Large-Scale Cloud Computing Applications

Geo-Replication in Large-Scale Cloud Computing Applications Geo-Replication in Large-Scale Cloud Computing Applications Sérgio Garrau Almeida sergio.garrau@ist.utl.pt Instituto Superior Técnico (Advisor: Professor Luís Rodrigues) Abstract. Cloud computing applications

More information

Design Patterns in C++

Design Patterns in C++ Design Patterns in C++ Concurrency Patterns Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 4, 2011 G. Lipari (Scuola Superiore Sant Anna) Concurrency Patterns May 4,

More information

A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms

A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms A Comparison of Task Pools for Dynamic Load Balancing of Irregular Algorithms Matthias Korch Thomas Rauber Universität Bayreuth Fakultät für Mathematik, Physik und Informatik Fachgruppe Informatik {matthias.korch,

More information

Parallel Programming

Parallel Programming Parallel Programming 0024 Recitation Week 7 Spring Semester 2010 R 7 :: 1 0024 Spring 2010 Today s program Assignment 6 Review of semaphores Semaphores Semaphoren and (Java) monitors Semaphore implementation

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operatin g Systems: Internals and Design Principle s Chapter 11 I/O Management and Disk Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles An artifact can

More information

On Dynamic Load Balancing on Graphics Processors

On Dynamic Load Balancing on Graphics Processors Graphics Hardware (28) David Luebke and John D. Owens (Editors) On Dynamic Load Balancing on Graphics Processors Daniel Cederman and Philippas Tsigas Department of Computer Science and Engineering Chalmers

More information

Queues and Stacks. Atul Prakash Downey: Chapter 15 and 16

Queues and Stacks. Atul Prakash Downey: Chapter 15 and 16 Queues and Stacks Atul Prakash Downey: Chapter 15 and 16 Queues Queues occur in real life a lot. Queues at checkout Queues in banks In software systems: Queue of requests at a web servers Properties of

More information

aicas Technology Multi Core und Echtzeit Böse Überraschungen vermeiden Dr. Fridtjof Siebert CTO, aicas OOP 2011, 25 th January 2011

aicas Technology Multi Core und Echtzeit Böse Überraschungen vermeiden Dr. Fridtjof Siebert CTO, aicas OOP 2011, 25 th January 2011 aicas Technology Multi Core und Echtzeit Böse Überraschungen vermeiden Dr. Fridtjof Siebert CTO, aicas OOP 2011, 25 th January 2011 2 aicas Group aicas GmbH founded in 2001 in Karlsruhe Focus: Embedded

More information

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.

5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes. 1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The

More information

Replication on Virtual Machines

Replication on Virtual Machines Replication on Virtual Machines Siggi Cherem CS 717 November 23rd, 2004 Outline 1 Introduction The Java Virtual Machine 2 Napper, Alvisi, Vin - DSN 2003 Introduction JVM as state machine Addressing non-determinism

More information

OPTIMIZE DMA CONFIGURATION IN ENCRYPTION USE CASE. Guillène Ribière, CEO, System Architect

OPTIMIZE DMA CONFIGURATION IN ENCRYPTION USE CASE. Guillène Ribière, CEO, System Architect OPTIMIZE DMA CONFIGURATION IN ENCRYPTION USE CASE Guillène Ribière, CEO, System Architect Problem Statement Low Performances on Hardware Accelerated Encryption: Max Measured 10MBps Expectations: 90 MBps

More information

Data Structures and Data Manipulation

Data Structures and Data Manipulation Data Structures and Data Manipulation What the Specification Says: Explain how static data structures may be used to implement dynamic data structures; Describe algorithms for the insertion, retrieval

More information

Redo Recovery after System Crashes

Redo Recovery after System Crashes Redo Recovery after System Crashes David Lomet Microsoft Corporation One Microsoft Way Redmond, WA 98052 lomet@microsoft.com Mark R. Tuttle Digital Equipment Corporation One Kendall Square Cambridge, MA

More information

Operating System: Scheduling

Operating System: Scheduling Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting

More information

MAX = 5 Current = 0 'This will declare an array with 5 elements. Inserting a Value onto the Stack (Push) -----------------------------------------

MAX = 5 Current = 0 'This will declare an array with 5 elements. Inserting a Value onto the Stack (Push) ----------------------------------------- =============================================================================================================================== DATA STRUCTURE PSEUDO-CODE EXAMPLES (c) Mubashir N. Mir - www.mubashirnabi.com

More information

What is a Stack? Stacks and Queues. Stack Abstract Data Type. Java Interface for Stack ADT. Array-based Implementation

What is a Stack? Stacks and Queues. Stack Abstract Data Type. Java Interface for Stack ADT. Array-based Implementation Stacks and Queues What is a Stack? Stores a set of elements in a particular order Accessed in Last-In In-First-Out (LIFO) fashion Real life examples: Pile of books PEZ dispenser Cup trays in cafeteria

More information

Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer

Disks and RAID. Profs. Bracy and Van Renesse. based on slides by Prof. Sirer Disks and RAID Profs. Bracy and Van Renesse based on slides by Prof. Sirer 50 Years Old! 13th September 1956 The IBM RAMAC 350 Stored less than 5 MByte Reading from a Disk Must specify: cylinder # (distance

More information

Chapter 11 I/O Management and Disk Scheduling

Chapter 11 I/O Management and Disk Scheduling Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization

More information

Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C

Krishna Institute of Engineering & Technology, Ghaziabad Department of Computer Application MCA-213 : DATA STRUCTURES USING C Tutorial#1 Q 1:- Explain the terms data, elementary item, entity, primary key, domain, attribute and information? Also give examples in support of your answer? Q 2:- What is a Data Type? Differentiate

More information

Abstract Data Type. EECS 281: Data Structures and Algorithms. The Foundation: Data Structures and Abstract Data Types

Abstract Data Type. EECS 281: Data Structures and Algorithms. The Foundation: Data Structures and Abstract Data Types EECS 281: Data Structures and Algorithms The Foundation: Data Structures and Abstract Data Types Computer science is the science of abstraction. Abstract Data Type Abstraction of a data structure on that

More information

STM in the Small: Trading Generality for Performance in Software Transactional Memory

STM in the Small: Trading Generality for Performance in Software Transactional Memory STM in the Small: Trading Generality for Performance in Software Transactional Memory Aleksandar Dragojević I&C, EPFL, Lausanne, Switzerland aleksandar.dragojevic@epfl.ch Tim Harris Microsoft Research,

More information

The Design and Implementation of Scalable Parallel Haskell

The Design and Implementation of Scalable Parallel Haskell The Design and Implementation of Scalable Parallel Haskell Malak Aljabri, Phil Trinder,and Hans-Wolfgang Loidl MMnet 13: Language and Runtime Support for Concurrent Systems Heriot Watt University May 8,

More information

I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1

I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1 General Computer Architecture I/O Management COMP755 Advanced Operating Systems Goals for I/O Users should access all devices in a uniform manner. Devices should be named in a uniform manner. The OS, without

More information

MEMORY MODEL SENSITIVE ANALYSIS OF CONCURRENT DATA TYPES. Sebastian Burckhardt. Computer and Information Science

MEMORY MODEL SENSITIVE ANALYSIS OF CONCURRENT DATA TYPES. Sebastian Burckhardt. Computer and Information Science MEMORY MODEL SENSITIVE ANALYSIS OF CONCURRENT DATA TYPES Sebastian Burckhardt A DISSERTATION in Computer and Information Science Presented to the Faculties of the University of Pennsylvania in Partial

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Part 2: Data Structures PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Summer Term 2016 Overview general linked lists stacks queues trees 2 2

More information

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters

Interpreters and virtual machines. Interpreters. Interpreters. Why interpreters? Tree-based interpreters. Text-based interpreters Interpreters and virtual machines Michel Schinz 2007 03 23 Interpreters Interpreters Why interpreters? An interpreter is a program that executes another program, represented as some kind of data-structure.

