Telecom Regulatory Authority Technical Affairs & Technology Sector WiFi Technology

Size: px
Start display at page:

Download "Telecom Regulatory Authority Technical Affairs & Technology Sector WiFi Technology"

Transcription

1 120

2 Telecom Regulatory Authority Technical Affairs & Technology Sector WiFi Technology Technology Tracking Department July, 2003

3 WiFi Technology 1 Preface Wireless communication is becoming the standard in the business world. Remote wireless Internet connections and wireless computer networks are appearing on the scene and will dramatically impact the way business does in the future. It has truly become a wireless world. In the past five years, Wi-Fi (also known as b, g and a ) has emerged as the dominant standard for wireless LANs (WLANS) worldwide. Anyone can set up a Wi-Fi network and cover an area of typically feet with Internet access hundreds of times faster than a modem connection. It has become the TCP/IP of wireless, a single networking standard for all developers, equipment manufacturers, service providers and users. As with TCP/IP, any innovation in Wi-Fi benefits everyone else in the Wi-Fi community. This study aims to give an overview over WLANs from different point of views. For example, Part-1 handles the technical aspects of WLANs, including its network topology, radio topology, brief explanation of the IEEE standards and securing the WLAN, that s plus comparing WiFi with other technologies, for example 3G and Bluetooth. Part-2 discusses WiFi as a Market/Business model. This part presents some case studies for existing models that are already used in USA and Europe. This part must be taken into consideration, when establishing a well-defined WiFi market in Egypt. Part-3 discusses the regulatory aspects of WiFi. This part takes an overlook over the regulators of the advanced countries and how they deal with introducing WiFi to the market.

4 WiFi Technology 2 Index A- Part 1. Technical aspects of WLANs 1.1. Introduction Wi-Fi Network Topology Network Components Designing the WLAN Layout WLAN Network Implementation Consideration 1.3. Wi-Fi Radio Topology IEEE PHY Layer IEEE MAC Layer IEEE Network Layer 1.4. IEEE standards Wi-Fi Security Wi-Fi Vs Other technologies WiFi and Bluetooth WiFi and 3G B- Part 2. Marketing Study for WLANs Roadmap for WiFi Business Model for WiFi C- Part 3. Regulatory aspects of WLANs

5 WiFi Technology 3

6 WiFi Technology Introduction. The Market for wireless communication has grown rapidly since the introduction of b wireless local area networking (WLAN) standards, which offer performance more nearly comparable to that of Ethernet. WLAN (or WiFi) was created specifically to operate as a wireless Ethernet. It is an open-standard technology that enables wireless connectivity between equipments and local area networks. Public access WLAN services are designed to deliver LAN services over short distances, typically 50 to 150 meters. In these cases, WLANs are connected to a local database, and give the end user access through a kiosk or portable device. Internet access through public WLANs is a new and very hot trend, providing many benefits and conveniences over other types of mobile Internet access. First, performance is 50 to 200 times faster than dial-up Internet connections or cellular data access. Second, users do not have to worry about cords, wires or sharing an access point, such as a phone jack. A global directory that would provide users with a search engine to locate the closest access point. Even without the directory, WLAN devices make it very easy to connect. Most WLAN- enabled devices have a software utility that indicates a user s proximity to a WLAN access point. Service providers place an antenna, or access point, at a designated hot spot. The antenna transmits a wireless signal to the adapter card in a user s computer or device. Users connect to the WLAN through a page in their Internet browser. Coverage extends over a 50 to 150 meter radius of the access point. Connection speeds range from 1.6 Mbps, which is comparable to fixed DSL transmission speed, to 11 Mbps. New standards promise to increase speeds to 54 Mbps. Today s WLANs run in the unlicensed 2.4 GHz and 5 GHz radio spectrums. The 2.4 GHz frequency is already crowded it has been allocated for several purposes besides WLAN service. The 5 GHz spectrum is a much larger bandwidth, providing higher speeds, greater reliability, and better throughput. Note that the terminology WLAN and WiFi are used interchangeably through out the document. Wi-Fi devices The cost of Wi-Fi components is dropping rapidly. Wi-Fi radio chips which cost around $100 in 2000 now cost only $15, and fierce competition amongst commodity radio manufacturers promises to push this price even lower. A future with ubiquitous Wi-Fi networks in homes, offices and in public spaces will be filled with all kinds of Wi-Fi enabled devices: Laptops According to market research firm In-Stat, 5.7% of all notebooks were shipped with built-in Wi-Fi radios in 2002, and this share will rapidly grow to 35% in 2003, and to 90% by This coming only a few years after Wi-Fi became a

7 WiFi Technology 5 widely-adopted standard, whereas it took at least ten years for modems and wired ethernet ports to appear as standard equipment on laptops. PDAs -- HP and Toshiba have already introduced PocketPC devices with Wi-Fi built in, and many more Wi-Fi-embedded PDA devices are coming. Cell phones -- Imagine a cell phone with a low cost Wi-Fi radio that could opportunistically connect to Wi-Fi hot spots, taking traffic off of overloaded (and expensive) cellular networks, and sucking in broadband content like streaming video. A more power-efficient Wi-Fi radio is necessary for cell phones with small batteries. Automobiles -- New cars are already packed with data-hungry devices that could make use of Wi-Fi. Soon you will pull into any service station (in the coming years, they will all be hot spots) and top up on your data along with your gas. Download MP3 s, update your navigation system with the latest traffic data, download the day s Wall Street Journal audio edition to listen to on the way to work. When you pull into your garage, your car will dock with your home Wi-Fi network. It could also upload data about itself to your dealer or your insurance company. Gameboys -- Gaming devices will connect to private and public Wi-Fi networks and become a platform for multi-player games. Again, a lowcost add-on to existing products. Consumer electronics devices -- Once super-cheap low-power Wi-Fi chips are available, it isn t a stretch to see them added to all manner of consumer electronics devices. Anything that could benefit from the ability to send and receive information, such as MP3 players (download music in any hot spot) and digital cameras (upload pictures right after you take them wherever you are).

8 WiFi Technology WiFi Network Topology A basic topology of an networks in its simplest form consists of two or more wireless nodes, or stations (STAs), which have recognized each other and have established communications. There are two different cases : Independent Basic service set(ibss) Within an IBSS, STAs with each other on a peer-to-peer level. This type of networks is often formed on a temporary basis, and is commonly referred to as an ad hoc networks. Ad hoc networks allow for flexible and cost-effective arrangements in a variety of work environments, including hard-to-wire locations and temporary setups such as group of laptops in a conference room. The Extended Service Set (ESS) consists of a series of BSSs (each containing an AP) connected together by means of a Distribution System (DS). Although the DS could be any type of network (including a wireless network), it is almost invariably an Ethernet LAN. Within an ESS, STAs can roam from one BSS to another and communicate with any mobile or fixed client in a manner which is completely transparent in the protocol stack above the MAC sublayer. The ESS enables coverage to extend well beyond the range of a WLAN radio. By using an ESS, seamless campus-wide coverage is possible. This service is commonly referred to as infrastructure mode.

