An Ghníomhaireacht um Chaomhnú Comhshaoil EPA TOPIC REPORT WASTE FROM ELECTRICAL AND ELECTRONIC EQUIPMENT IN IRELAND: A STATUS REPORT

Size: px
Start display at page:

Download "An Ghníomhaireacht um Chaomhnú Comhshaoil EPA TOPIC REPORT WASTE FROM ELECTRICAL AND ELECTRONIC EQUIPMENT IN IRELAND: A STATUS REPORT"

Transcription

1 An Ghníomhaireacht um Chaomhnú Comhshaoil EPA TOPIC REPORT WASTE FROM ELECTRICAL AND ELECTRONIC EQUIPMENT IN IRELAND: A STATUS REPORT Simon Wilkinson Clean Technology Centre Cork Institute of Technology Cork Ireland Noel Duffy Clean Technology Centre Cork Institute of Technology Cork Ireland Dr. Matt Crowe Environmental Protection Agency Wexford Ireland May 2001

2 Environmental Protection Agency Establishment The Environmental Protection Agency Act, 1992, was enacted on 23 April, 1992, and under this legislation the Agency was formally established on 26 July, Responsibilities The Agency has a wide range of statutory duties and powers under the Act. The main responsibilities of the Agency include the following: - the licensing and regulation of large/complex industrial and other processes with significant polluting potential, on the basis of integrated pollution control (IPC) and the application of best available technologies for this purpose; - the monitoring of environmental quality, including the establishment of databases to which the public will have access, and the publication of periodic reports on the state of the environment; - advising public authorities in respect of environmental functions and assisting local authorities in the performance of their environmental protection functions; - the promotion of environmentally sound practices through, for example, the encouragement of the use of environmental audits, the setting of environmental quality objectives and the issuing of codes of practice on matters affecting the environment; - the promotion and co-ordination of environmental research; - the licensing and regulation of all significant waste disposal and recovery activities, including landfills and the preparation and periodic updating of a national hazardous waste management plan for implementation by other bodies; - implementing a system of permitting for the control of VOC emissions resulting from the storage of significant quantities of petrol at terminals; - implementing and enforcing the GMO Regulations for the contained use and deliberate release of GMOs into the environment; - preparation and implementation of a national hydrometric programme for the collection, analysis and publication of information on the levels, volumes and flows of water in rivers, lakes and groundwaters; and - generally overseeing the performance by local authorities of their statutory environmental protection functions. Status The Agency is an independent public body. Its sponsor in Government is the Department of the Environment and Local Government. Independence is assured through the selection procedures for the Director General and Directors and the freedom, as provided in the legislation, to act on its own initiative. The assignment, under the legislation, of direct responsibility for a wide range of functions underpins this independence. Under the legislation, it is a specific offence to attempt to influence the Agency, or anyone acting on its behalf, in an improper manner. Organisation The Agency s headquarters is located in Wexford and it operates five regional inspectorates, located in Dublin, Cork, Kilkenny, Castlebar and Monaghan. Management The Agency is managed by a full-time Executive Board consisting of a Director General and four Directors. The Executive Board is appointed by the Government following detailed procedures laid down in the Act. Advisory Committee The Agency is assisted by an Advisory Committee of twelve members. The members are appointed by the Minister for the Environment and Local Government and are selected mainly from those nominated by organisations with an interest in environmental and developmental matters. The Committee has been given a wide range of advisory functions under the Act, both in relation to the Agency and to the Minister.

3 Environmental Protection Agency 2001 Although every effort has been made to ensure the accuracy of the material contained in this publication, complete accuracy cannot be guaranteed. Neither the Environmental Protection Agency nor the author(s) accept any responsibility whatsoever for loss or damage occasioned or claimed to have been occasioned, in part or in full, as a consequence of any person acting, or refraining from acting, as a result of a matter contained in this publication. All or part of this publication may be reproduced without further permission, provided the source is acknowledged. Waste from Electrical & Electronic Equipment in Ireland: A Status Report Simon Wilkinson, Noel Duffy and Matt Crowe Simon Wilkinson and Noel Duffy Matt Crowe Clean Technology Centre Environmental Protection Agency Unit 1 Melbourne Business Park PO Box 3000 Melbourne Road Johnstown Castle Estate Cork Co. Wexford Ireland Ireland Telephone: Telephone: Fax: Fax: Published by Environmental Protection Agency, Ireland May 2001

4 TABLE OF CONTENTS List of Tables... 3 List of Figures... 3 EXECUTIVE SUMMARY... 4 CHAPTER 1 BACKGROUND Introduction A Definition of Electrical and Electronic Equipment (EEE) Environmental Concerns Dangerous Substances Resource Depletion Disposal Problems Legislation National Legislation Initiatives EU Directive Legislation in Ireland Quantities of WEEE in Europe Collection Trials Experience...14 CHAPTER 2 - QUANTITIES OF WEEE IN IRELAND Scope of Study Sales Data Sources Considered Official Statistics Market Research Companies Industry Associations Extrapolations From Other Countries Data Conclusions on Data Sources and Results Calculation of WEEE Arisings in Ireland Calculation Results Results for PC s Results for Refrigerators Results for Televisions Results for Toasters Comparison of Irish Calculations with Collection Trial Findings Total Quantity of WEEE Arising in Ireland Material composition Overall WEEE Material Composition Material Waste Arisings Specific Materials Arising in Ireland Ferrous Metals Non-ferrous Metals Plastics Glass Specific Components Arising from WEEE in Ireland Printed Circuit Boards Brominated Flame Retardants Cathode Ray Tubes PVC...43 Page 1 of 90

5 CHAPTER 3 - WEEE MANAGEMENT IN IRELAND Shredders Specialist Recyclers Management of WEEE by local authorities...46 CHAPTER 4 CONCLUSIONS & RECOMMENDATIONS REFERENCES WEBSITES APPENDICES APPENDIX ONE: Examples of Collection Trials...56 APPENDIX TWO: Comparison of Sales Data...60 APPENDIX THREE: Calculation Methods Used...68 APPENDIX FOUR: Assumptions Made...77 APPENDIX FIVE: WEEE Calculation Results...81 APPENDIX SIX: Electronic and Electrical Equipment Recyclers in Ireland...85 APPENDIX SEVEN: Questionnaire to Local Authorities...88 ACKNOWLEDGEMENT FURTHER INFORMATION Page 2 of 90

