Technology (IC2IT2013)

Size: px
Start display at page:

Download "Technology (IC2IT2013)"

Transcription

1 Phayung Meesad, Herwig Unger, and Sirapat Boonkrong (Eds.) The 9th International Conference on Computing and Information Technology (IC2IT2013) May 9th-10th, 2013 King Mongkut's University of Technology North Bangkok, Bangkok, Thailand Springer

2 Keynote Speakers Bipolarity in Judgments and Assessments: Towards More Realistic and Implementable Human Centric Systems 1 Janusz Kacprzyk Critical Issues and Information Security and Managing Risk 3 Mark Weiser Visualising the Data: Now I Understand 5 Ken Fowle Improved Computational Intelligence through High Performance Distributed Computing 7 David Abramson Session I: Data Network/Communication Lying in Group-Communication in El-Farol-Games Patterns of Successful Manipulation 9 Frank Groflgasteiger, Coskun Akinalp Identifying Limbic Characteristics on Twitter 19 Christine Klotz, Coskun Akinalp Mobile Agent Administrator for Computers over Network (MAACN): Using the Concept of Keyboard Buffer 29 Rajesh Dontham, Srinivas R. Mangalwede, Subodh Ingleshwar, Manoj A. Patil, Arun W. Kumar

3 XII Impact of Multi-services over Service Provider's Local Network Measured by Passive and Active Measurements Techniques 41 Titinan Bhumrawi, Chayakom Netramai, Kamol Kaemarungsi, Kamol Limtanyakul Performance Evaluation of LEACH on Cluster Head Selection Techniques in Wireless Sensor Networks 51 Chakchai So-In, Kanokporn Udompongsuk, Comdet Phudphut, Kanokmon Rujirakul, Chatchai Khunboa Outbound Call Route Selection on IP-PBX Using Unstructured Supplementary Service Data 63 Kittipong Suwannaraj, Sirapat Boonkrong Using Routing Table Flag to Improve Performance of AODV Routing Protocol for VANETs Environment 73 Hassan Keshavarz, Rafidah Md. Noor, Ehsan Mostajeran Wireless Sensor Network Planning for Fingerprint Based Indoor Localization Usng ZigBee: Empirical Study 83 Nawaporn Wisitpongphan CAPWAP Protocol and Context Transfer to Support Seamless Handover 93 Siti Norhaizum M. Hasnan, Media A. Ayu, Teddy Mantoro, M. Hasbullah Mazlan, M. Abobakr, A. Balfaqih, Shariq Haseeb Intelligent Cloud Service Selection Uing Agents 105 Imran Mujaddid Rabbani, Aslam Muhammad, Martinez Enriquez A.M. A New Method of Privacy Preserving Computation over 2-Part Fully Distributed Data 115 The Dung Luong, Dang Hung Tran Session II: Data Mining/Machine Learning Enhancing the Efficiency of Dimensionality Reduction Using a Combined Linear SVM Weight with ReliefF Feature Selection Method 125 Wipawan Buathong, Phayung Meesad Dhaka Stock Exchange Trend Analysis Using Support Vector Regression 135 Phayung Meesad, Risul Islam Rasel

4 A XIII Ontology-Driven Automatic Generation of Questions from Competency Models 145 Onjira Sitthisak, Lester Gilbert, Dietrich Albert A Comparative Study on Handwriting Digit Recognition Classifier Using Neural Network, Support Vector Machine and K-Nearest Neighbor 155 Chayaporn Kaensar Printed Thai Character Recognition Using Standard Descriptor 165 Kuntpong Woraratpanya, Taravichet Titijaroonrog Development of an Image Processing System in Splendid Squid Grading 175 Nootcharee Thammachot, Supapan Chaiprapat, Kriangkrai Waiyakan Cardiac Auscultation with Hybrid GA/SVM 185 Sasin Banpavichit, Waree Kongprawechnon, Kanokwate Tungpimolrut Real-Time FPGA-Based Human Iris Recognition Embedded System: Zero-Delay Human Iris Feature Extraction 195 Amirshahram Hematian, Suriayati Chuprat, Azizah Abdul Manaf, Sepideh Yazdani, Nadia Parsazadeh Reconstruction of Triple-wise Relationships in Biological Networks from Profiling Data 205 Quynh Diep Nguyen, Tho Hoan Pham, Tu Bao Ho, Van Hoang Nguyen, Dang Hung Tran SRA Tool: SOFL-Based Requirements Analysis A.R. Mat, A.B. Masli, N.H. Burhan, S. Liu Tool Egyptian Vulture Optimization Algorithm New Nature Inspired Meta-heuristics for Knapsack Problem 227 Chiranjib Sur, Sanjeev Sharma, Anupam Shukla Optical Music Recognition on Windows Phone Thanachai Soontornwutikul, Nutcha Thananart, Aphinun Wantanareeyachart, Chakarida Nukoolkit, Chonlameth Arpnikanondt Applying Smart Meter and Data Mining Techniques to Predict Refrigeration System Performance 249 Jui-Sheng Chou, Anh-Duc Pham