9 WiFi Technology 7 Network Components An LAN is based on a cellular architecture where the system is subdivided into cells, where each cell (called Basic Service Set or BSS) is controlled by a Base Station (called Access Point or AP). There are three main links in the WLAN chain that form the basis of the network: Access Point: An AP operates within a specific frequency spectrum and uses an standard specified modulation technique. It also informs the wireless clients of its availability and authenticates and associates wireless clients to the wireless network. An AP also coordinates the wireless clients' use of wired resources. The access points generally have two main tasks: o They acts as a base station to the users. o They acts as a bridge between wireless and wired networks. It s a Physical/Data Link Layer device, it supports 1, 2, 5.5, or 11 Mbps connectivity depending on standard implemented. The coverage area of AP can be up to 375 ft.(114 m.). The number of users an AP supports varies but is generally users. A single access point should also be placed as close as possible to the center of the planned coverage area. If it s necessary to install the access point in an obstructed, for security purposes, an optional range extender antenna can usually be mounted to extend the range of the coverage area. Extender Antenna

10 WiFi Technology 8 Network interface card (NIC)/client adapter: A PC or workstation uses a wireless NIC to connect to the wireless network. The NIC scans the available frequency spectrum for connectivity and associates it to an access point or another wireless client. The NIC is coupled to the PC/workstation operating system using a software driver. Wireless NICs do same function as standard NICs : - change data from parallel to serial. - framing & make packets ready for sending. - determine the time to send or receive it. - transmitting & receiving. Bridge: Wireless bridges are used to connect multiple LANs (both wired and wireless) at the Media Access Control (MAC) layer level. It s used in building-tobuilding wireless connections, wireless bridges can cover longer distances than AP s The coverage range can be up to 25 miles(40 Km).

11 WiFi Technology 9 Designing the WLAN Layout: WLANs can be implemented in a number of ways, depending upon the complexity desired. Generally, WLANs are thought of in three ways: 1) Peer-To-Peer A peer-to-peer network is a WLAN in its most basic form. Two PCs equipped with wireless adapter cards are all that is needed to form a peer-to-peer network, enabling the PCs to share resources with one another. While this type of network requires no administration or pre-configuration, it does not allow either PC to access a central server, inhibiting client/server computing. Applications: Spontaneous and/or collaborative work groups Small/branch offices sharing resources Remote control of another PC Games for two or more players Demos Designing a peer-to-peer network involves three main considerations: 1. The stations must be arranged so that they are all within the proper distance limits. 2. All stations must send and receive on the same transmission frequency. (Most wireless NICs have a factory-set default frequency) 3. The hidden node problem must be avoided so that each station can communicate with all other stations. 2) Client & Access Point In a Client & Access Point network, users not only benefit from extended range capabilities, they are also able to benefit from server resources, as the AP is connected to the wired backbone. The number of users supported by this type of network varies by technology and by the nature and number of the transmissions involved. Generally, they can support between 15 and 50 users.

12 WiFi Technology 10 3) Multiple Access Points Although coverage ranges in size from product to product and by differing environments, WLAN systems are inherently scalable. As APs have limited range, large facilities such as warehouses and college campuses often find it necessary to install multiple access points, creating large access zones. APs, like cell sites in cellular telephony applications, support roaming and AP to AP handoff. Large facilities requiring multiple access points deploy them in much the same way as their cellular counterparts, creating overlapping cells for constant connectivity to the network. As network usage increases, additional APs can be easily deployed.

13 WiFi Technology 11 WLAN Networks Implementation Considerations When implementing a WLAN solution, customers are confronted with a number of options and trade-offs that may make one system more suitable than the next. No one WLAN solution at present can deliver all things to all customers, some, as we have mentioned, deliver higher speeds, some have better range, etc. The following is a list of considerations network managers must confront before implementing a wireless LAN: Interoperability and Compatibility The first, and most important job of any network manager, is to insure that any WLAN products conform to wired infrastructure interconnection standards. Standards-based interoperability makes the wireless portion completely transparent to the rest of the network, and is generally based on Ethernet or Token Ring. Also, older WLAN systems from different vendors may not always interoperate, even if they are using the same technology (DSSS or FHSS) and the same frequency band. A wireless NIC from one vendor may have difficulty connecting to an access point from another vendor, because vendors may adjust their hardware or software to meet their own customization requirements and quality standards. However, the Wireless Ethernet Compatibility Alliance (WECA) now certifies WLAN vendors whose products are interoperable. The WECA seal (Wi-Fi Certification) guarantees that WLAN products from different vendors will work together. Proprietary versus Standard Although WLANs that follow the standards are now widely supported and will likely continue to be so. However, there are actually a few situations today in which a proprietary WLAN is a choice. May be to add stations to an existing WLAN, however, replacing a proprietary WLAN with one that follows the IEEE standard is a more forward-looking choice. Another reason, to implement an Infrared WLAN. The Infrared WLAN doesn t interfere with other communication systems, which makes it the choice to be deployed near sensitive scientific or medical equipment. Also, because infrared signal doesn t penetrate walls, so an infrared WLAN may be suited for a network that handles a sensitive data, such as in government or military applications. Peer-to-Peer versus Infrastructure Mode The decision regarding whether to configure the WLAN for peer-to-peer or infrastructure mode should be based upon the purpose of the network. Peer-to-peer mode should be used when wireless stations need to communicate only with each other. This mode is good for a temporary network. Also it s advisable to connect the peer-to-peer network as a first setup before installing the infrastructure mode. For users that need to access the internet or intranet, or for covering a larger area, the infrastructure made is deployed. Range And Coverage Product design and RF and IR propagation determine the distance over which a signal can transmit information. Objects including walls, metal, desks, and people can affect how signals propagate, and, therefore, the range a signal can travel. As we have mentioned before, IR waves cannot travel through opaque objects and have shorter wavelengths, making them more susceptible to interference,

14 WiFi Technology 12 shortening the distance over which they can transmit and receive information. The RF systems will provide the most range, but sacrifice data rates, while Infrared will support high data rates with limited range. Throughput WLAN throughput rates are a constant source of debate, and invariably come down to product and setup choices. IR, as we have mentioned, supports the highest overall data rates, but implementation is difficult. Between the two RF technologies, it is often quoted that DS systems support a higher data rate than FH systems on the order of 5:2. While this is true in low usage systems, FH systems are capable of dividing the allotted spectrum into more channels than DS systems, and, while supporting slower speeds, can actually support more users and, therefore, experience fewer bottlenecks. Interference WLANs can experience interference from other devices operating on the same frequencies. The ISM bands, set aside for free usage by most governments, often have other devices using these same frequencies in close proximity to WLANs. The 2.4 GHz band, for instance, must compete with microwave ovens for spectrum. While most WLAN technologies are designed to resist these types of interference, it is sometimes unavoidable. In addition, FH and DS systems most often cannot be implemented in the same environment despite the different characteristics of transmission; networks of the same type, yet different vendors, can often interfere with one another. Licensing The regulators of the countries governs radio transmission, including those used by WLANs. WLANs are most often operated in the ISM bands we mentioned previously as they do not require the end user to obtain a license to use the airwaves. Most countries have declared it is important, when choosing a vendor, to make sure that they can deliver a product that will conform to the 2.4 GHz portion of radio spectrum as ISM, but some have not. Products must conform to the spectrum requirements of the country in which they operate. Battery Life Battery life for end-user products varies from vendor to vendor and technology to technology and can be an extremely important consideration when designing a wireless network. All vendors typically employ design techniques to maximize the host computer s battery life, and some are more successful than others. Between DS and FH systems, the battery life issue is tilted in favor of FH systems as they have less bandwidth requirements. Generally, the more bandwidth it takes to transmit a signal, the greater degree of battery drain. Safety And Health Concerns WLAN system output is even less than that of cellular phones and no illness has ever been attributed to WLANs. Yet, there are concerns in hospitals when it comes to WLANs as monitoring devices and some medical devices (heart monitors and pacemakers) operate in the same frequency range. Hospital network administrators must make sure that any products they purchase have a sufficient track record of avoiding interference with these types of devices.