6 LIST OF TABLES Table 1. Comparison of selected WEEE collection trial results...15 Table 2. Items of EEE selected for this study...16 Table 3. Comparison of PRODCOM descriptions with external trade descriptions...18 Table 4. Irish sales statistics for use in WEEE calculations...21 Table 5. Upper and lower calculation results for PCs...25 Table 6. Upper and lower calculation results for refrigerators...27 Table 7. Upper and lower calculation results for televisions...29 Table 8. Upper and lower calculation results for toasters...31 Table 9. Comparison of Irish calculations with European collection trials for televisions...32 Table 10. Comparison of Irish calculations with European collection trials for refrigerators..32 Table 11. Contribution to WEEE composition (by weight) for key items: comparison of studies Table 12. Calculation of total WEEE potential for Ireland using the four items studied...34 Table 13. Material composition (by weight) of six different categories of equipment...35 Table 14. Material composition of WEEE...35 Table 15. Material arisings from WEEE in Ireland for the year Table 16. Material arisings from WEEE in Ireland Table 17. The main sources of PCB s in WEEE, and arisings in Ireland from each source (after Taberman et al, 1995) Table 18. Estimated amounts of certain elements from the PCB fraction of WEEE (after Taberman, et al, 1995)...41 Table 19. Annual bromine and antimony trioxide arisings from flame retarded thermo-plastics in Ireland...41 Table 20. Annual material arisings from CRT glass in Ireland...42 LIST OF FIGURES Figure 1. Sales of PC's in Ireland...22 Figure 2. Sales of televisions in Ireland...22 Figure 3. Sales of fridge/freezers in Ireland...22 Figure 4. Sales of toasters in Ireland...22 Figure 5. Sales of coffee makers in Ireland...22 Figure 6. Sales of photocopiers in Ireland...22 Figure 7. Comparison of calculation models for PC Arisings...24 Figure 8. Upper and lower arisings of PC s in Ireland...25 Figure 9. Comparison of calculation models for refrigerator arisings...26 Figure 10. Upper and lower arisings of refrigerators in Ireland...27 Figure 11. Comparison of calculation models for television arisings...28 Figure 12. Upper and lower arisings for televisions in Ireland...29 Figure 13. Comparison of calculation models for toasters...30 Figure 14. Upper and lower arisings for toasters in Ireland...31 Figure 15. Percentage composition (by weight) of the EEE waste stream (from ICER, 2000)...33 Figure 16. Upper and lower WEEE potential for Ireland...34 Figure 17. Material composition of WEEE (ICER, 2000)...35 Figure 18. Material arisings from WEEE in Ireland in Figure 19. Material arisings from WEEE in Ireland Figure 20. Average composition of a printed circuit board (after ENEA, 1995)...40 Figure 21. Inputs to shredders (from ICER, 2000)...44 Page 3 of 90

7 EXECUTIVE SUMMARY Waste from electrical and electronic equipment (WEEE) is considered to be a priority waste stream because of the potentially hazardous nature of the waste stream, the consumption of resources and expected growth. As we move inexorably towards the information age, society is becoming more and more dependent on electrical and electronic equipment. When such equipment reaches the end of its life or becomes redundant through rapid technological change, a waste problem is created. At European level, two EU Directives have been proposed to deal with the management of this waste stream. There is a scarcity of reliable information available about waste from electrical and electronic information in Ireland (WEEE). This investigation sought to fill some of these gaps by: developing and applying an approach to estimating WEEE arisings; providing an estimate of current and projected WEEE arisings in Ireland; analysing the types of materials and components contained within the waste stream, in particular, hazardous components; and reviewing current WEEE management practice in Ireland. SCOPE Due to the wide variety and complexity of equipment falling under the category of electrical and electronic equipment (EEE) the study was limited to a representative range of items. These were: refrigerators/freezers, personal computers, televisions, photocopiers, fluorescent lamps, electric handheld drills and saws, coffee makers and toasters. Based on the estimates of these items, total arisings were projected. SALES Initially data was gathered on the sales of the specific items of EEE. Government statistics were obtained from the Central Statistics Office on production, exports and imports, but these were found to be generally unsuitable for estimating sales. Data from market research companies were found to be more realistic and was mostly selected for use in our waste calculations. For fluorescent lamps and electric tools, no reliable data was available. The growth in sales of personal computers in Ireland is dramatic, with annual increases of 20-30%, exceeding the growth levels of many other European countries. The dynamic nature of this market, caused by rapid technology changes and increasing market penetration, means that computer systems are an important item for waste management consideration. More established household items such as refrigerators and televisions exhibit a more steady growth trend, although this growth is greater than other European countries due to the recent population growth and associated housing growth in Ireland. WEEE ARISINGS A number of international investigations have attempted to calculate WEEE arisings. The calculation methods employed by these studies vary widely, with no apparent consensus on the most appropriate method to be adopted. European studies have previously calculated WEEE arisings between 12 and 20 kg per inhabitant per year. Application of the various calculation methods to the Irish data produced a wide range of results, none of which can be selected with confidence as being the most realistic in the absence of reliable information on actual WEEE arisings. Each method required some assumptions to be made and therefore contained some uncertainties. For the purposes of waste management planning this means that the results, using the variety of methods, can be presented as upper and lower estimates with the actual quantity of waste arising probably sitting somewhere between these levels. Page 4 of 90

8 Using an average composition of waste electrical and electronic equipment together with our calculation results for specific items, we were able to extrapolate total WEEE arisings for Ireland. It is estimated that, in the period 1991 to 2005, between 505,000 and 1,040,000 tonnes of WEEE will be produced. This equates to an average of 34,000 to 69,000 tonnes per annum, or 9 to 18 kg per inhabitant per annum. The EEE waste stream therefore represents between 1.7 and 3.4% of total municipal solid waste in Ireland. Our calculations predicted the following average annual levels of WEEE arisings for the specific items studied in the period 1991 to 2005: Item Upper average annual arisings (tonnes) Lower average annual arisings (tonnes) Personal Computer 8,096 2,011 Refrigerator 6,558 4,109 Television 6,643 4,239 Toaster In Ireland and, to our knowledge, worldwide, there is no systematic collection of data on actual WEEE arisings making it difficult to validate theoretical waste calculations. However, a number of collection trials in municipalities have been conducted in the US and Europe. Review of these projects has shown that typical collection yields of total WEEE average at around 3 to 5 kg per inhabitant per annum. WEEE MANAGEMENT IN IRELAND A survey of the WEEE recycling industry in Ireland revealed two distinct types of recycler. Firstly, there are scrap metal processors and shredders who deal with a range of products from which they separate ferrous and non-ferrous metals before disposing of the residual waste. These recyclers process items of WEEE that are large and metal rich such as refrigerators and washing machines. There are currently an estimated 9 such processors in Ireland. Secondly, there are specialist recyclers who process the more complex items of WEEE such as computers and televisions. These recyclers separate components of the equipment for resale or recycling of valuable materials. They may also refurbish entire systems for resale. The majority of recyclers in this category deal mostly with computers and associated peripherals. There are an estimated 10 such recyclers in Ireland. Local authorities were surveyed in relation to the management of WEEE in their functional areas. Of those that responded, many (70%) are operating schemes for the separation of some items of WEEE from the municipal solid waste stream. The majority of these take the form of collection points at existing civic amenity sites or landfills, and target only white goods, i.e. refrigerators, washing machines, cookers, etc. Only two local authorities reported a collection facility for all types of WEEE. Some initiatives are currently being developed in order to improve the management of WEEE in local authority areas. Many of these take the form of collection facilities at proposed civic amenity sites, but there are also three proposals for integrated WEEE collection systems involving the local authority, private sector recyclers and community groups. There is also a proposal to include fluorescent lamps in the collection of household hazardous waste by specialist vehicles. Page 5 of 90

9 RECOMMENDATIONS A number of recommendations may be derived from this study: 1. Systematic long-term WEEE collection trials should be undertaken by selected local authorities to gather reliable information about actual WEEE arisings in order to validate predictions of waste arisings. They would also identify the cost implications of such collections. 2. These collection trials could be integrated into trials of equipment, component and material recovery schemes. These would be useful national trials prior to the introduction of any EU Directive and would be of value to industry. 3. Waste estimation would be improved by the harmonisation of classification systems used by the different trade and production statistical systems. This would also facilitate easier use of the two data sets in relation to sales calculations. Page 6 of 90

