# Jump-adapted discretization schemes for Lévy-driven SDEs

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Jump-adapted discretization schemes for Lévy-driven SDEs Arturo Kohatsu-Higa Osaka University Graduate School of Engineering Sciences Machikaneyama cho -3, Osaka , Japan Peter Tankov Ecole Polytechnique Centre de Mathématiques Appliquées 928 Palaiseau Cedex France Abstract We present new algorithms for weak approximation of stochastic differential equations driven by pure jump Lévy processes. The method is built upon adaptive non-uniform discretization based on the jump times of the driving process coupled with suitable approximations of the solutions between these jump times. Our technique avoids the costly simulation of the increments of the Lévy process and in many cases achieves better convergence rates than the traditional schemes with equal time steps. To illustrate the method, we consider applications to simulation of portfolio strategies and option pricing in the Libor market model with jumps. Key words: Lévy-driven stochastic differential equation, Euler scheme, jumpadapted discretization, weak approximation, Libor market model with jumps. 2 Mathematics Subject Classification: Primary 6H35, Secondary 65C5, 6G5. Introduction Let Z be a d-dimensional Lévy process without diffusion component, that is, Z t = γt + y N(dy, ds) + y y > Corresponding author yn(dy, ds), t,.

2 Here γ d, N is a Poisson random measure on d, ) with intensity ν satisfying y 2 ν(dy) < and N(dy, ds) = N(dy, ds) ν(dy)ds denotes the compensated version of N. Further, let X be an n -valued adapted stochastic process, unique solution of the stochastic differential equation X t = X + h(x s )dz s, t,, () where h is an n d matrix. The traditional uniformly-spaced discretization schemes for () 5, suffer from two difficulties: first, in general, we do not know how to simulate the driving Lévy process and second, a large jump of Z occurring between two discretization points can lead to an important discretization error. On the other hand, in many cases of interest, the Lévy measure of Z is known and one can easily simulate the jumps of Z bigger in absolute value than a certain >. As our benchmark example, consider the one-dimensional tempered stable Lévy process 5 which has the Lévy density ν(x) = C e λ x x +α x< + C +e λ+ x x +α+ x>. (2) This process, also known as the CGMY model 3 when C = C + and α = α +, is a popular representation for the logarithm of stock price in financial markets. No easy algorithm is available for simulating the increments of this process (cf 2, 4), however, it is straightforward to simulate random variables with density ν(x) x > x > ν(x)dx (3) using the rejection method 5, example 6.9. Sometimes, other approximations of Z by a compound Poisson process, such as the series representations 6 lead to simpler simulation algorithms. A natural idea due to ubenthaler 7 (in the context of finite-intensity jump processes, this idea appears also in 2, 3), is to replace the process Z with a suitable compound Poisson approximation and place the discretization points at the jump times of the compound Poisson process. When the jumps of Z are highly concentrated around zero, however, this approximation is too rough and can lead to convergence rates which are arbitrarily slow. In this paper we are interested in approximating the solution of () in the weak sense. We use the idea of Asmussen and osiński (see also 4) and replace the small jumps of Z with a Brownian motion between the jump times of the compound Poisson approximation. We then replace the solution of the continuous SDE between the jump times by a suitable approximation, which is explicitly computable. Combined, these two steps lead to a much lower discretization error than in 7. If N is the average number of operations required to simulate a single trajectory, the discretization error of our method converges 2

3 to zero faster than N in all cases and faster than N if the Lévy measure of Z is locally symmetric near zero. In practice, the convergence rates are always better than these worst-case bounds: for example, if α = α + =.8 in (2), our method has the theoretical convergence rate of N.22 (compared to only N. without the Brownian approximation) and when α = α + =.5, the rate of our method is N 7. Consider a family of measurable functions (χ ) > : d, such that χ d (y)ν(dy) < and y > y 2 ( χ )(y)ν(dy) < for all > and lim χ (y) = for all y. The Lévy measure ν will be approximated by finite measures χ ν. The most simple such approximation is χ (y) := y >, but others can also be useful (see Example 7 below). We denote by N a Poisson random measure with intensity χ ν ds and by N its compensated Poisson random measure. Similarly, we denote by N the compensated Poisson random measure with intensity χ ν ds, where χ := χ. The process Z can then be represented in law as follows: d Z t = γ t + Zt + t, γ = γ yχ ν(dy) + Z t = t = y yn (dy, ds), d y N (dy, ds). d y > y χ ν(dy), We denote by λ = χ d ν(dy) the intensity of Z, by (Nt ) the Poisson process which has the same jump times as Z, and by Ti, i N, the jump times of Z. Furthermore, we denote by Σ the variance-covariance matrix of : Σ ij = y i y j χ ν(dy), d and in the one-dimensional case we set σ 2 := Σ. Sometimes we shall use the following technical assumption on (χ ): (A) n 2, C such that z n+ χ ν(dz) C z n χ ν(dz) d d for sufficiently small. This assumption, roughly, means that the approximation (χ ) does not remove small jumps faster than big jumps, and it is clearly satisfied by χ (y) = y >. for the process (3) this corresponds to having α + = α and C + = C 3

4 Supposing that no further discretization is done between the jump times of Z, the computational complexity of simulating a single approximate trajectory is proportional to the random number N. To compare our method to the traditional equally-spaced discretizations, we measure instead the computational complexity by the average number of jumps of Z on,, equal to λ. We say that the approximation ˆX converges weakly for some order α > if, for a sufficiently smooth function f, Ef(X ) Ef( ˆX ) Kλ α for some K > and all sufficiently small. In this paper, we provide two versions of the jump-adapted discretization scheme for pure jump Lévy processes. The scheme presented in Section 2 is easier to use and implement but works in the case d = n =. A fully general scheme is then presented in Section 3. Section 4 presents two detailed examples where our method is applied to the problems of long term portfolio simulation and of option pricing in the Libor market model with jumps. 2 One-dimensional SDE For our first scheme we take d = n = and consider the ordinary differential equation dx t = h(x t )dt, X = x. (4) In the one-dimensional case, the solution to this equation can always be written: X t := θ(t; x) = F (t + F(x)), where F is the primitive of h(x). Alternatively, a high-order discretization scheme (such as unge-kutta) can be used and is easy to construct (see also emark 4). We define inductively ˆX() = X and for i, ˆX(T i+ ) = θ( γ (T i+ T i ) + σ (W(T i+ ) W(T i )) 2 h (XT i )σ 2 (T i+ T i ); ˆX(T i )) (5) ˆX(T i ) = ˆX(T i ) + h( ˆX(T i )) Z(T i ). (6) Similarly, for any other point t (Ti, T i+ ), we define ˆX(t) = θ ( γ (t η t ) + σ (W(t) W(η t )) 2 h ( ˆX(η t ))σ 2 (t η t ); ˆX(η t ) ), (7) where we set η t := sup{ti : Ti t}. Here W denotes a one dimensional Brownian motion. Therefore, the idea is to replace the original equation with an Asmussen- osiński type approximation which is explicitly solvable between the times of 4