15 WiFi Technology 13 Summary This section presents the basic topology of WLAN networks. There are two main Service Set : o Independent Basic Service Set(IBSS) this represents the Ad hoc network with no base station to serve the users. o Extended Service Set(ESS) this represents the infrastructure mode where more than a Basic Service Set is deployed, to serve more users in a larger area. There are three main links in the WLAN chain that form the basis of the network: o Access Points which acts as the base station to the users, and acts as a bridge between the wireless and wired networks. o Network Interface Cards A PC or workstation uses a wireless NIC to connect to the wireless network. o Bridge Wireless bridges are used to connect multiple LANs. WLANs can be implemented in more than one form, depending upon the complexity desired: o Peer-to-Peer which represents the Ad Hoc (or IBSS) networks. o Client & Access Point where one access point is deployed to serve the users in a certain area.(bss) o Multiple Access point which represents the infrastructure mode (or ESS), where more than one access point is deployed and they are connected to the backbone existing network (for example Ethernet or Token Ring). There are some points must be taken into consideration when designing the WLAN network: o Interoperability and Compatibility. o Proprietary versus Standard. o Peer-to-Peer versus Infrastructure Mode. o Range and Coverage. o Throughput. o Interference. o Licensing. o Battery Life. o Safety And Health Concerns.

16 WiFi Technology WiFi Radio Topology The IEEE began to address the need for an interoperability standard among wireless LANs in After six drafts, the final proposal was ratified in June of 1997, specifying WLAN operation in the 2.4 GHz frequency range. The proposal specifies two layers, the Physical (PHY) and the Media Access Control (MAC). The physical layer refers to the three technologies supported by the standard, Frequency Hopping Spread Spectrum (FH), Direct Sequence Spread Spectrum (DS), and Infrared (IR). The Media Access Control (MAC) layer is concerned with the rules for accessing the wireless medium IEEE PHYSICAL LAYER The PHY layer is divided into two sublayers : 1. The Physical Medium Dependent (PMD) Sublayer: It includes the standards for the characteristics of the wireless medium (DSSS, FHSS, or IR). It defines the methods for transmitting and receiving data through the medium. 2. The Physical Layer Convergence Procedure (PLCP) sublayer: It reformats the data received from the MAC layer into packets (Frame) that the PMD sublayer can transmit. It listens to the medium to determine when the data can be sent. Spread Spectrum Technology Spread spectrum, a digital technology designed to trade off bandwidth for reliability and security. It comes in two forms, Frequency Hopping Spread Spectrum (FH), and Direct Sequence (DS). Both forms of Spread Spectrum consume more bandwidth than a typical narrowband transmission, but this enables a louder signal, far easier for the receiver to detect than a narrowband signal. Spread spectrum technologies have security advantages over narrowband technologies as well. Although spread spectrum technologies share a common background, there are certain advantages and disadvantages to the two forms implemented in WLAN applications, so we offer here a brief comparison. Frequency Hopping Frequency Hopping Spread Spectrum (FHSS)combines the bandwidth advantages of a narrowband signal with the security and clarity advantages of a wideband signal. FH uses a narrowband carrier, as little as one MHz in WLAN applications, that changes frequencies at a predetermined rate known to both the transmitter and receiver. This rate places the signal on a frequency for a very short period of time, called the dwell time, and then directs it to hop to the next frequency in the sequence. When synchronized in this way, the net effect is to maintain a single logical channel. To an unintended receiver, FH appears as impulse noise and is ignored. Without the hopping algorithm, FH signals are nearly impossible to intercept.

17 WiFi Technology 15 Advantages Limitations Low susceptibility to interference. FH systems are also highly scalable as numerous segments can be placed in the same area. Each access point creates its own LAN segment capable of transmitting multiple transmissions simultaneously. In dense user environments, many access points can be connected with overlapping coverage, enabling load balancing. Load balancing enables the clients to choose the access point that optimizes performance. This provides for both a greater number of users as well as an overall increase in the system performance. It doesn t support more than 2 Mbps. Direct Sequence DS systems spread signals over a wider bandwidth than FH systems. For each signal burst sent by a DS system, a redundant chipping code or chip is generated. Large chips increase the likelihood of recovering the original signal as statistical techniques embedded in the receiver can recover the original data without the need for retransmission. However, longer chipping codes consume more bandwidth than FH transmissions, supporting fewer overall channels, and therefore fewer users. Yet, as the signal is spread over a larger channel, higher data rates can be supported by DS systems, making them ideal for data intensive environments with less overall network traffic. DS systems are also extremely secure.

18 WiFi Technology 16 In order to intercept a DS signal, an intruder would have to know the frequency range in which the signal was being sent, in addition to the algorithm used to decode the chipping sequence. As the transmission amplitude in DS systems is small, it appears as noise to an unintended receiver, making interception extremely difficult. Advantages Secure. DS supports higher data rates, 1, 2, 5.5, 11 Mbps. Limitations The spreading of the chipping code is over an 22 MHz channel. Although this lessens the possibility of interference of the entire signal, it remains more susceptible to interference than FH systems, which are spread over an 83 MHz channel. It also limits the number of overlapping cells in a DS network to three, making continuous coverage in large facilities more difficult than with FH systems. Infrared Infrared technologies use extremely high frequencies, just below visible light in the electromagnetic spectrum, and are therefore unable to penetrate solid objects. Infrared is currently capable of higher data rates than RF, but, due to the range characteristics, it is not yet cost-effective in WLAN environments. Infrared requires directed (line of sight) or diffuse (reflective) capabilities for transmission. Directed WLANs that use line of sight principle, are impractical for mobile users. Instead they are best designed for a setting where the network devices are fixed in a stationary position without the possibility of something interfering with the line of sight. While diffused WLAN doesn t require line of sight. Instead it relies on reflected light. Emitters in a diffused WLAN have a wide-focused beam instead of a narrow beam. Emitters are usually pointed at the ceiling and use it as the reflection point. When the emitter transmits an infrared signal, it bounces off the ceiling and fills the room with the signal. Diffused WLANs covers up to 16 m.