10 CHAPTER 1 BACKGROUND 1.1 INTRODUCTION Until the 1990 s, very little attention was paid to the impact of consumption on waste generation (ENEA, 1995). Generally, consumers waste enters the municipal waste stream, which has been growing rapidly over the last decades in both quantity and complexity. Treatment of this waste is made more difficult by this increasing complexity as new materials require changes in treatment technologies in order to reduce their environmental impact. According to evaluations conducted by the European Commission there are few constituents of the municipal waste stream that carry an ecological baggage comparable to waste from electrical and electronic equipment (Papameletiou, 1998). In 1990 the European Commission began to promote the concept of prioritising waste streams on the basis of the environmental impacts of the waste being created. The action concentrated on used tyres, end-of-life vehicles, healthcare waste, construction and demolition waste, and waste from electrical and electronic equipment. Electrical and electronic equipment (EEE) was identified as a priority waste for a number of reasons. Firstly, there are rapid changes occurring in technology which are leading into a new industrial revolution (ENEA, 1995). This pattern of development is resulting in a greater use of EEE in all sectors of human activities. EEE will become more and more widely distributed and, as technological innovation and market expansion continues to accelerate the replacement process, the amount of waste from electrical and electronic equipment (WEEE) will continue to grow. Secondly, in addition to the predicted growth in this waste stream, there is concern over the continued use of some hazardous substances in electrical and electronic equipment. 1.2 A DEFINITION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (EEE) It is important to clearly define what is meant by electrical and electronic equipment (EEE). It becomes particularly necessary when EU legislation is being formulated, as is the case with waste EEE. A simple definition of electrical and electronic equipment (4 th plenary meeting of the Project Group on EEE waste) is: Equipment using electricity or through which electricity flows, and/or which contains an electronic circuit, i.e., a circuit with active and passive components. The 5 th draft directive on WEEE (CEC(b), 2000) defines Electrical and Electronic Equipment as; equipment which is dependent on electric currents or electromagnetic fields in order to work properly and equipment for the generation, transfer and measurement of such currents and fields falling under the categories set out in Annex I A and designed for use with a voltage rating not exceeding 1000 Volt for alternating current and 1500 Volt for direct current This definition and its associated Annex is intended to cover all appliances run by electricity. The voltage limits in the definition are intended to ensure that large industrial equipment is not covered by the proposal (CEC (a), 2000). Throughout this study the official CEC definition of EEE has been used. Annex I A of the draft Directive sets out the categories of equipment covered: Large household appliances Small household appliances IT & Telecommunication equipment Consumer equipment Lighting equipment Electrical and electronic tools Toys Medical equipment systems (with the exception of all implanted and infected products) Monitoring and control instruments Automatic dispensers Page 7 of 90

11 1.3 ENVIRONMENTAL CONCERNS The disposal of waste from electrical and electronic equipment is of environmental concern for a number of reasons. These include the fate of dangerous materials in the waste, the depletion of resources and the impacts of waste treatment methods Dangerous Substances Electrical and electronic equipment contains a wide variety of materials and components, including some that are considered dangerous. Commonly found components include: printed circuit boards, flame retarded plastics, cathode ray tubes, liquid crystal displays, batteries, mercury switches, capacitors and resistors. These components contain a wide range of materials including environmentally problematic ones such as mercury, lead, cadmium, chromium, CFC s (chloro-fluorocarbons), PCB s (polychlorinated biphenyls), PCN s (polychlorinated napthalenes) and brominated flame retardants. These substances make up only a small proportion of the total weight of EEE, but the potential environmental problems that even small quantities of these substances can cause are serious enough to warrant concern. Listed below are the substances targeted by the EU draft directive on WEEE, together with a description of their sources and effects. i) Mercury (Hg)- It has been estimated that 22% of the annual world consumption of mercury can be attributed to electrical and electronic equipment (ENEA, 1995). Many older appliances contain mercury-bearing components. ii) A large use of mercury is in fluorescent tubes, where it transforms the UV-light created in the gas discharge to visible light. A practical substitute for mercury in fluorescent lamps has not yet been found (Hedemalm et al, 1995). Mercury is also used in relays, tilt switches and in medical equipment. Mercury and its organic and inorganic compounds (methylmercury, phenylmercury, etc.) have been found to produce biological transformations in the environment and in living organisms (ENEA, 1995). iii) iv) Cadmium (Cd) - Cadmium is used in batteries, as a pigment and stabiliser in plastics, in specialised treatment of mechanical surfaces and in speciality solders. It is also used as a fluorescent material in screens and was used in old cathode ray tubes (CRT s). Consumer electronics have been found to contribute 9% of total cadmium in municipal solid waste (US EPA, 1989). Of this cadmium, 95% is attributed to batteries and only 0.1% to CRT s (Hedemalm et al, 1995). Lead (Pb) - A 1989 study by the US EPA found that lead from consumer electronics accounted for 17% of all lead in municipal solid waste (a further 65% of the lead comes from lead-acid batteries). More recently, consumer electronic have been found to account for 40% of lead in MSW in Europe (CEC(a), 2000). With increased efficiency in the recycling of batteries, lead from electrical and electronic equipment is likely to become the main source of lead in MSW. By far the largest source of the lead in consumer electronics has been found to be contained in CRT s. CRT s are found primarily in television sets and computer monitors and can vary considerably in their composition but all contain substantial proportions of lead (Minnesota Office of Environmental Assistance, 1995). It is estimated that a television CRT contains 15-20% lead oxide (ENEA, 1995). Other important sources include soldering on printed circuit boards, pigments and stabilisers in plastics and leaded glass (Hedemalm et al, 1995). Lead has been found to have negative effects on the human body, especially the nervous system, blood system and kidneys. Lead also accumulates in the environment and can have high acute and chronic toxic effects on plants, animals and micro-organisms (CEC(a), 2000). Page 8 of 90

12 v) Hexavalent Chromium (Cr)- Electrical and electronic equipment does not account for a significant share of chromium use and most producers no longer use it at all. It is used as a corrosion protector for steel plates and in printed circuit boards (PCB s) and plastic covers (ENEA, 1995). Hexavalent chromium, Cr(VI), is highly mobile and can migrate a considerable distance from its source. It is highly toxic to animals and plants and under certain conditions to humans. vi) Brominated Flame Retardants (BFR s) - It is estimated that flame retarded plastics make up around 5.5% of WEEE by weight, or 25% of all plastic used in EEE (Hedemalm et al, 1995). Of these flame retarded plastics, approximately 80% are treated with brominated flame retardants (ENEA, 1995). BFR s are designed into electronic products as a means of ensuring flammability protection. They are mainly used in printed circuit boards, components (such as connectors), plastic covers and cables. When subjected to heat in the recycling process some BFR s form potentially dangerous dioxins and furans. However, due to an increased awareness in Europe of the environmental problems associated with brominated flame retardants, it has been reported that many manufacturers of electronics have changed the types of flame retardants they use as well as reducing the amount they use (Hedemalm et al, 1995). Brominated flame retardants such as deca-, octa-, and penta- polybromo-biphenyls (PBB s) are organobromine derivatives that are very persistent and tend to accumulate in animal and human fats (ENEA, 1995) Resource Depletion Production of raw materials consumes natural resources If more materials from end-of-life electrical and electronic equipment could be recycled in an environmentally satisfactory manner, emissions associated with extraction of raw materials would decrease and natural resources would be saved (Swedish EPA, 1995). It is important to consider the potential loss of resources when electrical and electronic equipment is thrown away. Some of the materials and components contained in old equipment can be recovered for use in new products and this reduces the need to extract new materials and manufacture new products. Of particular benefit is the energy saved through recycling or reuse. For example, the energy used in mining copper is 6 times more than that used in recycling the same amount, and for aluminium the figure is over 20 times (ICER, 2000). A 1997 report estimated that 6 million tonnes of WEEE would be generated in Europe in They calculated that the potential loss of resources from this would be: 2.3 million tonnes of ferrous metal 1.2 million tonnes of non-ferrous metals, of which 652,000 tonnes of copper 336,000 tonnes of aluminium 162,000 tonnes of heavy metal 12-27,000 tonnes of lead 6-8 tonnes of mercury 1.2 million tonnes of plastics 156,000 tonnes of flame retardants 336,000 tonnes of glass Source: AEA Technology (1997) The household waste stream and industrial and commercial waste streams interconnect. As consumer durables are discarded, a considerable amount of additional waste is generated through the production processes for replacement of goods. A rule of thumb cited in Beyond the Limits is that every tonne of waste at the consumer end of the stream has also required the production of 5 tonnes at the site of the initial resource extraction (Cooper, 1994). Page 9 of 90