5 XIV Extended Knowledge Management Capability Model for Software Process Improvement 259 Kamolchai Asvachaiporn, Nakornthip Prompoon Record Searching Using Dynamic Blocking for Entity Resolution Systems 269 Aye Chan Mon, Mie Mie Su Thwin Session III: Human Computer Interface/Image Processing A New Fast and Robust Stereo Matching Algorithm for Robotic Systems 281 Masoud Samadi, Mohd Fauzi Othman Ten-LoPP: Tensor Locality Preserving Projections Approach for Moving Object Detection and Tracking 291 M.T. Gopala Krishna, M. Ravishankar, D. R Rameshbabu CAMSHIFT-Based Algorithm for Multiple Object Tracking 301 Sorn Sooksatra, Toshiaki Kondo Author Index 311

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016

Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016 Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00

More information

Term Discrimination Based Robust Text Classification with Application to Email Spam Filtering. PhD Thesis. Khurum Nazir Junejo 2004-03-0018

Term Discrimination Based Robust Text Classification with Application to Email Spam Filtering. PhD Thesis. Khurum Nazir Junejo 2004-03-0018 Term Discrimination Based Robust Text Classification with Application to Email Spam Filtering PhD Thesis Khurum Nazir Junejo 2004-03-0018 Advisor: Dr. Asim Karim Department of Computer Science Syed Babar

More information

Using Artificial Intelligence to Manage Big Data for Litigation

Using Artificial Intelligence to Manage Big Data for Litigation FEBRUARY 3 5, 2015 / THE HILTON NEW YORK Using Artificial Intelligence to Manage Big Data for Litigation Understanding Artificial Intelligence to Make better decisions Improve the process Allay the fear

More information

DATA MINING TECHNIQUES AND APPLICATIONS

DATA MINING TECHNIQUES AND APPLICATIONS DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,

More information

Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu

Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill

More information

Introduction to Pattern Recognition

Introduction to Pattern Recognition Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Mining Network Relationships in the Internet of Things

Mining Network Relationships in the Internet of Things Mining Network Relationships in the Internet of Things PAT DOODY, DIRECTOR OF THE CENTRE FOR INNOVATION IN DISTRIBUTED SYSTEMS (CIDS) INSTITUTE OF TECHNOLOGY TRALEE ANDREW SHIELDS IRC FUNDED RESEARCHER

More information

Machine Learning and Data Mining. Fundamentals, robotics, recognition

Machine Learning and Data Mining. Fundamentals, robotics, recognition Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,

More information

Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction Logistics Prerequisites: basics concepts needed in probability and statistics

More information

BIG DATA IN HEALTHCARE THE NEXT FRONTIER

BIG DATA IN HEALTHCARE THE NEXT FRONTIER BIG DATA IN HEALTHCARE THE NEXT FRONTIER Divyaa Krishna Sonnad 1, Dr. Jharna Majumdar 2 2 Dean R&D, Prof. and Head, 1,2 Dept of CSE (PG), Nitte Meenakshi Institute of Technology Abstract: The world of

More information

ICSES Journal on Image Processing and Pattern Recognition (IJIPPR), Aug. 2015, Vol. 1, No. 1

ICSES Journal on Image Processing and Pattern Recognition (IJIPPR), Aug. 2015, Vol. 1, No. 1 2 ICSES Journal on Image Processing and Pattern Recognition (IJIPPR), Aug. 2015, Vol. 1, No. 1 1. About ICSES Journal on Image Processing and Pattern Recognition (IJIPPR) The ICSES Journal on Image Processing

More information

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

More information

Statistics for BIG data

Statistics for BIG data Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before