19 WiFi Technology 17 Personal area networks and peer-to-peer networks of a few feet in distance are suited for infrared technology, as is the implementation of fixed sub-network connections such as LAN bridges. But, as infrared is unable to penetrate opaque objects, we don t believe RF technologies are threatened in the near term for enterprise-wide WLAN solutions. Advantages Limitations Infrared light doesn t interfere with other communication systems as it works in the optical region. Infrared signal doesn t penetrate walls, so the signal are kept inside the room. This makes less interference and prevents eavesdropping. Limited range of coverage (up to 16 m.). Not applicable for mobile users. slow data rate (only up to 4 Mbps). Note: Microwave WLAN technologies are also being used, mainly in WLAN bridge applications. Data rates and range for microwave products fall between RF and IR technologies. Microwave has been inhibited thus far by cost and safety issues, as well as the need for direct line of sight. The FCC has set aside spectrum in the 18.8 to 19.2 GHz bands for use in microwave applications however. A comparison of the features of light-based infrared, FHSS and DSSS wireless networks is summarized in the following table. IR FHSS DSSS Causes No Yes Yes Interfernce Can be No Yes Yes interfered Power Low Moderate Moderate Consumption Coverage Limited Broad Broad BW (Mbps) IEEE MAC LAYER: The Medium Access Control (MAC) Layer addresses the following issues: Accessing the medium The standard uses an access method known as the Distributed Coordination Function (DCF). The DCF specifies the use of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) algorithm as the media access scheme. Association This establishes the wireless links between clients and access points in the network. Association begins by scanning where the station first scans the air to know the access points from beacons sent by the access points. Then the association process begins. Reassociation This is concerned with the handoff of clients as they roam the network.

20 WiFi Technology 18 Authentication The Standard has two ways of addressing authentication. By default the standard is an open system, allowing any client with a wireless connection device to address the network without authentication. The standard does provide, however, for a more secure network with the Wired Equivalent Privacy option, by configuring a Shared Key into the AP and its wireless clients. Only those equipped with the proper key will be allowed to access the AP. Power Management provides for two separate power modes for the operation of wireless clients, Active mode and Power Save mode. Active mode is enabled when a client is transmitting or receiving while Power Save mode is used when there is no communication to the network. The power management is used to preserve the power of laptops as they depend mainly on batteries IEEE Network Layer: Although IEEE specifies the PHY and MAC layer, yet the Network Layer needs enhancements to allow mobility. This enhancement involves the standard protocol of sending and receiving data, TCP/IP. TCP/IP: Each station on the network is assigned a unique IP address, which consists of 4 bytes. 3 bytes of them represents the IP address of the network, and 1 byte represents the host IP (or the station IP). The IP address is unique and fixed to each station, which prevents the mobility and roaming between networks. Mobile IP: Mobile IP provides a mechanism within TCP/IP protocol to support mobility. In mobile IP, computers are given a home address, which is a static address, on their home network. The computer also has a home agent, which keeps track of where the mobile computer is located. When the mobile computer roams to another network (called a Foreign Network),a foreign agent provides routing services to the mobile computer and it assigns him a new, but temporary IP number. So when a data is sent to the mobile computer, to its home address, the home agent forward it to the foreign agent. To respond to the original sender, the mobile computer uses traditional IP routing instead of tunneling back toward its home agent.

Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ

Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ Wireless Ethernet LAN (WLAN) General 802.11a/802.11b/802.11g FAQ Q: What is a Wireless LAN (WLAN)? Q: What are the benefits of using a WLAN instead of a wired network connection? Q: Are Intel WLAN products

More information

INFORMATION TECHNOLOGY MANAGEMENT COMMITTEE LIVINGSTON, NJ WWW.LIVINGSTONNJ.ORG ITMC TECH TIP ROB COONCE, MARCH 2008

INFORMATION TECHNOLOGY MANAGEMENT COMMITTEE LIVINGSTON, NJ WWW.LIVINGSTONNJ.ORG ITMC TECH TIP ROB COONCE, MARCH 2008 INFORMATION TECHNOLOGY MANAGEMENT COMMITTEE LIVINGSTON, NJ WWW.LIVINGSTONNJ.ORG What is wireless technology? ITMC TECH TIP ROB COONCE, MARCH 2008 In our world today, this may mean sitting down at a coffee

More information

Chapter 7 Low-Speed Wireless Local Area Networks

Chapter 7 Low-Speed Wireless Local Area Networks Wireless# Guide to Wireless Communications 7-1 Chapter 7 Low-Speed Wireless Local Area Networks At a Glance Instructor s Manual Table of Contents Overview Objectives s Quick Quizzes Class Discussion Topics

More information

Security in Wireless Local Area Network

Security in Wireless Local Area Network Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET 2006) Breaking Frontiers and Barriers in Engineering: Education, Research and Practice 21-23 June

More information

Wireless LAN Networking White Paper

Wireless LAN Networking White Paper Wireless LAN Networking White Paper Introduction Wireless technology has helped to simplify networking by enabling multiple computer users to simultaneously share resources in a home or business without

More information

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN:

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN: WLAN: Wireless LAN Make use of a wireless transmission medium Tipically restricted in their diameter: buildings, campus, single room etc.. The global goal is to replace office cabling and to introduce

More information

This KnowledgeShare document addresses the main types of wireless networking today based on the IEEE 802.11 standard.

This KnowledgeShare document addresses the main types of wireless networking today based on the IEEE 802.11 standard. Wireless Networking Q&A Increased use of laptop computers within the enterprise, and increase in worker mobility have fuelled the demand for wireless networks. Up until recently, wireless technology was

More information

Chapter 2 Configuring Your Wireless Network and Security Settings

Chapter 2 Configuring Your Wireless Network and Security Settings Chapter 2 Configuring Your Wireless Network and Security Settings This chapter describes how to configure the wireless features of your DG834N RangeMax TM NEXT Wireless ADSL2+ Modem Router. For a wireless

More information

12/3/08. Security in Wireless LANs and Mobile Networks. Wireless Magnifies Exposure Vulnerability. Mobility Makes it Difficult to Establish Trust

12/3/08. Security in Wireless LANs and Mobile Networks. Wireless Magnifies Exposure Vulnerability. Mobility Makes it Difficult to Establish Trust Security in Wireless LANs and Mobile Networks Wireless Magnifies Exposure Vulnerability Information going across the wireless link is exposed to anyone within radio range RF may extend beyond a room or

More information

White Paper. D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. E-mail: info@dlink.com.sg; Web: http://www.dlink-intl.