13 1.3.3 Disposal Problems i) Landfill In Ireland over 91% of municipal waste is disposed of in landfill sites (Irish EPA, 1998). The inclusion of waste from electrical and electronic equipment in this general waste has raised some concerns regarding its potential environmental impact. Studies of WEEE in landfill have found that it is extremely difficult to quantify the potential environmental impact of the equipment due to the complex and lengthy processes that take place in the landfill as the waste degrades. Many external factors affect the decomposition of the chemical substances, including temperature, salt concentrations, ph and oxygen concentration. In sediments and soils many chemical substances will bind to particles and can become less environmentally problematic due to their reduced mobility. Taberman et al (1995) report that pilot tests with environmentally hazardous wastes (including WEEE) in landfills are being conducted in Sweden. At present it is not possible to state the negative environmental impacts from controlled landfills caused by waste from electrical and electronic equipment. On the other hand, the processes are so complicated that it would be a mistake to neglect the possible risks (Taberman et al, 1995) As well as this, landfill sites are becoming increasingly scarce. There is therefore a need to closely examine the types of waste that are entering these sites in an attempt to reduce quantities. ii) Thermal Treatment While no thermal treatment of municipal waste currently takes place in Ireland, it is worth considering the environmental consequences of this practice as thermal treatment is being assessed as a waste management option for the country. A reduction in waste volumes and the utilisation of energy by burning the waste are clear advantages to incineration. Also, some environmentally hazardous organic substances in WEEE are converted to less environmentally hazardous compounds in the incineration process (Taberman et al, 1995). Items of electrical and electronic equipment with high plastics content have a high calorific content and are therefore very suitable for incineration. However, they also contain heavy metals and halogenated substances which cause environmental problems such as: the concentration of heavy metals in the slag, emissions of mercury and potential emissions of dioxins and furans. 1.4 LEGISLATION In light of the environmental problems being associated with the management of WEEE, some of the EU Member states have already drafted and implemented national legislation. The Netherlands, Denmark, Sweden, Austria, Belgium and Italy have all adopted legislation on the subject of WEEE. These initiatives are summarised below National Legislation Initiatives i) The Netherlands On 1 June 1998 a regulation establishing rules for taking back and processing white and brown goods came into force. According to this legislation consumers can return WEEE free of charge to the supplier or to the local authority. Manufacturers and importers must process these items. The landfilling or incineration of separately collected WEEE is to be prohibited. Page 10 of 90

14 In 1998 the Netherlands enacted a general phase-out of mercury in products. A Cadmium Decree in 1999 prohibited the use of cadmium as pigments, dyes, stabilisers and plating. ii) Austria Since the mid-1990 s there has been legislation in place regarding the take back of fluorescent lamps (1991) and white goods (1993). Initially the recovery systems for both items were financed through a fee on the price of new products. Since becoming a member of the EU, competitive disadvantages for Austrian retailers have forced a reduction in the endof-life fee. A draft ordinance on the overall WEEE stream was published in 1994 but has been suspended in anticipation of the EU-wide legislation. Austria has banned the use of PBB flame retardants and cadmium pigments, dyes, stabilisers and plating since The content of mercury in lamps is limited to 15mg per lamp. iii) Germany An ordinance on the take-back and recycling of WEEE is in the final stages of the legislative process. The draft places the responsibility for collection of WEEE on the local municipalities, while the treatment, recovery and disposal of this waste will be the responsibility of the producers. In essence the use of PBDE flame retardants has been prohibited in Germany by specifying certain limit values for brominated furans and dioxins. iv) Belgium In the Flemish region of Belgium, a regulation covering white and brown goods and information technology equipment was adopted in Manufacturers, importers, distributors and retailers are obliged to take back free of charge all such equipment. Recycling targets for ferrous, non-ferrous and plastics are included in the regulation. v) Denmark From January 1999 local authorities have been responsible for the collection and recovery of all WEEE, funded through local taxes and/or collection fees. A Danish regulation on lead-containing products is also underway. The draft regulation contains a general prohibition (with exemptions) on the sale of products containing lead. vi) Italy A Waste Management Decree was adopted in 1996 which seeks to implement the EC Packaging and Packaging Waste Directive (94/62), the Waste and Hazardous Waste Directives (91/156 & 91/689) and covers other waste issues including product take-back. Provisions for mandatory product take-back schemes introduces some obligations on industry to create collection points and to ensure recovery of certain defunct products (such as refrigerators, TV s, PC s and washing machines). vii) Sweden In April 2000 an ordinance for WEEE was adopted enabling consumers to take their waste back to retailers or municipal collection points. Costs of recycling are to be borne by either the municipalities or the manufacturers. WEEE is not permitted to be landfilled, incinerated or shredded without treatment by a certified operator. This ordinance is expected to come into effect on 1 July Page 11 of 90

15 Sweden also has initiatives to phase out the use of lead in many products including cables, solder, light bulbs, cathode ray tubes and boat keels. The Swedish government is currently considering a proposal by the National Chemicals Inspectorate to ban PBDE and PBB flame retardants. viii) Non-EU Countries Other than a voluntary system of Extended Producer Responsibility no legislative actions on WEEE is planned at Federal level in the USA. However, some US States have introduced a landfill ban on white goods and cathode ray tube containing equipment. The Japanese Parliament adopted the Bill for the Recycling of Home Electric Appliances in May 1998 which requires that retailers collect television sets, refrigerators, washing machines and air conditioners from consumers. These items are then transferred to the manufacturers who are responsible for further treatment, particularly recycling. Retailers and manufacturers collect charges necessary to cover the cost of recycling the waste. A similar ordinance has been adopted in Taiwan. In Switzerland an ordinance on the take back and disposal of electrical and electronic equipment entered into force in July In Norway an ordinance on the acceptance, collection, recycling and disposal of WEEE was adopted in March EU Directive The European Commission was concerned that the differing national approaches towards the management of WEEE throughout its member sates may result in: disparities of financial burden due to the differing application of the producer responsibility principle, reduced effectiveness of national recycling policies due to the transboundary movement of WEEE to cheaper waste management systems, and technical barriers to trade in electrical and electronic equipment due to a divergence in standards for design for recycling, including the phase out of specific substances. It was decided that there needed to be a harmonisation of the environmental objectives and the responsibilities of the various actors as regards the management of WEEE at Community level (CEC(a), 2000). The European Parliament, in its resolution of 14 November 1996, asked the European Commission to present Proposals for Directives on a number of Priority Waste Streams, including waste from electrical and electronic equipment and to base such Proposals on the principle of producer responsibility. This principle of producer responsibility is intended to encourage manufacturers to take responsibility for the whole life-cycle of a product. This forced take-back of end-of-life products is likely to provide a strong incentive for more ecologically-minded design (ecodesign), as manufacturers themselves directly benefit from reparability, easy dismantling and a low content of hazardous substances (Salhofer, 1999). In the same resolution the European Parliament requested that the Council and the Commission put forward Proposals for cutting the volume of waste as well as reducing the presence of hazardous substances in waste such as chlorine, mercury, PVC, cadmium and other heavy metals. In July 1997 the Commission announced its intention to introduce a directive on WEEE. The Draft Directive on Waste from Electrical and Electronic Equipment is now in its fifth draft (CEC(b), 2000). However, its objectives have remained the same throughout: to protect soil, water and air from pollution caused by current management of WEEE, to avoid the generation of waste, and to reduce the harmfulness of WEEE. In order to meet these objectives the following measures are proposed within the Draft Directive: i. Manufacturers will be required to improve the design of their products in order to avoid the generation of waste and to facilitate the recovery and disposal of WEEE by: Page 12 of 90