5 big jumps and is exact for all h if the driving process is deterministic, and for affine h in all cases. The purpose of this construction becomes clear from the following lemma. Lemma. Let h C. The process ( ˆX(t)) defined by (5) (7) is the solution of the stochastic differential equation { d ˆX t = h( ˆX t ) dzt + σ dw t + γ dt + } 2 (h ( ˆX t ) h ( ˆX η(t) ))σdt 2. Proof. It is enough to show that the process Y t := θ(γ t + σ W t 2 h (x)σ 2 t; x) (8) is the solution of the continuous SDE dy t = h(y t ) {σ dw t + γ dt + 2 } (h (Y t ) h (x))σ 2 dt. This follows by an application of Itô formula to (8) using θ(t, z) = h(θ(t, z)) t 2 θ(t, z) t 2 = h (θ(t, z))h(θ(t, z)). For the convergence analysis, we introduce two sets of conditions (parameterized by an integer number n): (H n ) f C n, h C n, f (k) and h (k) are bounded for k n and z 2n ν(dz) <. (H n) f C n, h C n, h (k) are bounded for k n, f (k) have at most polynomial growth for k n and z k ν(dz) < for all k. Theorem 2. (i) Assume (H 3 ) or (H 3) + (A). Then ( Ef( ˆX σ 2 ) ) f(x ) C (σ 2 λ + γ ) + y 3 χ ν(dy). (ii) Assume (H 4 ) or (H 4 ) + (A), let γ be bounded and let the measure ν satisfy y 3 χ ν(dy) y 4 χ ν (dy) (9) 5

6 for some measure ν. Then ( Ef( ˆX σ 2 ) ) f(x ) C (σ 2 + γ ) + y 4 χ (ν + ν)(dy) λ and in particular, Ef( ˆX ) f(x ) C ( σ 2 ) + y 4 χ (ν + ν)(dy). λ emark 3. (i)under the polynomial growth assumptions (H 3 ) or (H 4 ), the constants in the above theorem may depend on the initial value x. (ii) Condition (9) is satisfied, for example, if χ (y) = χ ( y) for all y and and if ν is locally symmetric near zero. That is, ν(dy) = (+ξ(y))ν (dy), where ν is a symmetric measure and ξ(y) = O(y) for y. emark 4. The convergence rates given in Theorem 2 are obtained under the assumption that the equation (4) is solved explicitly. If a discretization scheme is used for this equation as well, the total error will be bounded from below by the error of this scheme. However, usually this constraint is not very important since it is easy to construct a discretization scheme for (4) with a high convergence order, for example, the classical unge-kutta scheme has convergence order 4. Corollary 5 (Worst-case convergence rates). Let χ (x) = x >. Then, under the conditions of part (i) of Theorem 2, Ef( ˆX ) f(x ) o(λ 2 ), and under the conditions of part (ii) of Theorem 2, Ef( ˆX ) f(x ) o(λ ). Proof. These worst-case bounds follow from the following estimates. First, for every Lévy process, σ as. By the dominated convergence theorem, 2 λ as. This implies λ y 3 ν(dy) 2 λ σ 2 and similarly λ y y y 4 ν(dy) 2 λ σ 2. Example 6 (Stable-like behavior). Once again, let χ (x) = x >, and assume that the Lévy measure has an α-stable-like behavior near zero, meaning that ν has a density ν(z) satisfying ν(z) = g(z) z +α, 6

7 where g has finite nonzero right and left limits at zero as, for example, for the tempered stable process (CGMY) 5. Then σ 2 = O( 2 α ), λ = O( α ), y 3 ν(dy) = O( 3 α ) and y 4 ν(dy) = O( 4 α ), y so that in general for α (, 2) y Ef( ˆX ) f(x ) O(λ 3 α ), and if the Lévy measure is locally symmetric near zero and α (, ), Ef( ˆX ) f(x ) O(λ 4 α ). Example 7 (Simulation using series representation). In this example we explain why it can be useful to make other choices of truncation than χ (x) = x >. The gamma process has Lévy density ν(z) = ce λz z z>. If one uses the truncation function χ (x) = x >, one will need to simulate random variables with law ce λz zν((, )) z>, which may be costly. Instead, one can use one of the many series representations for the gamma process 6. Maybe the most convenient one is X t = λ e Γi/c V i Ui t, i= where (Γ i ) is a sequence of jump times of a standard Poisson process, (U i ) is an independent sequence of independent random variables uniformly distributed on, and (V i ) is an independent sequence of independent standard exponential random variables. For every τ >, the truncated sum X t = λ e Γi/c V i Ui t, i:γ i<τ defines a compound Poisson process with Lévy density ν τ (x) = c e λx e λxeτ/c x>, x and therefore this series representation corresponds to χ (x) = e λx(eτ/c ), where can be linked to τ, for example, by setting τ =. Theorem 2 will be proved after a series of lemmas. Lemma 8 (Bounds on moments of X and ˆX). Assume z p ν(dz) < for some p 2, 7