More information

IEEE 2015-2016 JAVA TITLES

IEEE 2015-2016 JAVA TITLES ECWAY ECHNOLGIES IEEE 2015-2016 JAVA TITLES BE, B.TECH, ME, M.TECH, MSC, MCA PROJECTS Abstract: Introduction: Literature Survey: System Analysis: Existing System: Disadvantages: Proposed System: Advantages:

More information

CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING

CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING MAJOR: DEGREE: COMPUTER SCIENCE MASTER OF SCIENCE (M.S.) CONCENTRATIONS: HIGH-PERFORMANCE COMPUTING & BIOINFORMATICS CYBER-SECURITY & NETWORKING The Department of Computer Science offers a Master of Science

More information

Computer Animation and Visualisation. Lecture 1. Introduction

Computer Animation and Visualisation. Lecture 1. Introduction Computer Animation and Visualisation Lecture 1 Introduction 1 Today s topics Overview of the lecture Introduction to Computer Animation Introduction to Visualisation 2 Introduction (PhD in Tokyo, 2000,

More information

Exploiting the power of Big Data

Exploiting the power of Big Data Exploiting the power of Big Data Timos Sellis School of Computer Science and Information Technology timos.sellis@rmit.edu.au ITECHLAW Asia-Pacific Conference, February 26-28, 2014 Melbourne Australia Timeline

More information

On the features and challenges of security and privacy in distributed internet of things. C. Anurag Varma achdc@mst.edu CpE 6510 3/24/2016

On the features and challenges of security and privacy in distributed internet of things. C. Anurag Varma achdc@mst.edu CpE 6510 3/24/2016 On the features and challenges of security and privacy in distributed internet of things C. Anurag Varma achdc@mst.edu CpE 6510 3/24/2016 Outline Introduction IoT (Internet of Things) A distributed IoT

More information

Computer Science Electives and Clusters

Computer Science Electives and Clusters Course Number CSCI- Computer Science Electives and Clusters Computer Science electives belong to one or more groupings called clusters. Undergraduate students with the proper prerequisites are permitted

More information

Data, Data Everywhere

Data, Data Everywhere Dr. Willa Pickering Lockheed Martin enior Fellow March 2012 Data, Data Everywhere Big Data what is it Protecting Data in Cloud how do we handle it Data Analysis are we prepared to use it Willa Pickering

More information

Machine Learning for Data Science (CS4786) Lecture 1

Machine Learning for Data Science (CS4786) Lecture 1 Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:

More information

NFC & Biometrics. Christophe Rosenberger

NFC & Biometrics. Christophe Rosenberger NFC & Biometrics Christophe Rosenberger OUTLINE GREYC - E-payment & Biometrics Contactless transactions Biometric authentication Solutions Perspectives 2 GREYC Research Lab Research Group in Computer science,

More information

Biometric Authentication using Online Signatures

Biometric Authentication using Online Signatures Biometric Authentication using Online Signatures Alisher Kholmatov and Berrin Yanikoglu alisher@su.sabanciuniv.edu, berrin@sabanciuniv.edu http://fens.sabanciuniv.edu Sabanci University, Tuzla, Istanbul,

More information

Eighth Annual Student Research Forum

Eighth Annual Student Research Forum Eighth Annual Student Research Forum February 18, 2011 COMPUTER SCIENCE AND COMPUTATIONAL SCIENCE PRESENTATION SCHEDULE Session Chair: Dr. George Miminis Head, Computer Science: Dr. Edward Brown Director,

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 sanjeevk@iasri.res.in 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

life science data mining

life science data mining life science data mining - '.)'-. < } ti» (>.:>,u» c ~'editors Stephen Wong Harvard Medical School, USA Chung-Sheng Li /BM Thomas J Watson Research Center World Scientific NEW JERSEY LONDON SINGAPORE.