16 ii. iii. iv. the substitution of hazardous substances such as lead, mercury, cadmium, hexavalent chromium and certain brominated flame retardants; measures to facilitate identification and re-use of components and materials, particularly plastics; measures to promote the use of recycled plastics in new products; and incentives from national governments to encourage producers to design equipment that can be easily recycled or refurbished. Producers should take the responsibility for certain phases of the waste management of their products. This is intended to create a financial incentive to improve product design. The legislation is likely to require producers to pay the costs of recycling products from domestic households and may also require them to pay collection costs. Separate collection of WEEE is to be ensured along with a collection target in order to create a level playing field throughout the Member States. Producers will be required to ensure that appropriate systems are in place to improve the treatment and re-use/recovery of WEEE. Targets for the re-use and recycling of WEEE are to be set. v. Consumers are to be informed of their role in the system through a labelling requirement for items of EEE. The fifth draft of the Directive (CEC(b), 2000) has in fact been split into two Directives. The section restricting the use of some hazardous substances has become a stand-alone Directive known as the Draft Directive on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. A full copy of the fifth draft of these directives can be found in Appendix Seven of this report Legislation in Ireland Ireland has no specific national legislation on WEEE. The Waste Management Act 1996 provides the necessary powers to regulate specific waste streams, including WEEE, and allows for the provision of producer responsibility obligations where considered necessary. However, no national programmes or agreements currently exist for the management of WEEE. 1.5 QUANTITIES OF WEEE IN EUROPE All electrical and electronic equipment ends up as waste and it is clear that the quantities of WEEE will increase rapidly, reflecting the dramatic increase in the use of technology in modern society. However, little is currently known about the actual quantities of WEEE arising in the EU member states. There are no statistics collected regarding currently generated quantities or collection rates at a national level in any country. Indeed, this is a problem in all waste categories. The European Commission acknowledges that neither regular nor harmonised waste-related data is produced at Community level, and in its Council Resolution on Waste Policy (1996) it urges that a Community-wide reliable system of data collection for waste be established. In the absence of such data we are dependant upon studies which have used calculations and extrapolations to quantify waste arisings from end-of-life EEE. A number of studies have attempted to estimate the potential quantity of WEEE arising in Europe (for example: Toepfer 1993; ORGALIME 1993; ENEA 1994; SOFRES 1995; AEA 1997). However the results vary widely and comparisons of the studies are difficult because the methods used and the assumptions made in calculating the waste quantities differ between the studies. In addition, different countries are analysed (the EU expanded from 12 to 15 members) and different product categories are used. Accordingly no consensus has been reached on the most realistic results. Reviewing all the studies to date, WEEE has been calculated to be in the range of kg/inhabitant/year. Page 13 of 90

17 A comprehensive investigation by the Italian National Agency for New Technology, Energy and the Environment (ENEA) in 1994 examined a number of these studies and estimated that the weight of electrical and electronic equipment at end of life in the EU in 1992 can be assumed to be somewhere between 4 and 6 million tonnes/year. In a further report in 1995 ENEA attempted to calculate predicted WEEE arisings for They calculated that between 5.4 and 6.7 million tonnes/year would be generated in the EU. They also predicted a 3 to 5% annual growth in WEEE arisings throughout the Member States and for all product categories. This gives a total WEEE potential of around 20 kg/inhabitant/year and this level appears to have been widely accepted as an indicative value. PERSPECTIVE Total annual arisings of all wastes in the EU is estimated at about 1.6 billion tonnes. Þ WEEE therefore represents less than 0.5% of the total EU waste stream. Total annual arisings of MSW in the EU is estimated at about 156 million tonnes. Þ WEEE therefore represents approximately 4% of the EU MSW stream. However, ENEA are quick to point out that there are limitations to their results and that the following problems must be taken into consideration when using the results of their calculations: i. There is a need for a European-wide harmonisation of definitions, monitoring methods, approaches and criteria for characterising and evaluating market data. ii. Waste from EEE is forecasted by estimating the theoretical quantities of equipment at the end-of-life, not all of which is necessarily introduced into the waste cycle or collected as WEEE; this results in overestimates for certain product categories. iii. Significant quantities of WEEE may also depend on accidental, temporary or local situations (e.g. rapid obsolescence of certain items due to technological advances, sudden shifts in habits and fashion, etc.). The problems associated with the calculation of WEEE arisings are discussed further in Chapter 2 of this report. 1.6 COLLECTION TRIALS EXPERIENCE There have been no collection trials conducted in Ireland to date but a number of pilot projects to examine collection systems for WEEE have been carried out in a number of municipalities in various countries, including the USA and Europe. These collection trial projects provide a useful indication of actual quantities of WEEE being disposed of by households, an indication of consumer behaviour when disposing of end-of-life equipment, and may also provide some sort of validation of theoretical WEEE projections. However, difficulties are encountered when attempting to compare the collection experiences as numerous variations of the collection systems have developed. The quantitative yields of WEEE in the various collection schemes are difficult to compare with each other because almost every single project had different definitions for the waste it was aiming at. (Lohse et al., 1998). Appendix One, details some of the collection trials that have taken place to date. Examination of these gives a good indication of the variation in collection and reporting methods employed by each trial. Some are conducted over extended periods of time while others are single events. Also, different items of WEEE are targeted by each trial and it becomes clear that it is very difficult to draw conclusions through a comparison of the various projects. For the same reasons, it is difficult to use the results to validate theoretical WEEE calculations, although they do provide general information about actual quantities of WEEE collected under specific conditions. Page 14 of 90

18 Table 1. Comparison of selected WEEE collection trial results Region and source Total WEEE (kg/inhabitant/year) Flachgau, Austria, Bregenz, Austria 4.2 Weiz, Austria 3.0 Eindhoven, Netherlands 1.4 Midhurst, UK 1.22 Various regions, Germany 5.0 Dortmund, Germany Hannover, Germany, Bremen, Germany, Rhone-Alps, France 5.2 Envie-Terra, France 2.3 In general, it has been found that WEEE estimates using a number of different methodologies are in the range of kg/inhabitant/year compared with an average of 3-5 kg/inhabitant/year reported for collection trials. The results of the collection trials therefore serve only a limited purpose for the validation of theoretical WEEE calculations, although it would be expected that collection trial results would be lower than theoretical WEEE estimates. Consideration must also be given to factors such as export of second-hand items of EEE, as this will skew the results of the collection trials through the removal of a portion of the potential arisings. Also, participation in collection trials may be low due to a lack of awareness. Quantities resulting from collection schemes may increase over time (as was found in the US trials) to reflect more realistic levels of arisings. Page 15 of 90