More information

Know or Go Practical Quest for Reliable Software

Know or Go Practical Quest for Reliable Software Know or Go Practical Quest for Reliable Software Dr.-Ing. Jörg Barrho Dr.-Ing. Ulrich Wünsche AVACS Project meeting 25.09.2014 2014 Rolls-Royce Power Systems AG The information in this document is the

More information

STACKS,QUEUES, AND LINKED LISTS

STACKS,QUEUES, AND LINKED LISTS STACKS,QUEUES, AND LINKED LISTS Stacks Queues Linked Lists Double-Ended Queues Case Study: A Stock Analysis Applet 1 Stacks Astack is a container of objects that are inserted and removed according to the

More information

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory

Graph Analytics in Big Data. John Feo Pacific Northwest National Laboratory Graph Analytics in Big Data John Feo Pacific Northwest National Laboratory 1 A changing World The breadth of problems requiring graph analytics is growing rapidly Large Network Systems Social Networks

More information

How To Make A Correct Multiprocess Program Execute Correctly On A Multiprocedor

How To Make A Correct Multiprocess Program Execute Correctly On A Multiprocedor How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor Leslie Lamport 1 Digital Equipment Corporation February 14, 1993 Minor revisions January 18, 1996 and September 14, 1996

More information

System Software Prof. Dr. H. Mössenböck

System Software Prof. Dr. H. Mössenböck System Software Prof. Dr. H. Mössenböck 1. Memory Management 2. Garbage Collection 3. Linkers and Loaders 4. Debuggers 5. Text Editors Marks obtained by end-term exam http://ssw.jku.at/misc/ssw/ 1. Memory

More information

Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches:

Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches: Multiple-Issue Processors Pipelining can achieve CPI close to 1 Mechanisms for handling hazards Static or dynamic scheduling Static or dynamic branch handling Increase in transistor counts (Moore s Law):

More information

DATA STRUCTURES USING C

DATA STRUCTURES USING C DATA STRUCTURES USING C QUESTION BANK UNIT I 1. Define data. 2. Define Entity. 3. Define information. 4. Define Array. 5. Define data structure. 6. Give any two applications of data structures. 7. Give

More information

The Quest for Speed - Memory. Cache Memory. A Solution: Memory Hierarchy. Memory Hierarchy

The Quest for Speed - Memory. Cache Memory. A Solution: Memory Hierarchy. Memory Hierarchy The Quest for Speed - Memory Cache Memory CSE 4, Spring 25 Computer Systems http://www.cs.washington.edu/4 If all memory accesses (IF/lw/sw) accessed main memory, programs would run 20 times slower And

More information

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 3, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts

More information

RAID HARDWARE. On board SATA RAID controller. RAID drive caddy (hot swappable) SATA RAID controller card. Anne Watson 1

RAID HARDWARE. On board SATA RAID controller. RAID drive caddy (hot swappable) SATA RAID controller card. Anne Watson 1 RAID HARDWARE On board SATA RAID controller SATA RAID controller card RAID drive caddy (hot swappable) Anne Watson 1 RAID The word redundant means an unnecessary repetition. The word array means a lineup.

More information

Data Structures. Jaehyun Park. CS 97SI Stanford University. June 29, 2015

Data Structures. Jaehyun Park. CS 97SI Stanford University. June 29, 2015 Data Structures Jaehyun Park CS 97SI Stanford University June 29, 2015 Typical Quarter at Stanford void quarter() { while(true) { // no break :( task x = GetNextTask(tasks); process(x); // new tasks may

More information

DATA STRUCTURE - STACK

DATA STRUCTURE - STACK DATA STRUCTURE - STACK http://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm Copyright tutorialspoint.com A stack is an abstract data type ADT, commonly used in most programming

More information

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology

Optimizing Parallel Reduction in CUDA. Mark Harris NVIDIA Developer Technology Optimizing Parallel Reduction in CUDA Mark Harris NVIDIA Developer Technology Parallel Reduction Common and important data parallel primitive Easy to implement in CUDA Harder to get it right Serves as