More information

An Introduction to Data Mining

An Introduction to Data Mining An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail

More information

Machine Learning. 01 - Introduction

Machine Learning. 01 - Introduction Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge

More information

COLLEGE OF INFORMATION & COMMUNICATION TECHNOLOGY (CICT) www.cit.ctu.edu.vn

COLLEGE OF INFORMATION & COMMUNICATION TECHNOLOGY (CICT) www.cit.ctu.edu.vn COLLEGE OF INFORMATION & COMMUNICATION TECHNOLOGY (CICT) www.cit.ctu.edu.vn Outline Can Tho University College of ICT (CICT) Mission Organization Fields of Study Facilities Relation & Cooperation Research

More information

Machine Learning: Overview

Machine Learning: Overview Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave

More information

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15

Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 Applying Deep Learning to Car Data Logging (CDL) and Driver Assessor (DA) October 22-Oct-15 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries Copyright GENIVI Alliance

More information

SIPAC. Signals and Data Identification, Processing, Analysis, and Classification

SIPAC. Signals and Data Identification, Processing, Analysis, and Classification SIPAC Signals and Data Identification, Processing, Analysis, and Classification Framework for Mass Data Processing with Modules for Data Storage, Production and Configuration SIPAC key features SIPAC is

More information

Sunnie Chung. Cleveland State University

Sunnie Chung. Cleveland State University Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CHAPTER 1: INTRODUCTION Big Data 3 Widespread

More information

Sentiment analysis of Twitter microblogging posts. Jasmina Smailović Jožef Stefan Institute Department of Knowledge Technologies

Sentiment analysis of Twitter microblogging posts. Jasmina Smailović Jožef Stefan Institute Department of Knowledge Technologies Sentiment analysis of Twitter microblogging posts Jasmina Smailović Jožef Stefan Institute Department of Knowledge Technologies Introduction Popularity of microblogging services Twitter microblogging posts

More information

Introduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011

Introduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 Introduction to Machine Learning Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 1 Outline 1. What is machine learning? 2. The basic of machine learning 3. Principles and effects of machine learning

More information

lop Building Machine Learning Systems with Python en source

lop Building Machine Learning Systems with Python en source Building Machine Learning Systems with Python Master the art of machine learning with Python and build effective machine learning systems with this intensive handson guide Willi Richert Luis Pedro Coelho

More information

Internet of Things (IoT): A vision, architectural elements, and future directions

Internet of Things (IoT): A vision, architectural elements, and future directions SeoulTech UCS Lab 2014-2 st Internet of Things (IoT): A vision, architectural elements, and future directions 2014. 11. 18 Won Min Kang Email: wkaqhsk0@seoultech.ac.kr Table of contents Open challenges

More information

Automatic Resolver Group Assignment of IT Service Desk Outsourcing

Automatic Resolver Group Assignment of IT Service Desk Outsourcing Automatic Resolver Group Assignment of IT Service Desk Outsourcing in Banking Business Padej Phomasakha Na Sakolnakorn*, Phayung Meesad ** and Gareth Clayton*** Abstract This paper proposes a framework

More information

Towards applying Data Mining Techniques for Talent Mangement

Towards applying Data Mining Techniques for Talent Mangement 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Towards applying Data Mining Techniques for Talent Mangement Hamidah Jantan 1,

More information

Communication and Embedded Systems: Towards a Smart Grid. Radu Stoleru, Alex Sprintson, Narasimha Reddy, and P. R. Kumar

Communication and Embedded Systems: Towards a Smart Grid. Radu Stoleru, Alex Sprintson, Narasimha Reddy, and P. R. Kumar Communication and Embedded Systems: Towards a Smart Grid Radu Stoleru, Alex Sprintson, Narasimha Reddy, and P. R. Kumar Alex Sprintson Smart grid communication Key enabling technology Collecting data Control

More information

MS1b Statistical Data Mining

MS1b Statistical Data Mining MS1b Statistical Data Mining Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Administrivia and Introduction Course Structure Syllabus Introduction to

More information

203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015

International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015 RESEARCH ARTICLE OPEN ACCESS Data Mining Technology for Efficient Network Security Management Ankit Naik [1], S.W. Ahmad [2] Student [1], Assistant Professor [2] Department of Computer Science and Engineering

More information

Remote Home Security System Based on Wireless Sensor Network Using NS2

Remote Home Security System Based on Wireless Sensor Network Using NS2 Remote Home Security System Based on Wireless Sensor Network Using NS2 #Rajesh Banala 1, Asst.Professor,E-mail: rajesh.banal@gmail.com #D.Upender 2, Asst.Professor, E mail: upender584@gmail.com #Department

More information

FACE RECOGNITION BASED ATTENDANCE MARKING SYSTEM

FACE RECOGNITION BASED ATTENDANCE MARKING SYSTEM Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,

More information

COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis)

COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* COME 27 Advanced Object Oriented Programming 5 COME 21 Data Structures and Algorithms COME 22 COME 1 COME 1 COME

More information

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014

International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014 RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer

More information

Research-based Learning (RbL) in Computing Courses for Senior Engineering Students

Research-based Learning (RbL) in Computing Courses for Senior Engineering Students Research-based Learning (RbL) in Computing Courses for Senior Engineering Students Khaled Bashir Shaban, and Mahmoud Abdulwahed Computer Science and Engineering Department; and CRU, Dean s Office Best

More information

About the Authors Preface Acknowledgements List of Acronyms

About the Authors Preface Acknowledgements List of Acronyms Contents About the Authors Preface Acknowledgements List of Acronyms xiii xv xvii xix Part One Wireless Ad Hoc, Sensor and Mesh Networking 1 1 Introduction 3 1.1 Information Security 4 1.1.1 Computer Security

More information

The Data Mining Process

The Data Mining Process Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data

More information

CONTROL, COMMUNICATION & SIGNAL PROCESSING (CCSP)

CONTROL, COMMUNICATION & SIGNAL PROCESSING (CCSP) CONTROL, COMMUNICATION & SIGNAL PROCESSING (CCSP) KEY RESEARCH AREAS Data compression for speech, audio, images, and video Digital and analog signal processing Image and video processing Computer vision

More information

An Overview of Knowledge Discovery Database and Data mining Techniques

An Overview of Knowledge Discovery Database and Data mining Techniques An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,

More information

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy

What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy What do Big Data & HAVEn mean? Robert Lejnert HP Autonomy Much higher Volumes. Processed with more Velocity. With much more Variety. Is Big Data so big? Big Data Smart Data Project HAVEn: Adaptive Intelligence

More information

COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments

COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for

More information

King Mongkut s University of Technology North Bangkok 4 Division of Business Computing, Faculty of Management Science

King Mongkut s University of Technology North Bangkok 4 Division of Business Computing, Faculty of Management Science (IJCSIS) International Journal of Computer Science and Information Security, Ontology-supported processing of clinical text using medical knowledge integration for multi-label classification of diagnosis

More information

Cloud Thinking. Simplifying Big Data Processing. Rui L. Aguiar, Diogo Gomes Universidade de Aveiro - Portugal

Cloud Thinking. Simplifying Big Data Processing. Rui L. Aguiar, Diogo Gomes Universidade de Aveiro - Portugal Cloud Thinking Simplifying Big Data Processing Rui L. Aguiar, Diogo Gomes Universidade de Aveiro - Portugal Problem A connected world of Information Systems and Electronic Devices produces terabytes of

More information

Data Mining Analysis of HIV-1 Protease Crystal Structures

Data Mining Analysis of HIV-1 Protease Crystal Structures Data Mining Analysis of HIV-1 Protease Crystal Structures Gene M. Ko, A. Srinivas Reddy, Sunil Kumar, and Rajni Garg AP0907 09 Data Mining Analysis of HIV-1 Protease Crystal Structures Gene M. Ko 1, A.

More information

Smart Signature. Gesture Based Authentication using a Smart Ring. Tatiana Bradley, Rakshith Hiresamudra Shivegowda, and Wai Man Chan

Smart Signature. Gesture Based Authentication using a Smart Ring. Tatiana Bradley, Rakshith Hiresamudra Shivegowda, and Wai Man Chan SmartSignature Gesture Based Authentication using a Smart Ring Tatiana Bradley, Rakshith Hiresamudra Shivegowda, and Wai Man Chan CS 244, Fall 2015 Acknowledgement: Nod Labs, for providing smart ring.

More information

Big Data Classification: Problems and Challenges in Network Intrusion Prediction with Machine Learning

Big Data Classification: Problems and Challenges in Network Intrusion Prediction with Machine Learning Big Data Classification: Problems and Challenges in Network Intrusion Prediction with Machine Learning By: Shan Suthaharan Suthaharan, S. (2014). Big data classification: Problems and challenges in network

More information

E-commerce Transaction Anomaly Classification

E-commerce Transaction Anomaly Classification E-commerce Transaction Anomaly Classification Minyong Lee minyong@stanford.edu Seunghee Ham sham12@stanford.edu Qiyi Jiang qjiang@stanford.edu I. INTRODUCTION Due to the increasing popularity of e-commerce