19 CHAPTER 2 - QUANTITIES OF WEEE IN IRELAND There are two basic approaches to estimating quantities of municipal solid waste (MSW) (US EPA, ). The first method is site specific and involves sampling, sorting and weighing the individual components of the waste stream. This method would be useful for identifying specific waste components as well as variations due to consumer behaviour or technology change. However, it is an expensive method and must be conducted over a long period of time if trends are to be assessed. To our knowledge there are no statistics collected at landfills or waste treatment facilities in Ireland (or the EU) that specifically identify the WEEE waste stream. The second approach to quantifying MSW utilises a material flows approach. Material and energy flow models are normally based on accounting methods for the activities or processes being examined, and networks to connect the activities or processes being examined, thus indicating the flow of material or energy. This is the approach we have used to study the WEEE waste stream in Ireland. Our material flow methodology is based on the sales of items of electrical and electronic equipment. These sales figures have been applied to a number of calculation methodologies to give us theoretical waste arisings for each of the selected items. Using average weights and an average composition of the waste stream we have extrapolated total WEEE arisings for Ireland. 2.1 SCOPE OF STUDY The EU Combined Nomenclature (CN) system used for external trade, lists electrical and electronic appliances under 87 different headings, contained within four different chapters of product groups (Lohse et al., 1998). This is an indication of the wide variety of items under the product category and it was decided that the consideration of all appliances would be beyond the scope of this project. The study was therefore limited to a representative selection of appliances. These were chosen because they represent a range of compositional and lifecycle criteria that typifies the EEE waste stream. The appliances are listed below together with the reason for their selection. Table 2. Items of EEE selected for this study APPLIANCE Refrigerators & Freezers Personal Computers TV Sets Photocopiers Fluorescent Lamps Electric Handheld Drills & Saws Coffee/Tea Makers Toasters REASON FOR SELECTION A saturated market item (97% of households in Ireland), Good knowledge of material composition, Ozone depleting CFC content could result in large environmental impact, There are national regulations for treatment in many countries. A dynamic market with strong growth in every country, Treatment of waste PC s very topical, A wide range of hazardous materials is contained in a PC. As with refrigerators, a saturated market item (99% of households in Ireland), Hazardous substances content. Extensively used office equipment, An example of an item with potentially high re-use and re-manufacturing, Hazardous substance content. Large numbers of items, Hazardous content. Currently likely to be disposed of in an uncontrolled manner with household waste, Disposal of rechargeable battery content is an issue. Currently likely to be disposed of in an uncontrolled manner with household waste. Currently likely to be disposed of in an uncontrolled manner with household waste, Large numbers and short life cycle. Page 16 of 90

20 2.2 SALES DATA The first step in the material flow model was to acquire sales data for the items being studied. Obtaining information on sales of specific items of electrical and electronic equipment in Ireland has proved surprisingly difficult. Initial efforts were concentrated on using official government statistics from the Irish Central Statistics Office (CSO). However, after investigation of this data, problems were discovered in relation to its usefulness for estimating waste arisings. Further sources were then investigated, including market research companies, industry associations, and extrapolations from sales data in other countries. These sources are discussed briefly below and a more detailed assessment can be found in Appendix Two Sources Considered Official Statistics Unfortunately in Ireland no data is gathered by official sources at the point of sale on the sales of specific products. However, it is an accepted practice to calculate sales using production, import and export data and applying the following equation: Production + Imports Exports = Domestic Sales The Irish Central Statistics Office (CSO) collects statistics on production, imports and exports and information was obtained from their offices. Production data is obtained through an annual survey of the value and volume of products manufactured by industrial enterprises in Ireland and sold during the reference year. The results are presented using a harmonised EU product classification called PRODCOM. There is a direct link between the PRODCOM classifications and the EU foreign trade Combined Nomenclature (CN) system. This should allow a direct comparison of the production data with the external trade (imports and exports) data. A number of problems were found with the data sets which have lead us to conclude that the use of the CSO data for estimating sales figures and waste arisings is of limited value: i. Confidentiality The CSO suppresses some data in order to preserve confidentiality. For a small country such as Ireland, the suppression of data regarding manufacturers is particularly necessary as there is often only one or two producers of an item. The only solution to this is to supplement the CSO statistics with information obtained directly from the manufacturers. However, the companies contacted in this regard were not forthcoming with production data. ii. Production Statistics Unreliable The PRODCOM department of the CSO advises that there are difficulties with companies returning accurate data to the annual PRODCOM survey. Whilst completion of the survey is a statutory obligation there is little auditing of the returns. Specific examples of these difficulties were found in Ireland. For example, in Ireland there is at least one manufacturer of electric hand drills and saws, but the PRODCOM survey has no record of this production, even at a confidential level. Page 17 of 90

Directive 2002/95/EC

Directive 2002/95/EC European Community legislation is reproduced from the EUR-Lex website. Only European Community's legislation printed in the Official Journal of the European Communities is deemed to be authentic. 302L0095

More information

Environmentally Sound Management of E- waste: Emerging Issues, Challenges and Opportunities for Material Recovery and Recycling

Environmentally Sound Management of E- waste: Emerging Issues, Challenges and Opportunities for Material Recovery and Recycling Environmentally Sound Management of E- waste: Emerging Issues, Challenges and Opportunities for Material Recovery and Recycling Dr Sunil Herat Senior Lecturer in Waste Management & Project Leader Griffith

More information

RoHS RIA November 2003

RoHS RIA November 2003 PARTIAL REGULATORY IMPACT ASSESSMENT ON DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL ON THE RESTRICTION OF THE USE OF CERTAIN HAZARDOUS SUBSTANCES IN ELECTRICAL AND ELECTRONIC EQUIPMENT

More information

How is WEEE recycled?

How is WEEE recycled? How is WEEE recycled? Large Domestic Appliances Small Domestic Appliances Cooling Appliances Display Equipment Gas Discharge Lamps The amount of waste electrical and electronic equipment (WEEE) being produced

More information

E-WASTE MANAGEMENT. Website: kspcb.gov.in

E-WASTE MANAGEMENT. Website:  kspcb.gov.in E-WASTE MANAGEMENT Website: http:// kspcb.gov.in Karnataka State Location Karnataka State Pollution Control Board E-Waste Management INTRODUCTION Definition of E-waste:- As per Hazardous Waste (Management

More information

Product Regulatory Compliance Datasheet ediscovery 8100

Product Regulatory Compliance Datasheet ediscovery 8100 Date: August 2014 Product Regulatory Compliance Datasheet ediscovery 8100 TABLE OF CONTENTS I. GLOBAL ENVIRONMENTAL INFORMATION...1 II. SYSTEM DIMENSION AND WEIGHT...1 III. BATTERIES....2 IV. POWER CORDS

More information

Directive 2000/53/EU on End-of-life vehicles (ELV) Screening SERBIA

Directive 2000/53/EU on End-of-life vehicles (ELV) Screening SERBIA Directive 2000/53/EU on End-of-life vehicles (ELV) Screening SERBIA Brussels, 16 September 2014 Outline 1. The E.L.V Directive 2. Extended Producer Responsibility in ELV 3. The importance of car recycling

More information

The WEEE directive and CENELEC standards. What can be expected? How can recycling in Europe benefit from the standards? Agenda

The WEEE directive and CENELEC standards. What can be expected? How can recycling in Europe benefit from the standards? Agenda 1 The WEEE directive and CENELEC standards What can be expected? How can recycling in Europe benefit from the standards? Lizzi Andersen, Senior Specialist, Waste and Resources, COWI A/S 1 Agenda Why standards?

More information

European waste policy:

European waste policy: Waste: the problem European waste policy: prevention a dream? EU Waste policy: general principles and summary of legislation Waste Framework Directive - 2008 Waste Electr(on)ical Equipment 2002 and review

More information

Waste Management. Background

Waste Management. Background Waste Management Background Overview of current waste management In 1970, the main method of waste disposal in Iceland was open-pit burning. Over 50 burning pits were in operation, close to one pit per

More information

Product Regulatory Compliance Datasheet ediscovery 8200

Product Regulatory Compliance Datasheet ediscovery 8200 Product Regulatory Compliance Datasheet ediscovery 8200 TABLE OF CONTENTS I. GLOBAL ENVIRONMENTAL INFORMATION...1 II. SYSTEM DIMENSION AND WEIGHT...1 III. BATTERIES....2 IV. POWER CORDS AND USER DOCUMENTATION.....2

More information

Update on Electronics Product Management April 8, 2003

Update on Electronics Product Management April 8, 2003 Update on Electronics Product Management This paper provides a brief overview of electronics management in Europe and the United States. Due to the passage of legislation in Europe, demand has accelerated

More information

Hewlett-Packard Company Digital Imaging and Publishing 700 71 st Avenue Greeley, CO, 80634, USA