White Paper. D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. E-mail: info@dlink.com.sg; Web: http://www.dlink-intl. Introduction to Voice over Wireless LAN (VoWLAN) White Paper D-Link International Tel: (65) 6774 6233, Fax: (65) 6774 6322. Introduction Voice over Wireless LAN (VoWLAN) is a technology involving the use

More information

WI-FI VS. BLUETOOTH TWO OUTSTANDING RADIO TECHNOLOGIES FOR DEDICATED PAYMENT APPLICATION

WI-FI VS. BLUETOOTH TWO OUTSTANDING RADIO TECHNOLOGIES FOR DEDICATED PAYMENT APPLICATION WI-FI VS. BLUETOOTH TWO OUTSTANDING RADIO TECHNOLOGIES FOR DEDICATED PAYMENT APPLICATION Ingenico is often asked: what are the differences between Bluetooth and Wi-Fi technologies, which is the best one,

More information

Wireless Network Standard and Guidelines

Wireless Network Standard and Guidelines Wireless Network Standard and Guidelines Purpose The standard and guidelines listed in this document will ensure the uniformity of wireless network access points and provide guidance for monitoring, maintaining

More information

Wireless e-business by IBM Wireless Local Area Networks

Wireless e-business by IBM Wireless Local Area Networks IBM Global Services October 2001 Wireless e-business by IBM Wireless Local Area Networks Jyrki Korkki Global Offerings Development Executive, Global Services Page No. 2 Contents 2 Unwiring the business

More information

The next generation of knowledge and expertise Wireless Security Basics

The next generation of knowledge and expertise Wireless Security Basics The next generation of knowledge and expertise Wireless Security Basics HTA Technology Security Consulting., 30 S. Wacker Dr, 22 nd Floor, Chicago, IL 60606, 708-862-6348 (voice), 708-868-2404 (fax), www.hta-inc.com

More information

Chapter 2 Wireless Settings and Security

Chapter 2 Wireless Settings and Security Chapter 2 Wireless Settings and Security This chapter describes how to set up the wireless features of your WGT624 v4 wireless router. In planning your wireless network, select a location for the wireless

More information

Best Practices for Deploying Wireless LANs

Best Practices for Deploying Wireless LANs Best Practices for Deploying Wireless LANs An overview of special considerations in WLAN implementations As wireless LANs (WLANs) continue to grow in popularity, particularly in enterprise networks, the

More information

Lecture Objectives. Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks. Agenda. References

Lecture Objectives. Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks. Agenda. References Lecture Objectives Wireless Networks and Mobile Systems Lecture 8 Mobile Networks: Security in Wireless LANs and Mobile Networks Introduce security vulnerabilities and defenses Describe security functions

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

TL-WN310G 54M Wireless CardBus Adapter

TL-WN310G 54M Wireless CardBus Adapter 54M Wireless CardBus Adapter Rev: 1.0.1 1910010042 COPYRIGHT & TRADEMARKS Specifications are subject to change without notice. is a registered trademark of TP-LINK TECHNOLOGIES CO., LTD. Other brands and

More information

HIPAA Security Considerations for Broadband Fixed Wireless Access Systems White Paper

HIPAA Security Considerations for Broadband Fixed Wireless Access Systems White Paper HIPAA Security Considerations for Broadband Fixed Wireless Access Systems White Paper Rev 1.0 HIPAA Security Considerations for Broadband Fixed Wireless Access Systems This white paper will investigate

More information

Wireless LANs vs. Wireless WANs

Wireless LANs vs. Wireless WANs White Paper Wireless LANs vs. Wireless WANs White Paper 2130273 Revision 1.0 Date 2002 November 18 Subject Supported Products Comparing Wireless LANs and Wireless WANs Wireless data cards and modules,

More information

Wi-Fi Why Now? Exploring New Wireless Technologies for Industrial Applications

Wi-Fi Why Now? Exploring New Wireless Technologies for Industrial Applications Wi-Fi Why Now? Exploring New Wireless Technologies for Industrial Applications Patrick McCurdy Product Marketing Manager Phoenix Contact Inc. pmccurdy@phoenixcon.com Ira Sharp Product Specialist Phoenix

More information

LTE, WLAN, BLUETOOTHB

LTE, WLAN, BLUETOOTHB LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed

More information

Wireless Network Policy

Wireless Network Policy Wireless Network Policy Purpose Guide the deployment and integrity of wireless networking on the Kettering University campus to ensure reliable, compatible, and secure operation Protect the security of

More information

EKT 331/4 COMMUNICATION NETWORK

EKT 331/4 COMMUNICATION NETWORK UNIVERSITI MALAYSIA PERLIS SCHOOL OF COMPUTER & COMMUNICATIONS ENGINEERING EKT 331/4 COMMUNICATION NETWORK LABORATORY MODULE LAB 5 WIRELESS ACCESS POINT Lab 5 : Wireless Access Point Objectives To learn

More information

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997

More information

Wireless LAN Concepts

Wireless LAN Concepts Wireless LAN Concepts Wireless LAN technology is becoming increasingly popular for a wide variety of applications. After evaluating the technology, most users are convinced of its reliability, satisfied

More information

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman

Wireless Networks. Reading: Sec5on 2.8. COS 461: Computer Networks Spring 2011. Mike Freedman 1 Wireless Networks Reading: Sec5on 2.8 COS 461: Computer Networks Spring 2011 Mike Freedman hep://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Widespread Deployment Worldwide cellular subscribers

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

LP-348. LP-Yagy2415. LP-510G/550G 54M Wireless Adapter PCMCIA/PCI. User Guide Ver:2.0 LP-5420G WWW.LANPRO.COM

LP-348. LP-Yagy2415. LP-510G/550G 54M Wireless Adapter PCMCIA/PCI. User Guide Ver:2.0 LP-5420G WWW.LANPRO.COM LP-348 LP-Yagy2415 LP-1518 LP-5P LP-510G/550G 54M Wireless Adapter PCMCIA/PCI User Guide Ver:2.0 LP-5420G WWW.LANPRO.COM COPYRIGHT & TRADEMARKS Specifications are subject to change without notice. is a

More information

Overview of 802.11 Networks and Standards

Overview of 802.11 Networks and Standards Overview of 802.11 Networks and Standards Mauri Kangas, Helsinki University of Technology, 17.02.2004 Mauri Kangas 17.2.2004 Page 1 (34) Family of 802.xx Standards ISO/IEC 8802-xx = IEEE 802.xx IEEE 802.1

More information

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 6. Wireless Network Security

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 6. Wireless Network Security Security+ Guide to Network Security Fundamentals, Third Edition Chapter 6 Wireless Network Security Objectives Overview of IEEE 802.11 wireless security Define vulnerabilities of Open System Authentication,

More information

TOWARDS STUDYING THE WLAN SECURITY ISSUES SUMMARY

TOWARDS STUDYING THE WLAN SECURITY ISSUES SUMMARY TOWARDS STUDYING THE WLAN SECURITY ISSUES SUMMARY SUBMITTED TO THE KUMAUN UNIVERSITY, NAINITAL BY MANOJ CHANDRA LOHANI FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE UNDER THE

More information

WIRELESS SECURITY IN 802.11 (WI-FI ) NETWORKS

WIRELESS SECURITY IN 802.11 (WI-FI ) NETWORKS January 2003 January WHITE 2003 PAPER WIRELESS SECURITY IN 802.11 (WI-FI ) NETWORKS With the increasing deployment of 802.11 (or Wi-Fi) wireless networks in business environments, IT organizations are