More information

The Correctness Criterion for Deferred Update Replication

The Correctness Criterion for Deferred Update Replication The Correctness Criterion for Deferred Update Replication Tadeusz Kobus, Maciej Kokociński, Paweł T. Wojciechowski Institute of Computing Science, Poznan University of Technology, Poland {Tadeusz.Kobus,Maciej.Kokocinski,Pawel.T.Wojciechowski}@cs.put.edu.pl

More information

Stacks. Stacks (and Queues) Stacks. q Stack: what is it? q ADT. q Applications. q Implementation(s) CSCU9A3 1

Stacks. Stacks (and Queues) Stacks. q Stack: what is it? q ADT. q Applications. q Implementation(s) CSCU9A3 1 Stacks (and Queues) 1 Stacks Stack: what is it? ADT Applications Implementation(s) 2 CSCU9A3 1 Stacks and ueues A stack is a very important data structure in computing science. A stack is a seuence of

More information

Layered Approach to Development of OO War Game Models Using DEVS Framework

Layered Approach to Development of OO War Game Models Using DEVS Framework Layered Approach to Development of OO War Game Models Using DEVS Framework Chang Ho Sung*, Su-Youn Hong**, and Tag Gon Kim*** Department of EECS KAIST 373-1 Kusong-dong, Yusong-gu Taejeon, Korea 305-701

More information

22c:31 Algorithms. Ch3: Data Structures. Hantao Zhang Computer Science Department http://www.cs.uiowa.edu/~hzhang/c31/

22c:31 Algorithms. Ch3: Data Structures. Hantao Zhang Computer Science Department http://www.cs.uiowa.edu/~hzhang/c31/ 22c:31 Algorithms Ch3: Data Structures Hantao Zhang Computer Science Department http://www.cs.uiowa.edu/~hzhang/c31/ Linear Data Structures Now we can now explore some convenient techniques for organizing

More information

Concepts of Concurrent Computation

Concepts of Concurrent Computation Chair of Software Engineering Concepts of Concurrent Computation Bertrand Meyer Sebastian Nanz Lecture 3: Synchronization Algorithms Today's lecture In this lecture you will learn about: the mutual exclusion

More information

Database Concurrency Control and Recovery. Simple database model

Database Concurrency Control and Recovery. Simple database model Database Concurrency Control and Recovery Pessimistic concurrency control Two-phase locking (2PL) and Strict 2PL Timestamp ordering (TSO) and Strict TSO Optimistic concurrency control (OCC) definition

More information

Chapter 6 Concurrent Programming

Chapter 6 Concurrent Programming Chapter 6 Concurrent Programming Outline 6.1 Introduction 6.2 Monitors 6.2.1 Condition Variables 6.2.2 Simple Resource Allocation with Monitors 6.2.3 Monitor Example: Circular Buffer 6.2.4 Monitor Example:

More information

Concurrent programming in Java

Concurrent programming in Java Concurrent programming in Java INF4140 04.10.12 Lecture 5 0 Book: Andrews - ch.05 (5.4) Book: Magee & Kramer ch.04 - ch.07 INF4140 (04.10.12) Concurrent programming in Java Lecture 5 1 / 33 Outline 1 Monitors:

More information

Chapter 3 Operating-System Structures

Chapter 3 Operating-System Structures Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture

CSE 544 Principles of Database Management Systems. Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture CSE 544 Principles of Database Management Systems Magdalena Balazinska Fall 2007 Lecture 5 - DBMS Architecture References Anatomy of a database system. J. Hellerstein and M. Stonebraker. In Red Book (4th

More information

How To Write A Multi Threaded Software On A Single Core (Or Multi Threaded) System

How To Write A Multi Threaded Software On A Single Core (Or Multi Threaded) System Multicore Systems Challenges for the Real-Time Software Developer Dr. Fridtjof Siebert aicas GmbH Haid-und-Neu-Str. 18 76131 Karlsruhe, Germany siebert@aicas.com Abstract Multicore systems have become