8 h C () and h(x) K( + x ) and h (x) K for some K <. Then there exists a constant C > (which may depend on p but not on ) such that E sup X s p C( + x p ), () s E sup ˆX s p C( + x p ). () s Proof. We shall concentrate on the bound (), the other one will follow by making go to zero. We have with ˆX t = x + γ t = γ + Z t = σ W t + z > h( ˆX s ) γ s ds + h( ˆX s )d Z s zν(dz) + 2 σ2 {h ( ˆX t ) h ( ˆX η(t) )}, z ˆN (dz, ds). Observe that γ t is bounded uniformly on t and on. Using a predictable version of the Burkholder-Davis-Gundy inequality 6, lemma 2., we then obtain for t and for some constant C < which may change from line to line E sup ˆX s p CE x p + s t ( + h 2 ( ˆX s )(σ 2 + CE x p + h( ˆX s ) p γ s p ds z 2 χ ν(dz))ds) p/2 + h( ˆX s ) p ds CE + x p + h( ˆX s ) p ds The bound () now follows from Gronwall s inequality. ˆX s p ds. z p χ ν(dz) Lemma 9 (Derivatives of the flow). Let p 2 and for an integer n assume z np ν(dz) <, h C n () and h(x) K( + x ) and h (k) (x) K for some K < and all k with k n. Then k p E T < for all k with k n. x k X(t,x) 8

9 Proof. See the proof of lemma 4.2 in 5. Lemma. Let u(t, x) := E (t,x) f(x T ). (i) Assume (H n ) with n 2. Then u C,n (, ), k u are uniformly x k bounded for k n and u is a solution of the equation ( u u (t, x) + γ (t, x)h(x) + u(t, x + h(x)y) u(t, x) u ) (t, x)h(x)y ν(dy) t x y x + (u(t, x + h(x)y) u(t, x)) ν (dy) = (2) y > u(, x) = f(x). (ii) Assume (H n ) with n 2. Then u C,n (, ), u is a solution of equation (2) and there exist C < and p > with k u(t, x) x k C( + x p ) for all t,, x and k n. Proof. The derivative u x satisfies u(t, x) x = E f (X (t,x) T ) x X(t,x) T The interchange of the derivative and the expectation is justified using lemma 9. The boundedness under (H n ) or the polynomial growth under (H n) then follow from lemmas 8 and 9. The other derivatives with respect to x are obtained by successive differentiations under the expectation. The derivative with respect to t is obtained from Itô s formula applied to f(x (t,x) T. Z is a Lévy process and h does not depend on t, Ef(X (t,x) T and hence it is sufficient to study the derivative Ef(X(,x) t yields Ef(X t ) = f(x) + E + E f (X s )h(x s )dz s ). In fact, note that since ) = Ef(X (,x) t ) T t ). The Itô formula {f(x s + h(x s )z) f(x s ) f (X s )h(x s )z}n(dz, ds). Denoting by Z the martingale part of Z and by γ := γ + zν(dz) the z > residual drift, and using lemma 8, we get Ef(X t ) = f(x) + ds γef (X s )h(x s ) + dse {f(x s + h(x s )z) f(x s ) f (X s )h(x s )z}ν(dz), 9

10 and therefore = γef (X t )h(x t ) + E Ef(X t ) t = γef (X t )h(x t ) + {f(x t + h(x t )z) f(x t ) f (X t )h(x t )z}ν(dz) dθe ( θ)h 2 (X t )z 2 2 f(x t + θzh(x t )) ν(dz). Now, once again, lemma 8 allows to prove the finiteness of this expression. Finally, equation (2) is a consequence of Itô s formula applied, this time, to u(t, X t ). Lemma. Let f :, ), ) be an increasing function. Then E f(t η(t))dt Ef(τ), where τ is an exponential random variable with intensity λ. In particular, E (t η(t)) p+ (p + )! dt λ p+. Proof. Let k = sup{k : Tk < }. Then k T i E f(t η(t))dt = E = E E i= k Ti T i i= Ti k T i i= = E T i x 2 f(t Ti )dt + f(t T k )dt T k f(t i t)dt + f(t i t)dt + f(inf{t i : T i > t} t)dt T k f( t)dt f(t k+ t)dt T k = Ef(τ). The second statement of the lemma is a direct consequence of the first one. Proof of theorem 2. From Itô s formula and lemmas 8 and, Ef( ˆX ) f(x ) = Eu(, ˆX ) u(, X ) 2 u(t, = dte ˆX t ) 2 x 2 σh 2 2 ( ˆX t ) χ ν(dy)(u(t, ˆX t + h( ˆX t )y) u(t, ˆX t ) u(t, ˆX t ) + dte 2 σ2 u(t, ˆX t ) h( x ˆX t )(h ( ˆX t ) h ( ˆX η(t) )) x h( ˆX t )y) (3). (4)

11 Denote the expectation in (3) by A t and the one in (4) by B t. From lemmas and 8, we then have, under the hypothesis (H 3 ), A t E 2 y3 h 3 ( ˆX t ) χ ( θ) 2 3 u(t, ˆX t + θyh( ˆX t )) x 3 dθν(dy) CE + h 3 ( ˆX t ) y 3 χ ν(dy) C( + x 3 ) y 3 χ ν(dy). If, instead, the polynomial growth condition (H 3 ) is satisfied, then for some p >, A t CE y 3 ( + h 3 ( ˆX t ))( + ˆX t p + yh( ˆX t ) p ) χ ν(dy) and once again, we use lemma 8 together with the assumption (A), because the Lévy measure is now supposed integrable with any power of y. Under the condition of part (ii) and the hypothesis (H 4 ), A t E 3 u(t, ˆX t ) x 3 h 3 ( ˆX t ) y 3 χ ν(dy) + E 24 y4 h 4 ( ˆX t ) C( + x 4 ) y 4 χ (ν + ν)(dy). ( θ) 3 4 u(t, ˆX t + θyh( ˆX t )) x 4 dθ χ ν(dy) The case of (H 4) is treated as above. To analyze the term B t, define H(t, x) = u(t, x) h(x) x and assume, to fix the notation, that (H 3 ) is satisfied. Then, once again by