More information

Wireless Local Area Networking (WLAN) Security Assessment And Countermeasures

Wireless Local Area Networking (WLAN) Security Assessment And Countermeasures Wireless Local Area Networking (WLAN) Security Assessment And Countermeasures (IEEE 802.11 Wireless Networks) James Burrell Research project submission for the partial fulfillment of the requirements for

More information

The Basics of Wireless Local Area Networks

The Basics of Wireless Local Area Networks The Basics of Wireless Local Area Networks Andreas Johnsen Student at Mälardalens högskola ajn05012@student.mdh.se +46 712345678 ABSTRACT This paper is written as a brief education about the basics of

More information

Wireless (Select Models Only) User Guide

Wireless (Select Models Only) User Guide Wireless (Select Models Only) User Guide Copyright 2007, 2008 Hewlett-Packard Development Company, L.P. Windows is a U.S. registered trademark of Microsoft Corporation. Bluetooth is a trademark owned by

More information

Discovering Computers 2008. Chapter 9 Communications and Networks

Discovering Computers 2008. Chapter 9 Communications and Networks Discovering Computers 2008 Chapter 9 Communications and Networks Chapter 9 Objectives Discuss the the components required for for successful communications Identify various sending and receiving devices

More information

Wireless Network Standard

Wireless Network Standard Last Modified: 10/20/15 Wireless Network Standard Purpose The standard and guidelines described in this document will ensure the uniformity of wireless network access points at the University of Georgia.

More information

Wireless LAN Security Mechanisms

Wireless LAN Security Mechanisms Wireless LAN Security Mechanisms Jingan Xu, Andreas Mitschele-Thiel Technical University of Ilmenau, Integrated Hard- and Software Systems Group jingan.xu@tu-ilmenau.de, mitsch@tu-ilmenau.de Abstract.

More information

Guide for wireless environments

Guide for wireless environments Sanako Study Guide for wireless environments 1 Contents Sanako Study... 1 Guide for wireless environments... 1 What will you find in this guide?... 3 General... 3 Disclaimer... 3 Requirements in brief...

More information

WiFi. Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman. WiFi 1

WiFi. Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman. WiFi 1 WiFi Is for Wireless Fidelity Or IEEE 802.11 Standard By Greg Goldman WiFi 1 What is the goal of 802.11 standard? To develop a Medium Access Control (MAC) and Physical Layer (PHY) specification for wireless

More information

1 Which network type is a specifically designed configuration of computers and other devices located within a confined area? A Peer-to-peer network

1 Which network type is a specifically designed configuration of computers and other devices located within a confined area? A Peer-to-peer network Review questions 1 Which network type is a specifically designed configuration of computers and other devices located within a confined area? A Peer-to-peer network B Local area network C Client/server

More information

DATA SECURITY 1/12. Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0

DATA SECURITY 1/12. Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0 DATA SECURITY 1/12 Copyright Nokia Corporation 2002. All rights reserved. Ver. 1.0 Contents 1. INTRODUCTION... 3 2. REMOTE ACCESS ARCHITECTURES... 3 2.1 DIAL-UP MODEM ACCESS... 3 2.2 SECURE INTERNET ACCESS

More information

White Paper. Wireless Network Considerations for Mobile Collaboration

White Paper. Wireless Network Considerations for Mobile Collaboration White Paper Wireless Network Considerations for Mobile Collaboration Table of Contents I. Introduction... 3 II. Wireless Considerations... 4 Channel Selection... 4 Interference... 4 Coverage... 5 Covering

More information

Chapter 9A. Network Definition. The Uses of a Network. Network Basics

Chapter 9A. Network Definition. The Uses of a Network. Network Basics Chapter 9A Network Basics 1 Network Definition Set of technologies that connects computers Allows communication and collaboration between users 2 The Uses of a Network Simultaneous access to data Data

More information

Telecommunications, Networks, and Wireless Computing

Telecommunications, Networks, and Wireless Computing Objectives Telecommunications, Networks, and Wireless Computing 1. What are the features of a contemporary corporate telecommunications system? On what major technology developments are they based? 2.

More information

PCMCIA Wireless LAN Card User s Manual

PCMCIA Wireless LAN Card User s Manual PCMCIA Wireless LAN Card User s Manual Rev 1.0 Regulatory compliance FCC Warning This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of

More information

Lecture 17: 802.11 Wireless Networking"

Lecture 17: 802.11 Wireless Networking Lecture 17: 802.11 Wireless Networking" CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Lili Qiu, Nitin Vaidya Lecture 17 Overview" Project discussion Intro to 802.11 WiFi Jigsaw discussion

More information

CWNA: Official Certification Guide Unit 1 Introduction to Wireless LANs

CWNA: Official Certification Guide Unit 1 Introduction to Wireless LANs CWNA: Official Certification Guide Unit 1 Introduction to Wireless LANs Wireless LANs were once considered expensive and slow solutions to certain network connectivity issues. Wireless LAN sales are now

More information

Networks. The two main network types are: Peer networks

Networks. The two main network types are: Peer networks Networks Networking is all about sharing information and resources. Computers connected to a network can avail of many facilities not available to standalone computers: Share a printer or a plotter among

More information

Chapter 2 Wireless Networking Basics

Chapter 2 Wireless Networking Basics Chapter 2 Wireless Networking Basics Wireless Networking Overview Some NETGEAR products conform to the Institute of Electrical and Electronics Engineers (IEEE) 802.11g standard for wireless LANs (WLANs).

More information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Computer Network. Interconnected collection of autonomous computers that are able to exchange information Introduction Computer Network. Interconnected collection of autonomous computers that are able to exchange information No master/slave relationship between the computers in the network Data Communications.

More information

Optimizing Wireless Networks.

Optimizing Wireless Networks. from the makers of inssider Optimizing Wireless Networks. Over the past few years, MetaGeek has created tools to help users optimize their wireless networks. MetaGeek s tools help visualize the physical

More information

Demystifying Wireless for Real-World Measurement Applications

Demystifying Wireless for Real-World Measurement Applications Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Demystifying Wireless for Real-World Measurement Applications Kurt Veggeberg, Business,

More information

WHITE PAPER. WEP Cloaking for Legacy Encryption Protection

WHITE PAPER. WEP Cloaking for Legacy Encryption Protection WHITE PAPER WEP Cloaking for Legacy TM Encryption Protection Introduction Wired Equivalent Privacy (WEP) is the encryption protocol defined in the original IEEE 802.11 standard for Wireless Local Area

More information

Narrowband and Broadband Access Technologies

Narrowband and Broadband Access Technologies Computer Networks and Internets, 5e Chapters 12 and 16 Access and Interconnection Technologies (slidesets abridged/combined) By Douglas Comer Modified from the lecture slides of Lami Kaya (LKaya@ieee.org)

More information

Maximizing Range and Battery Life in Low-Cost Wireless Networks

Maximizing Range and Battery Life in Low-Cost Wireless Networks Maximizing Range and Battery Life in Low-Cost Wireless Networks The proliferation of cost-effective wireless technology has led to the rise of entirely new types of networks across a wide range of applications