Hewlett-Packard Company Digital Imaging and Publishing 700 71 st Avenue Greeley, CO, 80634, USA hp scanjet transparent materials adapter environmental profile published 8/02 Hewlett-Packard Company Digital Imaging and Publishing 700 71 st Avenue Greeley, CO, 80634, USA product description environmental

More information

Waste Management Policy

Waste Management Policy University of Sussex Waste Management Policy May 2007 1 University of Sussex Waste Management Policy Contents 1. Introduction 2. Policy Statement 3. Policy Objectives 4. Application 5. Organisation and

More information

IT Trading UK Ltd Computer & IT Equipment Disposal Specialists

IT Trading UK Ltd Computer & IT Equipment Disposal Specialists IT Trading UK Ltd Computer & IT Equipment Disposal Specialists Unit 4A Scott's Close, Downton Business Centre, Downton, Salisbury, Wiltshire, SP5 3RA Tel: 01725 513403 Fax: 01725 513714 Email: info@it-trading.co.uk

More information

Green Economy: 10 years Success Story of End-of-Life Vehicles. ECOMONDO Rimini, 9 November 2011 Speaker: Artemis Hatzi-Hull

Green Economy: 10 years Success Story of End-of-Life Vehicles. ECOMONDO Rimini, 9 November 2011 Speaker: Artemis Hatzi-Hull Green Economy: 10 years Success Story of End-of-Life Vehicles ECOMONDO Rimini, 9 November 2011 Speaker: Artemis Hatzi-Hull Outline 1. The E.L.V Directive 2. Extended Producer Responsibility in ELV 3. The

More information

China RoHS Directive Legislation Compliance October 2011

China RoHS Directive Legislation Compliance October 2011 China RoHS Directive compliance information: China RoHS Directive Legislation Compliance October 2011 Declaration & Restriction Scope Packaging Differences to EU RoHS First Catalogue China RoHS2 1 RoHS

More information

Product Regulatory Compliance Datasheet BE3600

Product Regulatory Compliance Datasheet BE3600 Product Regulatory Compliance Datasheet BE3600 TABLE OF CONTENTS I. GLOBAL ENVIRONMENTAL INFORMATION...1 II. BATTERIES...1 III. POWER CORDS AND USER DOCUMENTATION.....2 IV. DATASHEET RESPONSIBLE PARTY

More information

Model: HP Servers tc2110, tc3100, tc4100, tc6100, tc7100, rc7100. tc 2110 tc 3100 tc 4100 tc 6100 tc 7100 rc 7100 Product Number(s)

Model: HP Servers tc2110, tc3100, tc4100, tc6100, tc7100, rc7100. tc 2110 tc 3100 tc 4100 tc 6100 tc 7100 rc 7100 Product Number(s) hp enterprise servers environmental profile published 1/02 Hewlett-Packard Company Volume Systems Division 10955 Tantau Avenue Cupertino, CA 95014 product description Model: HP Servers tc2110, tc3100,

More information

Product Regulatory Compliance Datasheet NBU 5330

Product Regulatory Compliance Datasheet NBU 5330 Product Regulatory Compliance Datasheet NBU 5330 TABLE OF CONTENTS I. GLOBAL ENVIRONMENTAL INFORMATION...1 II. BATTERIES....1 III. POWER CORDS AND USER DOCUMENTATION.....2 IV. DATASHEET RESPONSIBLE PARTY

More information

Storage and treatment of cathode ray tubes (CRTs) and display equipment containing CRTs

Storage and treatment of cathode ray tubes (CRTs) and display equipment containing CRTs Storage and treatment of cathode ray tubes (CRTs) and display equipment containing CRTs Quick guide 874_11 Issued 27/10/2011 What s this document about? Who does this apply to? This document covers the

More information

Plug-In to ecycling Guidelines for Materials Management

Plug-In to ecycling Guidelines for Materials Management United States Environmental Protection Agency May 2004 EPA530-K-04-004 www.epa.gov/osw Plug-In to ecycling Guidelines for Materials Management 1 Purpose As part of an effort by EPA to develop national

More information

Toxic and Hazardous Materials in Electronics

Toxic and Hazardous Materials in Electronics Toxic and Hazardous Materials in Electronics An Environmental Scan of Toxic and Hazardous Materials in IT and Telecom Products and Waste Final Report For Environment Canada, National Office of Pollution

More information

Samsung WEEE Management Policy (US and Canada)

Samsung WEEE Management Policy (US and Canada) Samsung WEEE Management Policy (US and Canada) 1. Purpose These requirements aim to minimize environmental impacts caused by all Electronic Waste generated by Samsung's US and Canadian operations and programs,

More information

Why are Batteries Harmful to the Environment?

Why are Batteries Harmful to the Environment? Why are Batteries Harmful to the Environment? Lesson aims What are the different types of batteries? What are batteries made from and why are they harmful to the environment? Students will learn about

More information

Along with Eco-systèmes, nature thanks you! 2012 Edition

Along with Eco-systèmes, nature thanks you! 2012 Edition Along with Eco-systèmes, nature thanks you! 2012 Edition This year again, nature thanks you! Thanks to our partners (distributors, local authorities, players in the social and solidarity economy) Eco-systèmes

More information

The Health and Environmental Impacts of e-waste

The Health and Environmental Impacts of e-waste The Health and Environmental Impacts of e-waste Presenter: Susanne Dittke Chemical Engineer/Environmental Consultant Tel: 0027-21-7069829 Email:envirosense@xsinet.co.za Skype: envirosense www.envirosensecc.co.za

More information

Organised vs Unorganised 90% of the e-waste is segregated, dismantled and recycled in the informal sector based in urban slums; 10% in organised

Organised vs Unorganised 90% of the e-waste is segregated, dismantled and recycled in the informal sector based in urban slums; 10% in organised E-Waste Waste electrical and electronic equipments (WEEE), which is intended to be discarded Household appliances, electrical and electronic tools, consumer electronics, IT & telecommunication equipment

More information

Complying with Extended Producer Responsibility Requirements: Business Impacts, Tools and Strategies

Complying with Extended Producer Responsibility Requirements: Business Impacts, Tools and Strategies Complying with Extended Producer Responsibility Requirements: Business Impacts, Tools and Strategies Jennifer McCracken Environmental Policy Analyst Environmental Packaging International (EPI) Jamestown,

More information

Country specific notes on municipal waste data

Country specific notes on municipal waste data EUROPEAN COMMISSION EUROSTAT Directorate E: Sectoral and regional statistics Unit E-2: Environmental Statistics and Accounts; Sustainable Development Country specific notes on municipal waste data Last

More information

6 CONSIDERATION OF ALTERNATIVES

6 CONSIDERATION OF ALTERNATIVES 6 CONSIDERATION OF ALTERNATIVES 6.1.1 Schedule 4 of the Town and Country Planning (Environmental Impact Assessment) (Scotland) Regulations 2011 sets out the information for inclusion in Environmental Statements

More information

COMMISSION OF THE EUROPEAN COMMUNITIES COMMISSION STAFF WORKING PAPER. accompanying the. Proposal for a

COMMISSION OF THE EUROPEAN COMMUNITIES COMMISSION STAFF WORKING PAPER. accompanying the. Proposal for a EN EN EN COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 3.12.2008 SEC(2008) 2933 COMMISSION STAFF WORKING PAPER accompanying the Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

More information

LCA EXPERIENCE IN THE FIELD OF RECYCLING OF PLASTICS FROM ELECTRONIC WASTE

LCA EXPERIENCE IN THE FIELD OF RECYCLING OF PLASTICS FROM ELECTRONIC WASTE LCA EXPERIENCE IN THE FIELD OF RECYCLING OF PLASTICS FROM ELECTRONIC WASTE B. DeBenedetti, L. Maffia, G.L. Baldo 2 Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Italy

More information

SAMI Microstar (SAMI MM, MD, MS)

SAMI Microstar (SAMI MM, MD, MS) 1 ABB Oy 18.2.2000 Product Support TLC/Ari Niskanen SAMI Microstar (SAMI MM, MD, MS) Recycling information for drive of type SAMI Microstar Table of contents TABLE OF CONTENTS...1 1. INTRODUCTION...2 2.