More information

On Sorting and Load Balancing on GPUs

On Sorting and Load Balancing on GPUs On Sorting and Load Balancing on GPUs Daniel Cederman and Philippas Tsigas Distributed Computing and Systems Chalmers University of Technology SE-42 Göteborg, Sweden {cederman,tsigas}@chalmers.se Abstract

More information

picojava TM : A Hardware Implementation of the Java Virtual Machine

picojava TM : A Hardware Implementation of the Java Virtual Machine picojava TM : A Hardware Implementation of the Java Virtual Machine Marc Tremblay and Michael O Connor Sun Microelectronics Slide 1 The Java picojava Synergy Java s origins lie in improving the consumer

More information

1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D.

1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. 1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. base address 2. The memory address of fifth element of an array can be calculated

More information

Last not not Last Last Next! Next! Line Line Forms Forms Here Here Last In, First Out Last In, First Out not Last Next! Call stack: Worst line ever!

Last not not Last Last Next! Next! Line Line Forms Forms Here Here Last In, First Out Last In, First Out not Last Next! Call stack: Worst line ever! ECE 551 C++ Programming, Data structures, and Algorithms Abstract Data Type: Stack Last In First Out (LIFO) 1 2 2 1 4 3 1 3 4 Stacks in Programming Worst line ever! 5 3 1 5 Stacks are not useful for waiting

More information

Practical Performance Understanding the Performance of Your Application

Practical Performance Understanding the Performance of Your Application Neil Masson IBM Java Service Technical Lead 25 th September 2012 Practical Performance Understanding the Performance of Your Application 1 WebSphere User Group: Practical Performance Understand the Performance

More information

Trainer and Consultant at IT-Visions.de

Trainer and Consultant at IT-Visions.de By by relational databases and ACID-transactions: An introduction into BASE and NoSQL by the example Windows Azure Storage Services Manfred Steyer twitter.com/manfredsteyer Who I am Manfred Steyer Professor

More information

Facing the Challenges for Real-Time Software Development on Multi-Cores

Facing the Challenges for Real-Time Software Development on Multi-Cores Facing the Challenges for Real-Time Software Development on Multi-Cores Dr. Fridtjof Siebert aicas GmbH Haid-und-Neu-Str. 18 76131 Karlsruhe, Germany siebert@aicas.com Abstract Multicore systems introduce

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 11 Memory Management Computer Architecture Part 11 page 1 of 44 Prof. Dr. Uwe Brinkschulte, M.Sc. Benjamin

More information

Analyzing IBM i Performance Metrics

Analyzing IBM i Performance Metrics WHITE PAPER Analyzing IBM i Performance Metrics The IBM i operating system is very good at supplying system administrators with built-in tools for security, database management, auditing, and journaling.

More information

SHARED HASH TABLES IN PARALLEL MODEL CHECKING

SHARED HASH TABLES IN PARALLEL MODEL CHECKING SHARED HASH TABLES IN PARALLEL MODEL CHECKING IPA LENTEDAGEN 2010 ALFONS LAARMAN JOINT WORK WITH MICHAEL WEBER AND JACO VAN DE POL 23/4/2010 AGENDA Introduction Goal and motivation What is model checking?

More information

Sequential Data Structures

Sequential Data Structures Sequential Data Structures In this lecture we introduce the basic data structures for storing sequences of objects. These data structures are based on arrays and linked lists, which you met in first year

More information

02 B The Java Virtual Machine

02 B The Java Virtual Machine 02 B The Java Virtual Machine CS1102S: Data Structures and Algorithms Martin Henz January 22, 2010 Generated on Friday 22 nd January, 2010, 09:46 CS1102S: Data Structures and Algorithms 02 B The Java Virtual

More information

Angelika Langer www.angelikalanger.com. The Art of Garbage Collection Tuning

Angelika Langer www.angelikalanger.com. The Art of Garbage Collection Tuning Angelika Langer www.angelikalanger.com The Art of Garbage Collection Tuning objective discuss garbage collection algorithms in Sun/Oracle's JVM give brief overview of GC tuning strategies GC tuning (2)

More information