More information

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0

LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0 LoRaWAN What is it? A technical overview of LoRa and LoRaWAN Technical Marketing Workgroup 1.0 November 2015 TABLE OF CONTENTS 1. INTRODUCTION... 3 What is LoRa?... 3 Long Range (LoRa )... 3 2. Where does

More information

Network Security Best Practices

Network Security Best Practices CEDIA WHITE PAPER Network Security Best Practices 2014 CEDIA TABLE OF CONTENTS 01 Document Scope 3 02 Introduction 3 03 Securing the Router from WAN (internet) Attack 3 04 Securing the LAN and Individual

More information

Basic processes in IEEE802.11 networks

Basic processes in IEEE802.11 networks Module contents IEEE 802.11 Terminology IEEE 802.11 MAC Frames Basic processes in IEEE802.11 networks Configuration parameters.11 Architect. 1 IEEE 802.11 Terminology Station (STA) Architecture: Device

More information

802.11b and associated network security risks for the home user

802.11b and associated network security risks for the home user 802.11b and associated network security risks for the home user by Michael Osten mosten@bleepyou.com Background ================= Approved in 1997 by the IEEE 802 committee, 802.11 details the framework

More information

Preparing the Computers for TCP/IP Networking

Preparing the Computers for TCP/IP Networking Configuration Preparing the Computers for TCP/IP Networking Configuring Windows 98, and ME for TCP/IP Networking Verifying TCP/IP Properties Configuring Windows 2000 or XP for IP Networking Install or

More information

Wireless Networking for Small Businesses, Branches and Home Offices

Wireless Networking for Small Businesses, Branches and Home Offices Wireless Networking for Small Businesses, Branches and Home Offices Whether one believes in the Internet revolution or not, it is true that the Internet today has become an essential element in running

More information

A Division of Cisco Systems, Inc. Wireless A/G. USB Network Adapter. User Guide WIRELESS WUSB54AG. Model No.

A Division of Cisco Systems, Inc. Wireless A/G. USB Network Adapter. User Guide WIRELESS WUSB54AG. Model No. A Division of Cisco Systems, Inc. WIRELESS Wireless A/G USB Network Adapter User Guide Model No. WUSB54AG Copyright and Trademarks Specifications are subject to change without notice. Linksys is a registered

More information

Chapter 9. Communications and Networks. McGraw-Hill/Irwin. Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

Chapter 9. Communications and Networks. McGraw-Hill/Irwin. Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 9 Communications and Networks McGraw-Hill/Irwin Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Competencies (Page 1 of 2) Discuss connectivity, the wireless revolution,

More information

A Division of Cisco Systems, Inc. GHz 2.4 802.11g. Wireless-G. USB Network Adapter with RangeBooster. User Guide WIRELESS WUSB54GR. Model No.

A Division of Cisco Systems, Inc. GHz 2.4 802.11g. Wireless-G. USB Network Adapter with RangeBooster. User Guide WIRELESS WUSB54GR. Model No. A Division of Cisco Systems, Inc. GHz 2.4 802.11g WIRELESS Wireless-G USB Network Adapter with RangeBooster User Guide Model No. WUSB54GR Copyright and Trademarks Specifications are subject to change without

More information

Wireless Security Overview. Ann Geyer Partner, Tunitas Group Chair, Mobile Healthcare Alliance 209-754-9130 ageyer@tunitas.com

Wireless Security Overview. Ann Geyer Partner, Tunitas Group Chair, Mobile Healthcare Alliance 209-754-9130 ageyer@tunitas.com Wireless Security Overview Ann Geyer Partner, Tunitas Group Chair, Mobile Healthcare Alliance 209-754-9130 ageyer@tunitas.com Ground Setting Three Basics Availability Authenticity Confidentiality Challenge

More information

Chapter 6 Telecommunications, Networks, and Wireless. Computing

Chapter 6 Telecommunications, Networks, and Wireless. Computing Chapter 6 Telecommunications, Networks, and Wireless Computing Essay Questions: 1. Define a hub, switch, and a router. 2. List the challenges associated with managing contemporary telecommunications and

More information

HP AP8760 Dual Radio 802.11a/b/g Access Point Overview

HP AP8760 Dual Radio 802.11a/b/g Access Point Overview Overview Models JD016A Key features Simultaneous 802.11a and 802.11b/g support PoE power/data via Category 5/6 data cables WPA/2, AES, TKIP, WEP packet encryption MAC address authentication/filtering WDS

More information

Wireless Security. New Standards for 802.11 Encryption and Authentication. Ann Geyer 209-754-9130 ageyer@tunitas.com www.tunitas.

Wireless Security. New Standards for 802.11 Encryption and Authentication. Ann Geyer 209-754-9130 ageyer@tunitas.com www.tunitas. Wireless Security New Standards for 802.11 Encryption and Authentication Ann Geyer 209-754-9130 ageyer@tunitas.com www.tunitas.com National Conference on m-health and EOE Minneapolis, MN Sept 9, 2003 Key

More information

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions

Environmental Monitoring: Guide to Selecting Wireless Communication Solutions Environmental Monitoring: Guide to Selecting Wireless Communication Solutions By: Scott South Published in WaterWorld, January 2005 (Page 48) Rapidly growing demands for information and increased productivity

More information

Chapter 5. Data Communication And Internet Technology

Chapter 5. Data Communication And Internet Technology Chapter 5 Data Communication And Internet Technology Purpose Understand the fundamental networking concepts Agenda Network Concepts Communication Protocol TCP/IP-OSI Architecture Network Types LAN WAN

More information

A Division of Cisco Systems, Inc. GHz 2.4 802.11g. Wireless-G. Access Point with SRX. User Guide WIRELESS WAP54GX. Model No.

A Division of Cisco Systems, Inc. GHz 2.4 802.11g. Wireless-G. Access Point with SRX. User Guide WIRELESS WAP54GX. Model No. A Division of Cisco Systems, Inc. GHz 2.4 802.11g WIRELESS Wireless-G Access Point with SRX User Guide Model No. WAP54GX Copyright and Trademarks Specifications are subject to change without notice. Linksys

More information

Wireless LAN Access Point. IEEE 802.11g 54Mbps. User s Manual

Wireless LAN Access Point. IEEE 802.11g 54Mbps. User s Manual Wireless LAN Access Point IEEE 802.11g 54Mbps User s Manual Table of Contents Chapter 1 Introduction... 1 1.1 Package Contents...2 1.2 Features...2 1.3 Specifications...2 1.4 Physical Description...3 Chapter

More information

ENHWI-N3. 802.11n Wireless Router

ENHWI-N3. 802.11n Wireless Router ENHWI-N3 802.11n Wireless Router Product Description Encore s ENHWI-N3 802.11n Wireless Router s 1T1R Wireless single chip can deliver up to 3x faster speed than of 802.11g devices. ENHWI-N3 supports home

More information

ADDENDUM 12 TO APPENDIX 8 TO SCHEDULE 3.3

ADDENDUM 12 TO APPENDIX 8 TO SCHEDULE 3.3 ADDENDUM 12 TO APPENDIX 8 TO SCHEDULE 3.3 TO THE Overview EXHIBIT T to Amendment No. 60 Secure Wireless Network Services are based on the IEEE 802.11 set of standards and meet the Commonwealth of Virginia

More information

Journal of Mobile, Embedded and Distributed Systems, vol. I, no. 1, 2009 ISSN 2067 4074

Journal of Mobile, Embedded and Distributed Systems, vol. I, no. 1, 2009 ISSN 2067 4074 Issues in WiFi Networks Nicolae TOMAI Faculty of Economic Informatics Department of IT&C Technologies Babes Bolyai Cluj-Napoca University, Romania tomai@econ.ubbcluj.ro Abstract: The paper has four sections.