12 lemmas and 8, Taylor formula and the Cauchy-Schwartz inequality, B t 2 σ2 E(H(t, ˆX t ) H(t, ˆX η(t) ))(h ( ˆX t ) h ( ˆX η(t) )) + 2 σ2 E H(t, ˆX η(t) )(h ( ˆX t ) h ( ˆX η(t) )) 2 σ2 E ( ˆX t ˆX η(t) ) 2 dθ H x ( ˆX η(t) + θ( ˆX t ˆX η(t) )) + 2 σ2 E H(t, ˆX η(t) )E dθ h ( ˆX η(t) + θ ( ˆX t ˆX η(t) )) (h ( ˆX t ) h ( ˆX η(t) )) F η(t) Cσ 2 E( ˆX t ˆX η(t) ) 2 ( + ˆX t + ˆX η(t) ) + 2 σ2 EH(t, ˆX η(t) )h ( ˆX η(t) )E ˆX t ˆX η(t) F η(t) + 2 σ2 E H(t, ˆX η(t) )( ˆX t ˆX η(t) ) 2 dθ( θ)h (3) ( ˆX η(t) + θ( ˆX t ˆX η(t) )) CσE( 2 ˆX t ˆX η(t) ) 4 /2 + 2 σ2 EH(t, ˆX η(t) )h ( ˆX η(t) )E ˆX t ˆX η(t) F η(t). Note that ˆX t ˆX η(t) = E ˆX t ˆX η(t) F η(t) = E η(t) (5) { h( ˆX s ) σ dw s + γ ds + } 2 (h ( ˆX s ) h ( ˆX ηs ))σds 2, h( ˆX s ) {γ ds + 2 } (h ( ˆX s ) h ( ˆX ηs ))σ 2 ds F η(t). η(t) The Burkholder-Davis-Gundy inequality and, the Cauchy-Schwartz inequality and lemma 8 then give, under the hypothesis (H 3 ): E( ˆX t ˆX η(t) ) 4 CE h( ˆX s ) {γ ds + 2 } (h ( ˆX s ) h ( ˆX 4 ηs ))σ 2 ds η(t) ( ) 2 t + Cσ 4 E h 2 ( ˆX s )ds η(t) C( γ + σ 2 )4 E(t η(t)) 4 ( + sup ˆX) 4 + Cσ 4 E(t η(t))2 ( + sup ˆX) 4 C( γ + σ 2 )4 E(t η(t)) Cσ 4 E(t η(t)) 4 2. Similarly, for the second term in (5), we get 2 σ2 EH(t, ˆX η(t) )h ( ˆX η(t) )E ˆX t ˆX η(t) F η(t) Cσ 2 ( γ + σ 2 )E(t η(t))2 2. 2

13 Assembling together the estimates for the two terms in (5), B t Cσ 2 (( γ +σ 2 )2 E(t η(t)) 8 2 +σ 2 E(t η(t)) 4 2 +( γ +σ 2 )E(t η(t))2 2 ) Using the Jensen inequality and lemma, this is further reduced to ( B t dt Cσ 2 ( γ + σ 2)2 + γ + σ 2 ). λ From the Cauchy-Schwartz inequality we get ( ) 2 y χ ν(dy) λ y 2 χ ν(dy) Cλ, y y which implies that γ C λ and finally B Cσ 2 λ. Assembling these estimates with the ones for A, we complete the proof under the assumptions (H 3 ) (or (H 4 )). Under the assumptions (H 3) or (H 4) the proof is done in a similar fashion. λ 4 γ +σ 2 3 Approximating multidimensional SDE using expansions In this section we propose an alternative approximation scheme, which yields similar rates to the ones obtained in section 2 but has the advantage of being applicable in the multidimensional case. On the other hand, it is a little more difficult to implement. As before, we start by replacing the small jumps of Z with a suitable Brownian motion, yielding the SDE d X t = h( X t ){γ dt + dwt + dz t }, (6) where W is a d-dimensional Brownian motion with covariance matrix Σ. This process can also be written as X(t) = X(η t ) + h ( ) X(s) dw (s) + η t X(T i ) = X(T i ) + h( X(T i )) Z(T i ). η t h ( X(s) ) γ ds, The idea now is to expand the solution of (6) between the jumps of Z around the solution of the deterministic dynamical system (4), treating the stochastic term as a small random perturbation (see 8, Chapter 2). Assume that the coefficient h is Lipschitz and consider a family of processes (Y α ) α defined by Y α (t) = X(η t ) + α h (Y α (s)) dw (s) + η t h (Y α (s))γ ds η t 3

14 Our idea is to replace the process X := Y with its first-order Taylor approximation: X(t) Y (t) + α Y α (t) α=. Therefore, the new approximation X is defined by X(t) = Y (t) + Y (t), t > η t, X(T i ) = X(T i ) + h( X(T i )) Z(Ti ), Y (t) = X(η t ) + Y (t) = η t η t h(y (t))γ ds (7) h x i (Y (s)) Y i (s)γ ds + η t h (Y (s)) dw (s) where we used the Einstein convention for summation over repeated indices. Conditionally on the jump times (Ti ) i, the random vector Y (t) is Gaussian with mean zero. Applying the integration by parts formula to Y i(t)y j (t), it can be shown that its covariance matrix Ω(t) satisfies the (matrix) linear equation Ω(t) = η t (Ω(s)M(s) + M (s)ω (s) + N(s))ds (8) where M denotes the transpose of the matrix M and M ij (t) = h ik(y (t)) x j γ k and N(t) = h(y (t))σ h (Y (t)). Successive applications of Gronwall s inequality yield the following bounds for Y and Ω: Y (t) ( Y (η t ) + C γ (t η t )) e C γ (t ηt) Ω(t) C Σ (t η t )( + Y (η t ) 2 )e C γ (+ γ )(t ηt). (9) Lemma 2. Assume ν( d ) =. Then γ 2 lim =. λ Proof. Left to the reader as an exercise. To prove Theorem 4, we need to generalize lemmas 8, 9 and to the multidimensional setting. While the generalization of the last two lemmas is straightforward, the first one requires a little work, because it needs to be adapted to the new discretization scheme. Lemma 3 (Bounds on moments of X). Assume ν( d ) =, h C b (n ) and z d z p ν(dz) < for some p 2. 4