More information

Advice for Students completing the B.S. degree in Computer Science based on Quarters How to Satisfy Computer Science Related Electives

Advice for Students completing the B.S. degree in Computer Science based on Quarters How to Satisfy Computer Science Related Electives Advice for Students completing the B.S. degree in Computer Science based on Quarters How to Satisfy Computer Science Related Electives Students completing their B.S. degree under quarters had a requirement

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376 Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

More information

EFFICIENT DATA ANALYSIS SCHEME FOR INCREASING PERFORMANCE IN BIG DATA

EFFICIENT DATA ANALYSIS SCHEME FOR INCREASING PERFORMANCE IN BIG DATA EFFICIENT DATA ANALYSIS SCHEME FOR INCREASING PERFORMANCE IN BIG DATA Mr. V. Vivekanandan Computer Science and Engineering, SriGuru Institute of Technology, Coimbatore, Tamilnadu, India. Abstract Big data

More information

Data Mining Analytics for Business Intelligence and Decision Support

Data Mining Analytics for Business Intelligence and Decision Support Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing

More information

Embedded Computing Systems TUK Curriculum

Embedded Computing Systems TUK Curriculum Embedded Computing TUK Curriculum Core Program Code Title Credit Credit Instructor Language Fall Spring ES Hardware Architectures 571 Architecture of Digital I (Computer Architecture) 4 Kunz English EMS-546

More information

Doctor of Philosophy in Computer Science

Doctor of Philosophy in Computer Science Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects

More information

IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper

IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and

More information

Fast and Low-power OCR for the Blind

Fast and Low-power OCR for the Blind Fast and Low-power OCR for the Blind Frank Liu CS229 - Machine Learning Stanford University. Introduction Optical character recognition, or OCR, is the process of extracting text from scanned documents.

More information

Inference from sub-nyquist Samples

Inference from sub-nyquist Samples Inference from sub-nyquist Samples Alireza Razavi, Mikko Valkama Department of Electronics and Communications Engineering/TUT Characteristics of Big Data (4 V s) Volume: Traditional computing methods are

More information

Neural Networks in Data Mining

Neural Networks in Data Mining IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 03 (March. 2014), V6 PP 01-06 www.iosrjen.org Neural Networks in Data Mining Ripundeep Singh Gill, Ashima Department

More information

A Demonstration of a Robust Context Classification System (CCS) and its Context ToolChain (CTC)

A Demonstration of a Robust Context Classification System (CCS) and its Context ToolChain (CTC) A Demonstration of a Robust Context Classification System () and its Context ToolChain (CTC) Martin Berchtold, Henning Günther and Michael Beigl Institut für Betriebssysteme und Rechnerverbund Abstract.

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

From Big Data to Smart Data Thomas Hahn

From Big Data to Smart Data Thomas Hahn Siemens Future Forum @ HANNOVER MESSE 2014 From Big to Smart Hannover Messe 2014 The Evolution of Big Digital data ~ 1960 warehousing ~1986 ~1993 Big data analytics Mining ~2015 Stream processing Digital

More information

CSci 538 Articial Intelligence (Machine Learning and Data Analysis)

CSci 538 Articial Intelligence (Machine Learning and Data Analysis) CSci 538 Articial Intelligence (Machine Learning and Data Analysis) Course Syllabus Fall 2015 Instructor Derek Harter, Ph.D., Associate Professor Department of Computer Science Texas A&M University - Commerce

More information

A new Approach for Intrusion Detection in Computer Networks Using Data Mining Technique

A new Approach for Intrusion Detection in Computer Networks Using Data Mining Technique A new Approach for Intrusion Detection in Computer Networks Using Data Mining Technique Aida Parbaleh 1, Dr. Heirsh Soltanpanah 2* 1 Department of Computer Engineering, Islamic Azad University, Sanandaj

More information

Knowledge Discovery from Data Bases Proposal for a MAP-I UC

Knowledge Discovery from Data Bases Proposal for a MAP-I UC Knowledge Discovery from Data Bases Proposal for a MAP-I UC João Gama (jgama@fep.up.pt) Universidade do Porto 1 Knowledge Discovery from Data Bases We are deluged by data: scientific data, medical data,

More information

DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM

DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 DATA MINING TECHNIQUES SUPPORT TO KNOWLEGDE OF BUSINESS INTELLIGENT SYSTEM M. Mayilvaganan 1, S. Aparna 2 1 Associate