More information

Wireless Threats To Corporate Security A Presentation for ISACA UK Northern Chapter

Wireless Threats To Corporate Security A Presentation for ISACA UK Northern Chapter Wireless Threats To Corporate Security A Presentation for ISACA UK Northern Chapter Introduction Who are we? Matt Moore, Senior Consultant @ PenTest Ltd. Mark Rowe, Technical Director @ PenTest Ltd. What

More information

VoIP on WLAN, QoS issues and VoIP specifics

VoIP on WLAN, QoS issues and VoIP specifics ETSI STQ Workshop Compensating for Packet Loss in Real-Time Applications, Feb 2003 VoIP on WLAN, QoS issues and VoIP specifics Alan Duric Sen. Systems Architect SIP/email: alan.duric@globalipsound.com

More information

White Paper. Wireless LAN Security. Copyright Madge Limited. All rights reserved.

White Paper. Wireless LAN Security. Copyright Madge Limited. All rights reserved. White Paper Wireless LAN Security Copyright 2002-2003 Madge Limited. All rights reserved. 1 Introduction As wireless LANs become widely deployed, and the business benefits become clear, concern has grown

More information

R2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol?

R2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol? Chapter 1 Review Questions R1. What is the difference between a host and an end system? List several different types of end systems. Is a Web server an end system? 1. There is no difference. Throughout

More information

Medical Device Connectivity

Medical Device Connectivity Medical Device Connectivity Most medical device manufacturers are implementing 802.11x wireless connectivity. This white paper will identify requirements and provide information to help ensure a successful

More information

Wireless Networks: Basics & Security Issues

Wireless Networks: Basics & Security Issues Wireless Networks: Basics & Security Issues Burak Ekici ekcburak@hotmail.com Department of Computer Engineering, Yaşar University, Turkey. April 22, 2012 Burak Ekici (Dept. of Comp. Eng.) Wireless Networks:

More information

IEEE 802.11n Enterprise Class Wireless LAN?

IEEE 802.11n Enterprise Class Wireless LAN? Introduction Over the last decade Wi-Fi has advanced from a technology offering a maximum 2Mbps over-theair data rate, to 11Mbps and now to 54Mbps. The technology has been improved to include additions

More information

Introduction to Ad hoc Networks

Introduction to Ad hoc Networks Introduction to Ad hoc Networks CS-647: Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University Amitabh Mishra & Baruch Awerbuch

More information

Portable Wireless Mesh Networks: Competitive Differentiation

Portable Wireless Mesh Networks: Competitive Differentiation Portable Wireless Mesh Networks: Competitive Differentiation Rajant Corporation s kinetic mesh networking solutions combine specialized command and control software with ruggedized, high-performance hardware.

More information

Cisco WAP200E Wireless-G Exterior Access Point: PoE Cisco Small Business Access Points

Cisco WAP200E Wireless-G Exterior Access Point: PoE Cisco Small Business Access Points Cisco WAP200E Wireless-G Exterior Access Point: PoE Cisco Small Business Access Points High-Speed Wireless Access for Exterior Environments Highlights Extends network to exterior business environments,

More information

Wireless (Select Models Only) User Guide

Wireless (Select Models Only) User Guide Wireless (Select Models Only) User Guide Copyright 2008 Hewlett-Packard Development Company, L.P. Windows is a U.S. registered trademark of Microsoft Corporation. Bluetooth is a trademark owned by its

More information

Wireless Broadband Access

Wireless Broadband Access Wireless Broadband Access (Brought to you by RMRoberts.com) Mobile wireless broadband is a term used to describe wireless connections based on mobile phone technology. Broadband is an electronics term

More information

Chapter 3 Safeguarding Your Network

Chapter 3 Safeguarding Your Network Chapter 3 Safeguarding Your Network The RangeMax NEXT Wireless Router WNR834B provides highly effective security features which are covered in detail in this chapter. This chapter includes: Choosing Appropriate

More information

Expert Reference Series of White Papers. Wireless Bandwidth Not Necessarily as Advertised 1-800-COURSES. www.globalknowledge.com

Expert Reference Series of White Papers. Wireless Bandwidth Not Necessarily as Advertised 1-800-COURSES. www.globalknowledge.com Expert Reference Series of White Papers Wireless Bandwidth Not Necessarily as Advertised 1-800-COURSES www.globalknowledge.com Wireless Bandwidth Not Necessarily as Advertised Ted Rohling, Global Knowledge

More information

Enterprise Solutions for Wireless LAN Security Wi-Fi Alliance February 6, 2003

Enterprise Solutions for Wireless LAN Security Wi-Fi Alliance February 6, 2003 Enterprise Solutions for Wireless LAN Security Wi-Fi Alliance February 6, 2003 Executive Summary The threat to network security from improperly secured WLANs is a real and present danger for today s enterprises.

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Deploying secure wireless network services The Avaya Identity Engines portfolio offers flexible, auditable management for secure wireless networks.

Deploying secure wireless network services The Avaya Identity Engines portfolio offers flexible, auditable management for secure wireless networks. Table of Contents Section 1: Executive summary...1 Section 2: The challenge...2 Section 3: WLAN security...3 and the 802.1X standard Section 4: The solution...4 Section 5: Security...4 Section 6: Encrypted

More information

Technology in Action. Alan Evans Kendall Martin Mary Anne Poatsy. Eleventh Edition. Copyright 2015 Pearson Education, Inc.

Technology in Action. Alan Evans Kendall Martin Mary Anne Poatsy. Eleventh Edition. Copyright 2015 Pearson Education, Inc. Technology in Action Alan Evans Kendall Martin Mary Anne Poatsy Eleventh Edition Technology in Action Chapter 10 Behind the Scenes: Networking and Security in the Business World 2 Chapter Topics Client/Server

More information

Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards

Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards White Paper Key Hopping A Security Enhancement Scheme for IEEE 802.11 WEP Standards By Dr. Wen-Ping Ying, Director of Software Development, February 2002 Introduction Wireless LAN networking allows the

More information

Introduction to Computer Networks and Data Communications

Introduction to Computer Networks and Data Communications Introduction to Computer Networks and Data Communications Chapter 1 Learning Objectives After reading this chapter, you should be able to: Define the basic terminology of computer networks Recognize the

More information