15 Then there exists a constant C > (which may depend on p but not on ) such that for all sufficiently small, E sup X s p C( + x p ). (2) s Proof. Denote h t := h( X t ) and h t := h(y (t)). The SDE for X can be rewritten as d X t = h t d Z t + h t dwt + h t γdt + ( h t h t )γ dt + h (Y (t)) Y x (t)γ i dt, i where Z t = ynˆ (dy, ds), γ = γ + yν(dy). y > y > By predictable Burkholder-Davis-Gundy inequality 6, lemma 2., we then have ( E sup X s p CE x p + h s 2 s t + h s p ds z p χ ν(dz) + + CE ) p/2 z 2 χ ν(dz)ds ( ) p/2 h s 2 Σ ds t h s p γ p ds + γ p h s h s p ds + γ p Y (s) p ds x p + h s p ds + ( + γ p ) t h s h s p ds + γ p Y (s) p ds, where the constant C does not depend on and may change from line to line. Since h is bounded, we have t E sup X s p CE x p + h s p ds + ( + γ p ) Y (s) p ds. s t (2) Using (9), the last term can be estimated as E ( + γ p ) CE ( + γ p ) CE ( + γ p ) CE ( + γ p ) Y (s) p ds = CE ( + γ p ) Ω(s) p/2 ds E Y (s) p F η(s) ds ( + X η(s) ) p ) Σ p/2 (s η s ) p/2 e C γ (+ γ )(s ηs) ds ( + X η(s) ) p ) Σ p/2 τ p/2 e C γ (+ γ )τ ds, 5

16 where τ is an independent exponential random variable with parameter λ. Due to Lemma 2, for sufficiently small, the expectation with respect to τ exists, and computing it explicitly we obtain E ( + γ p ) Y (s) p ds C E ( + X η(s) p )ds, where C as. Inequality (2) therefore becomes t E sup X s p CE x p + h s p ds + C ( + X η(s) p ) s t CE x p + which implies that for sufficiently small, E sup X s p CE + x p + s t and we get (2) by Gronwall s lemma. Theorem 4. h s p ds + C t( + sup X s p ) s t h s p ds, (i) Assume (H 3 ) or (H 3) + (A). Then ( ) Ef( ˆX Σ ) f(x ) C ( Σ + γ ) + y 3 χ ν(dy). λ d (ii) Assume (H 4 ) or (H 4 )+(A), let γ be bounded and suppose that for some measure ν y i y j y k χ ν(dy) d y 4 χ ν (dy) d for all i, j, k and all sufficiently small. Then ( ) Ef( ˆX Σ ) f(x ) C + y 4 χ (ν + ν)(dy). λ d Proof. By Itô formula we have Ef( X ) f(x ) = Eu(, X ) u(, X ) u(t, = dte X(t)) { h ij (Y (t)) + h } ij(y (t)) Y k (t) h ij ( x i x X(t)) γ j (22) k + 2 u( X(t)) h ik (Y (t))σ kl 2 x i x h jl(y (t)) (23) j { u(t, X(t) + h( X(t))y) u(t, X(t)) u(t, X } t ) h ij ( x X(t))y j χ ν(dy). d i (24), 6

17 Denote the expectation term in (22) by A t and the sum of the terms in (23) and (24) by B t. The term A t satisfies u(t, A t CE X(t)) x Y (t) 2 γ Under the assumption (H 4 ) or (H 3 ), using (9), we have A CE Y (t) 2 γ CE Ω(t) γ CE + Y (η t ) 4 /2 Σ γ E(t η t )e C γ (+ γ )(t ηt). Using Lemmas and 3, we then get A t dt C( + x 2 ) Σ γ λ. Under (H 4 ) or (H 3 ) this result can be obtained along the same lines. Let us now turn to the term B t. It is rewritten via B t =E { u(t, X(t) + h( X(t))y) u(t, X(t)) d 2 u(t, X t ) x i x j h ik ( X(t))h jl ( X(t))y k y l } χ ν(dy) u(t, X(t)) h ij ( x X(t))y j i { Σ kl h ik (Y (t))h jl (Y (t)) h ik ( X(t))h jl ( X(t)) } ) + 2 u(t, Y (t)) x i x j ( 2 u(t, + X(t)) 2 u(t, Y (t)) x i x j x i x j { Σ kl h ik (Y (t))h jl (Y (t)) h ik ( X(t))h jl ( X(t)) } Denote the first two lines by B (t), the third line by B 2 (t) and the fourth by B 3 (t). Under the hypotheses (H 4 ) or (H 3 ), we get 3 u(t, X t + θh( X(t))y) B (t) E h il ( x d i x j k X(t))h jm ( X t )h kn ( X(t))y l y m y n χ ν(dy) CE h( X t ) 3 y 3 χ ν(dy) C( + x 3 ) y 3 χ ν(dy). d d Let F ikjl (x) := h ik (x)h jl (x). Using the fact that conditionally on F ηt, Y is a centered Gaussian process, B 2 (t) E 2 u(t, Y (t)) Σ kl {F x i x ikjl (Y (t)) F ikjl ( X(t)) F } ηt j E 2 u(t, Y (t)) Σ kl x i x (t)y q (t) ( θ) 2 F ikjl (Y (t) + θy (t)) dθ j x p x q CE Σ Y (t) 2 ( + sup X s ) s. 7

18 Using once again Lemmas and 3, we obtain B 2 dt C( + x ) Σ 2 λ. With a similar reasoning we obtain that B 3 also satisfies B 3 dt C( + x ) Σ 2 λ. The proof of the first part of the theorem under assumptions (H 4 ) or (H 3 ) is done along the same lines. 4 Applications Stochastic models driven by Lévy processes are gaining increasing popularity in financial mathematics, where they offer a much more realistic description of the underlying risks than the traditional diffusion-based models. In this context, many quantities of interest are given by solutions of stochastic differential equations which cannot be solved explicitly. In this paper we consider two such applications: portfolio management with constraints and the Libor market model with jumps. One-dimensional SDE: portfolio management with constraints The value V t of a portfolio in various common portfolio management strategies can often be expressed as solution to SDE. One example is the so-called Constant Proportion Portfolio Insurance (CPPI) strategy which aims at maintaining the value of the portfolio above some prespecified guaranteed level B t and consists in investing m(v t B t ) into the risky asset S t and the remaining amount into the risk-free bond, where B t is the time-t value of the guarantee: dv t = m(v t B t ) ds t S t + (V t m(v t B t ))rdt. For simplicity we shall suppose that the guarantee is the value of a zero-coupon bond expiring at time t with nominal amount N = : B t = e r(t t) N. This equation can then easily be solved analytically, but often additional constraints imposed on the portfolio make the analytic solution impossible. For instance, often leverage is not allowed, and the portfolio dynamics becomes dv t = min(v t, m(v t B t )) ds t S t + (V t min(v t, m(v t B t )))rdt. Suppose that the stock S follows an exponential Lévy model: dz t = ds t S t rdt, (25) 8