More information

A Review of Data Mining Techniques

A Review of Data Mining Techniques Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014 Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions

More information

Master of Science (Electrical Engineering) MS(EE)

Master of Science (Electrical Engineering) MS(EE) Master of Science (Electrical Engineering) MS(EE) 1. Mission Statement: The mission of the Electrical Engineering Department is to provide quality education to prepare students who will play a significant

More information

Meta-learning. Synonyms. Definition. Characteristics

Meta-learning. Synonyms. Definition. Characteristics Meta-learning Włodzisław Duch, Department of Informatics, Nicolaus Copernicus University, Poland, School of Computer Engineering, Nanyang Technological University, Singapore wduch@is.umk.pl (or search

More information

Development of cloud computing system based on wireless sensor network protocol and routing

Development of cloud computing system based on wireless sensor network protocol and routing Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 204, 6(7):680-684 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Development of cloud computing system based on wireless

More information

Technical Club: New Vision of Computing

Technical Club: New Vision of Computing 1 Technical Club: New Vision of Computing Core Discipline : Mentor : Computer Science Engineering Dr. Shripal Vijayvergia, Associate Professor, CSE Co-Mentor : 1. Mr. Subhash Gupta, Assistant Professor,

More information

International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 ISSN 2278-7763. BIG DATA: A New Technology

International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 ISSN 2278-7763. BIG DATA: A New Technology International Journal of Advancements in Research & Technology, Volume 3, Issue 5, May-2014 18 BIG DATA: A New Technology Farah DeebaHasan Student, M.Tech.(IT) Anshul Kumar Sharma Student, M.Tech.(IT)

More information

How can smart data analytics improve the way of information provision? -The trend of methods and an exploratory analysis-

How can smart data analytics improve the way of information provision? -The trend of methods and an exploratory analysis- How can smart data analytics improve the way of information provision? -The trend of methods and an exploratory analysis- Central Research Institute of Electric Power Industry Hidenori Komatsu Ken-ichiro

More information

SURVEY REPORT DATA SCIENCE SOCIETY 2014

SURVEY REPORT DATA SCIENCE SOCIETY 2014 SURVEY REPORT DATA SCIENCE SOCIETY 2014 TABLE OF CONTENTS Contents About the Initiative 1 Report Summary 2 Participants Info 3 Participants Expertise 6 Suggested Discussion Topics 7 Selected Responses

More information

Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin

Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)

More information

Spam detection with data mining method:

Spam detection with data mining method: Spam detection with data mining method: Ensemble learning with multiple SVM based classifiers to optimize generalization ability of email spam classification Keywords: ensemble learning, SVM classifier,

More information

How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles

How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles How cloud-based systems and machine-driven big data can contribute to the development of autonomous vehicles David Fidalgo- Altran Senior Business Manager CONTENTS I. Altran Group/ Intelligence Systems

More information

Multimedia Technology Bachelor of Science

Multimedia Technology Bachelor of Science Multimedia Technology Bachelor of Science 1. Program s Name Thai Name : ว ทยาศาสตรบ ณฑ ต สาขาว ชาเทคโนโลย ม ลต ม เด ย English Name : Bachelor of Science Program in Multimedia Technology 2. Degree Full

More information

Adaptive Anomaly Detection for Network Security

Adaptive Anomaly Detection for Network Security International Journal of Computer and Internet Security. ISSN 0974-2247 Volume 5, Number 1 (2013), pp. 1-9 International Research Publication House http://www.irphouse.com Adaptive Anomaly Detection for

More information

Security and Privacy in Big Data, Blessing or Curse?

Security and Privacy in Big Data, Blessing or Curse? Security and Privacy in Big Data, Blessing or Curse? 2 nd National Cryptography Days 9-11 April 2015 Dr. Zeki Erkin Cyber Security Section Department of Intelligent Systems Delft University of Technology

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Knowledge Discovery from patents using KMX Text Analytics

Knowledge Discovery from patents using KMX Text Analytics Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs anton.heijs@treparel.com Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers

More information

SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics

SAP Solution Brief SAP HANA. Transform Your Future with Better Business Insight Using Predictive Analytics SAP Brief SAP HANA Objectives Transform Your Future with Better Business Insight Using Predictive Analytics Dealing with the new reality Dealing with the new reality Organizations like yours can identify

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information