19 where Z is a pure-jump Lévy process, and let Vt = Vt B t be the value of the portfolio computed using B t as numéraire. Equation (25) can be simplified to dv t = min(v t, m(v t ))dz t. (26) This equation cannot be solved explicitly, but the corresponding deterministic ODE dx t = min(x t, m(x t ))dt admits a simple explicit solution for m > : if x Otherwise, for < x < m m X t = xe t. m m then X t = + (x )e mt, t t X t = m m (x )(m )/m e t, t t with t = m log (x )(m ). Figure shows the trajectories of the solution of (26) simulated in the variance gamma model. The variance gamma model is a pure-jump Lévy process with Lévy density ν(x) = Ce λ x x x< + Ce λ+x x>. x The variance gamma process is thus a difference of two independent gamma processes and we simulate it using the approximation of Example 7. The nearexact solution was produced using the standard Euler scheme with discretization steps. With jumps, the jump-adapted scheme has a greater error than the Euler scheme with points, because the Euler scheme uses exact simulation of increments. However for 2 jumps, the error of the jumpadapted scheme virtually disappears, whereas the Euler scheme still has a significant error even with 5 steps. This illustrates the exponential convergence of the jump-adapted scheme for the variance gamma process. Note that these graphs show the trajectories of the solution and hence illustrate the strong convergence. The effect of the weak approximation of small jumps by Brownian motion is therefore not visible, but even without this additional improvement, the convergence for the variance gamma process is very fast. Multidimensional SDE: Libor market model with jumps One important example of a non-trivial multidimensional SDE arises in the Libor market model, which describes joint arbitrage-free dynamics of a set of forward interest rates. Libor market models with jumps were considered among others by Jamshidian, Glasserman and Kou 9 and Eberlein and Özkan 7. Let T i = T +(i )δ, i =,...,n+ be a set of dates called tenor dates. The Libor rate L i t is the forward interest rate, defined at date t for the period T i, T i+. If 9

20 Jump adapted with jumps Jump adapted with 2 jumps Near exact solution Euler with points Euler with 5 points Near exact solution Figure : CPPI portfolio simulation with V =.5 and m = 2 in the variance gamma model (no diffusion component added). Left: jump-adapted scheme. ight: standard Euler scheme. B t (T) is the price at time t of a zero-coupon bond, that is, a bond which pays to its holder unit at date T, the Libor rates can be computed via L i t = ( ) Bt (T i ) δ B t (T i+ ) A Libor market model (LMM) is a model describing an arbitrage-free dynamics of a set of Libor rates. In this example, we shall use a simplified version of the general semimartingale LMM given in, supposing that all Libor rates are driven by a d- dimensional pure jump Lévy process. In this case, following, an arbitragefree dynamics of L t,...,l n t can be constructed via the multi-dimensional SDE dl i t L i t = σ i (t)dz t σ i (t)z d n j=i+ ( + δlj t σj (t)z + δl j t ) ν(dz)dt. (27) Here Z is a d-dimensional martingale pure jump Lévy process with Lévy measure ν, and σ i (t) are d-dimensional deterministic volatility functions. Equation (27) gives the Libor dynamics under the so-called terminal measure, which corresponds to using the last zero-coupon bond B t (T n+ ) as numéraire. This means that the price at time t of an option having payoff H = h(l T,...,L n T ) 2

21 at time T is given by h(l π t (H) = B t (T n+ )E T,..., L n T ) B T (T n+ ) F t n = B t (T n+ )E h(l T,..., L n T ) ( + δl i T ) F t = i= B t (T ) n i= ( + δli t) E h(l T,..., L n T ) n ( + δl i T ) F t i= (28) The price of any such option can therefore be computed by Monte Carlo using equation (27). Introducing a n + -dimensional state process X t with Xt t and Xi t = Li t for i n, a d + -dimensional driving Lévy process Z t = (t Z t ), and a (n + ) (d + )-dimensional function h(x) defined by h =, h j = for j = 2,...,d +, h i = f i (x) and h ij = σj i (x ) with f i (x) := σ i (x )z d n j=i+ ( + δx jσ j ) (x )z + δx j ν(dz), we see that the equation (27) takes the homogeneous form dx t = h(x t )d Z t, to which the discretization scheme of section 3 can be readily applied. For the purposes of illustration, we simplify the model even further, taking d = and supposing that the functions σ i (t) are constant: σ i (t). The driving Lévy process Z is supposed to follow the CGMY model with two alternative sets of parameters: α =.5 and C =.5 in Case and α =.8 and C =. in Case 2. In both cases, we take λ + = and λ = 2. The set of tenor dates for the Libor market model is {5, 6, 7, 8, 9, } years, which corresponds to a stochastic differential equation in dimension 5. The initial values of all forward Libor rates are all equal to 5%. This big a value was taken to emphasize the non-linear effects in the simulation. For the numerical implementation of the scheme of section 3, we solved the equations (7) and (8) simultaneously using the classical 4-th order unge- Kutta scheme, with time step equal to max(, Ti+ T i ). This means that most of the time there is only one step of the unge-kutta scheme between two consecutive jump times, and our numerical tests have shown that even in this case the error associated to the unge-kutta scheme is negligible compared to the stochastic approximation error. As a sanity check, we first compute the price of a zero-coupon bond with maturity T, which corresponds to taking h in equation (28). By construction of the model, if the SDE is solved correctly, we must recover the input price of the zero-coupon bond. Figure 2 shows the ratio of the zero coupon bond price estimated using the first-order scheme of section 3 to the input value. For comparison, we also give the value computed using the -order approximation 2

### Simulating Stochastic Differential Equations

Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular

### Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space

Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space Virginie Debelley and Nicolas Privault Département de Mathématiques Université de La Rochelle

### ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

### Jung-Soon Hyun and Young-Hee Kim

J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest

### Lecture 10. Finite difference and finite element methods. Option pricing Sensitivity analysis Numerical examples

Finite difference and finite element methods Lecture 10 Sensitivities and Greeks Key task in financial engineering: fast and accurate calculation of sensitivities of market models with respect to model

### Monte Carlo Methods in Finance

Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

### The Black-Scholes-Merton Approach to Pricing Options

he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

### Markovian projection for volatility calibration

cutting edge. calibration Markovian projection for volatility calibration Vladimir Piterbarg looks at the Markovian projection method, a way of obtaining closed-form approximations of European-style option

### Master of Mathematical Finance: Course Descriptions

Master of Mathematical Finance: Course Descriptions CS 522 Data Mining Computer Science This course provides continued exploration of data mining algorithms. More sophisticated algorithms such as support

### A spot price model feasible for electricity forward pricing Part II

A spot price model feasible for electricity forward pricing Part II Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Wolfgang Pauli Institute, Wien January 17-18

### Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

### Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer

Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic

### On exponentially ane martingales. Johannes Muhle-Karbe

On exponentially ane martingales AMAMEF 2007, Bedlewo Johannes Muhle-Karbe Joint work with Jan Kallsen HVB-Institut für Finanzmathematik, Technische Universität München 1 Outline 1. Semimartingale characteristics

### The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

### EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

### The Black-Scholes Formula

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

### ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1\$ now or 1\$ one year from now, then you would rather have your money now. If you have to decide

### Introduction to portfolio insurance. Introduction to portfolio insurance p.1/41

Introduction to portfolio insurance Introduction to portfolio insurance p.1/41 Portfolio insurance Maintain the portfolio value above a certain predetermined level (floor) while allowing some upside potential.

### COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

### Introduction to Arbitrage-Free Pricing: Fundamental Theorems

Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market

### Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

### A new Feynman-Kac-formula for option pricing in Lévy models

A new Feynman-Kac-formula for option pricing in Lévy models Kathrin Glau Department of Mathematical Stochastics, Universtity of Freiburg (Joint work with E. Eberlein) 6th World Congress of the Bachelier

### Asian Option Pricing Formula for Uncertain Financial Market

Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s4467-15-35-7 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei

### Monte Carlo Methods and Models in Finance and Insurance

Chapman & Hall/CRC FINANCIAL MATHEMATICS SERIES Monte Carlo Methods and Models in Finance and Insurance Ralf Korn Elke Korn Gerald Kroisandt f r oc) CRC Press \ V^ J Taylor & Francis Croup ^^"^ Boca Raton

### Guaranteed Annuity Options

Guaranteed Annuity Options Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Guaranteed Annuity Options Contents A. Guaranteed Annuity Options B. Valuation and Risk

### Numerical methods for American options

Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

### The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

### Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing

Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common

### Decomposition of life insurance liabilities into risk factors theory and application

Decomposition of life insurance liabilities into risk factors theory and application Katja Schilling University of Ulm March 7, 2014 Joint work with Daniel Bauer, Marcus C. Christiansen, Alexander Kling

### Stochastic Modelling and Forecasting

Stochastic Modelling and Forecasting Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH RSE/NNSFC Workshop on Management Science and Engineering and Public Policy

### Contents. 5 Numerical results 27 5.1 Single policies... 27 5.2 Portfolio of policies... 29

Abstract The capital requirements for insurance companies in the Solvency I framework are based on the premium and claim expenditure. This approach does not take the individual risk of the insurer into

### Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

### Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

### QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for

### Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se.

The Margrabe Formula Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se Abstract The Margrabe formula for valuation of

### Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

### Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Chapter 10 Boundary Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

### Mathematical Finance

Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

### 5. Convergence of sequences of random variables

5. Convergence of sequences of random variables Throughout this chapter we assume that {X, X 2,...} is a sequence of r.v. and X is a r.v., and all of them are defined on the same probability space (Ω,

### European Options Pricing Using Monte Carlo Simulation

European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical

### Financial Modeling. An introduction to financial modelling and financial options. Conall O Sullivan

Financial Modeling An introduction to financial modelling and financial options Conall O Sullivan Banking and Finance UCD Smurfit School of Business 31 May / UCD Maths Summer School Outline Introduction

### Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski.

Discussion on the paper Hypotheses testing by convex optimization by A. Goldenschluger, A. Juditsky and A. Nemirovski. Fabienne Comte, Celine Duval, Valentine Genon-Catalot To cite this version: Fabienne

### Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times

### Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative

### Some Research Problems in Uncertainty Theory

Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences

### A Novel Fourier Transform B-spline Method for Option Pricing*

A Novel Fourier Transform B-spline Method for Option Pricing* Paper available from SSRN: http://ssrn.com/abstract=2269370 Gareth G. Haslip, FIA PhD Cass Business School, City University London October

### The Effective Dimension of Asset-Liability Management Problems in Life Insurance

The Effective Dimension of Asset-Liability Management Problems in Life Insurance Thomas Gerstner, Michael Griebel, Markus Holtz Institute for Numerical Simulation, University of Bonn holtz@ins.uni-bonn.de

### Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

### Asymptotics of discounted aggregate claims for renewal risk model with risky investment

Appl. Math. J. Chinese Univ. 21, 25(2: 29-216 Asymptotics of discounted aggregate claims for renewal risk model with risky investment JIANG Tao Abstract. Under the assumption that the claim size is subexponentially

### Example of High Dimensional Contract

Example of High Dimensional Contract An exotic high dimensional option is the ING-Coconote option (Conditional Coupon Note), whose lifetime is 8 years (24-212). The interest rate paid is flexible. In the

### Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

Stochastic Gradient Method: Applications February 03, 2015 P. Carpentier Master MMMEF Cours MNOS 2014-2015 114 / 267 Lecture Outline 1 Two Elementary Exercices on the Stochastic Gradient Two-Stage Recourse

### Stochastic volatility: option pricing using a multinomial recombining tree

Stochastic volatility: option pricing using a multinomial recombining tree Ionuţ Florescu 1,3 and Frederi G. Viens,4 1 Department of Mathematical Sciences, Stevens Institute of Technology, Castle Point

### The Exponential Distribution

21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek

### FAST SIMULATION FOR COMPUTING CREDIT VALUE ADJUSTMENTS OF INTEREST RATE PORTFOLIOS

FAST SIMULATION FOR COMPUTING CREDIT VALUE ADJUSTMENTS OF INTEREST RATE PORTFOLIOS Team members Jonatan Eriksson (Swedbank) Jonas Hallgren (KTH) Ola Hammarlid (Swedbank) Henrik Hult (KTH, team leader)

### 5 Numerical Differentiation

D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

### 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM)

Copyright c 2013 by Karl Sigman 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) For an introduction to how one can construct BM, see the Appendix at the end of these notes A stochastic

### HPCFinance: New Thinking in Finance. Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation

HPCFinance: New Thinking in Finance Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation Dr. Mark Cathcart, Standard Life February 14, 2014 0 / 58 Outline Outline of Presentation

### Dirichlet forms methods for error calculus and sensitivity analysis

Dirichlet forms methods for error calculus and sensitivity analysis Nicolas BOULEAU, Osaka university, november 2004 These lectures propose tools for studying sensitivity of models to scalar or functional

### Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

### Chapter 4 Expected Values

Chapter 4 Expected Values 4. The Expected Value of a Random Variables Definition. Let X be a random variable having a pdf f(x). Also, suppose the the following conditions are satisfied: x f(x) converges

### Disability insurance: estimation and risk aggregation

Disability insurance: estimation and risk aggregation B. Löfdahl Department of Mathematics KTH, Royal Institute of Technology May 2015 Introduction New upcoming regulation for insurance industry: Solvency

### Sums of Independent Random Variables

Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

### LECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS

LECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS Robert S. Pindyck Massachusetts Institute of Technology Cambridge, MA 02142 Robert Pindyck (MIT) LECTURES ON REAL OPTIONS PART II August, 2008 1 / 50

### Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

### Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

### Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.

### 1 The Brownian bridge construction

The Brownian bridge construction The Brownian bridge construction is a way to build a Brownian motion path by successively adding finer scale detail. This construction leads to a relatively easy proof

### Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

### Explicit Option Pricing Formula for a Mean-Reverting Asset in Energy Markets

Explicit Option Pricing Formula for a Mean-Reverting Asset in Energy Markets Anatoliy Swishchuk Mathematical & Computational Finance Lab Dept of Math & Stat, University of Calgary, Calgary, AB, Canada

Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

### Probability and Statistics

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

### Pricing Forwards and Swaps

Chapter 7 Pricing Forwards and Swaps 7. Forwards Throughout this chapter, we will repeatedly use the following property of no-arbitrage: P 0 (αx T +βy T ) = αp 0 (x T )+βp 0 (y T ). Here, P 0 (w T ) is

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### Pricing and calibration in local volatility models via fast quantization

Pricing and calibration in local volatility models via fast quantization Parma, 29 th January 2015. Joint work with Giorgia Callegaro and Martino Grasselli Quantization: a brief history Birth: back to

### Introduction to Monte-Carlo Methods

Introduction to Monte-Carlo Methods Bernard Lapeyre Halmstad January 2007 Monte-Carlo methods are extensively used in financial institutions to compute European options prices to evaluate sensitivities

### On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

### Solutions series for some non-harmonic motion equations

Fifth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 10, 2003, pp 115 122. http://ejde.math.swt.edu or http://ejde.math.unt.edu

### Some ergodic theorems of linear systems of interacting diffusions

Some ergodic theorems of linear systems of interacting diffusions 4], Â_ ŒÆ êæ ÆÆ Nov, 2009, uà ŒÆ liuyong@math.pku.edu.cn yangfx@math.pku.edu.cn 1 1 30 1 The ergodic theory of interacting systems has

### Binomial lattice model for stock prices

Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

### Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Department of Industrial Engineering and Management Sciences Northwestern University September 15th, 2014

### Pricing Barrier Options under Local Volatility

Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

### Solution Using the geometric series a/(1 r) = x=1. x=1. Problem For each of the following distributions, compute

Math 472 Homework Assignment 1 Problem 1.9.2. Let p(x) 1/2 x, x 1, 2, 3,..., zero elsewhere, be the pmf of the random variable X. Find the mgf, the mean, and the variance of X. Solution 1.9.2. Using the

### 7: The CRR Market Model

Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein

### Lévy-Vasicek Models and the Long-Bond Return Process

Lévy-Vasicek Models and the Long-Bond Return Process Lane P. Hughston Department of Mathematics Brunel University London Uxbridge UB8 3PH, United Kingdom lane.hughston@brunel.ac.uk Third London-Paris Bachelier

### Probability and Statistics

Probability and Statistics Syllabus for the TEMPUS SEE PhD Course (Podgorica, April 4 29, 2011) Franz Kappel 1 Institute for Mathematics and Scientific Computing University of Graz Žaneta Popeska 2 Faculty

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model

Applied Mathematical Sciences, vol 8, 14, no 143, 715-7135 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/11988/ams144644 A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting

### Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis

Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................

### The Black-Scholes pricing formulas

The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

### The Black-Scholes Formula

ECO-30004 OPTIONS AND FUTURES SPRING 2008 The Black-Scholes Formula The Black-Scholes Formula We next examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they

### How Useful Is Old Information?

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 1, JANUARY 2000 How Useful Is Old Information? Michael Mitzenmacher AbstractÐWe consider the problem of load balancing in dynamic distributed

### A non-gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing

A non-gaussian Ornstein-Uhlenbeck process for electricity spot price modeling and derivatives pricing Thilo Meyer-Brandis Center of Mathematics for Applications / University of Oslo Based on joint work

### THE BLACK-SCHOLES MODEL AND EXTENSIONS

THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that

### Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-Normal Distribution

Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-ormal Distribution October 4, 200 Limiting Distribution of the Scaled Random Walk Recall that we defined a scaled simple random walk last

### Valuation of the Surrender Option in Life Insurance Policies

Valuation of the Surrender Option in Life Insurance Policies Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2010 Valuing Surrender Options Contents A. Motivation and