More information

IWR Integrated Waste Recycling. Integrated System for treatment and recycling of Municipal Solid Waste

IWR Integrated Waste Recycling. Integrated System for treatment and recycling of Municipal Solid Waste IWR Integrated Waste Recycling Integrated System for treatment and recycling of Municipal Solid Waste 1 1. Introduction IWR is an integrated system, realised by different Italian companies, manufacturers

More information

Hong Kong Green Label Scheme Product Environmental Criteria for Copying Machines, Printers, Fax Machines and Multifunctional Devices (GL-006-003)

Hong Kong Green Label Scheme Product Environmental Criteria for Copying Machines, Printers, Fax Machines and Multifunctional Devices (GL-006-003) BACKGROUND Hong Kong Green Label Scheme The Hong Kong Green Label Scheme (HKGLS) is an independent and voluntary scheme, which aims to identify products that are, based on life cycle analysis consideration,

More information

WASTE QUESTIONNAIRE. Legal basis Council Directive 75/442/EEC of 15 July 1975 on waste (OJ L 194 25.07.1975 p. 39) EUR-Lex hyperlink html

WASTE QUESTIONNAIRE. Legal basis Council Directive 75/442/EEC of 15 July 1975 on waste (OJ L 194 25.07.1975 p. 39) EUR-Lex hyperlink html WASTE QUESTIONNAIRE Waste Framework Directive Legal basis Council Directive 75/442/EEC of 15 July 1975 on waste (OJ L 194 25.07.1975 p. 39) EUR-Lex hyperlink html A. Which parts of the provisions of the

More information

Undercover storage requirements for waste/recycling depots

Undercover storage requirements for waste/recycling depots Waste Information Sheet Undercover storage requirements for waste/recycling depots Update September 2010 EPA 845/10: This information sheet has been prepared for waste management and resource recovery

More information

A. WASTE MANAGEMENT A.1. INTRODUCTION AND GENERAL ISSUES ON HAZARDOUS WASTES AND SOLID WASTES

A. WASTE MANAGEMENT A.1. INTRODUCTION AND GENERAL ISSUES ON HAZARDOUS WASTES AND SOLID WASTES A. WASTE MANAGEMENT A.1. INTRODUCTION AND GENERAL ISSUES ON HAZARDOUS WASTES AND SOLID WASTES The objective of the German government s policy on waste is to achieve a recyclingbased economy that conserves

More information

An Introduction to Product Takeback

An Introduction to Product Takeback An Introduction to Product Takeback Overview Driving forces behind product takeback Product takeback legislation Product end-of-life options Reverse logistics Case study Motivation for Product Takeback

More information

Introduction. Industry concerns. Table 3.2 (DSD criteria): Reproductive toxicity Category 1; R60-61

Introduction. Industry concerns. Table 3.2 (DSD criteria): Reproductive toxicity Category 1; R60-61 Proposed Lead metal harmonized classification highlights problems with existing regulatory approach in deriving SCL for metals classified as toxic to reproduction Introduction This paper represents the

More information

Legrand's environmental commitments

Legrand's environmental commitments 128 Av. du Maréchal-de-Lattre-de-Tassigny 87045 Limoges Cedex - France Tel.: 05 55 06 87 87 - Fax: 05 55 06 88 88 i Your usual Sales office Website www.legrand.fr Product Environmental Profile plate and

More information

Treatment and Disposal Technologies for Medical Wastes in Developing Countries

Treatment and Disposal Technologies for Medical Wastes in Developing Countries Treatment and Disposal Technologies for Medical Wastes in Developing Countries Mohd Nasir Hassan, PhD Environmental Engineer WORLD HEALTH ORGANIZATION (WHO) (Cambodia/Lao PDR) Where do We Start? Definition>>>>Legal

More information

Guidelines (Master Plan) for Disaster Waste Management after the Great East Japan Earthquake

Guidelines (Master Plan) for Disaster Waste Management after the Great East Japan Earthquake Guidelines (Master Plan) for Disaster Waste Management after the Great East Japan Earthquake May 16, 2011 Ministry of the Environment 1. Introduction To manage waste resulting from the Great East Japan

More information

13 th International Project Week Lecturer: Stoyan Gaydardzhiev Participants: Laura Bauer Christoph Deckert Michael Grohme Carolin Gutsche Maximilian Hoeflich Roni Jojo Norman Knabe Johannes Lemberger Robert

More information

GREEN CHOICE PHILIPPINES

GREEN CHOICE PHILIPPINES GREEN CHOICE PHILIPPINES NELP-GCP 20080024 COMPUTER MONITOR 1. ENVIRONMENTAL SCENARIO Information and communication technologies which include computers are widely used across any kind of business sector

More information

Product Environmental Profile LaserJet 1020 series printer 4/2005

Product Environmental Profile LaserJet 1020 series printer 4/2005 Product Environmental Profile LaserJet 1020 series printer 4/2005 Hewlett-Packard Company Personal LaserJet Solutions Chinden Boulevard Boise, Idaho 83714-0021 Product description USA Model: HP LaserJet

More information

Environmental Project No. 809 2003 Miljøprojekt. Waste Indicators. Ole Dall, Carsten Lassen and Erik Hansen Cowi A/S

Environmental Project No. 809 2003 Miljøprojekt. Waste Indicators. Ole Dall, Carsten Lassen and Erik Hansen Cowi A/S Environmental Project No. 809 2003 Miljøprojekt Waste Indicators Ole Dall, Carsten Lassen and Erik Hansen Cowi A/S The Danish Environmental Protection Agency will, when opportunity offers, publish reports

More information

PHARMACEUTICAL AND CHEMICAL WASTE MANAGEMENT

PHARMACEUTICAL AND CHEMICAL WASTE MANAGEMENT Medicines and Medical Devices Agency of Serbia PHARMACEUTICAL AND CHEMICAL WASTE MANAGEMENT Ivana Bozic, MSc Health, Safety and Environment ISWA Beacon Conference, Novi Sad, 08 10 December 2010 458, Vojvode

More information

1. Waste management Prevention of waste Reduced landfilling of waste together with increased sustainable recycling of waste

1. Waste management Prevention of waste Reduced landfilling of waste together with increased sustainable recycling of waste 1. Waste management Prevention of waste Our production and consumption lead to large quantities of waste. An important element in work on eco cycles is therefore sustainable waste management. Articles

More information

WEEE Management Regulations

WEEE Management Regulations WEEE Management Regulations Directorate General for Environmental Management Chemicals, Waste and Radiation Protection Directorate Non-Hazardous Waste Department Regulations laid down by the State Secretary

More information

Use of Substitute Fuels in Large Combustion Plants (LCPs)

Use of Substitute Fuels in Large Combustion Plants (LCPs) Use of Substitute Fuels in Large Combustion Plants (LCPs) By Pat Swords Content of the Presentation What are substitute fuels What is the experience to date with these fuels What are the regulatory implications

More information

Waste management of hazardous waste in Poland

Waste management of hazardous waste in Poland Waste management of hazardous waste in Poland Administrative structure of Poland. There are three levels of administrative structure in Poland: regions (called województwo) sub-regions (called powiat)

More information

Life Cycle of Electronics

Life Cycle of Electronics What is E-waste? Discarded electronics generally referred to as 'e-waste' can include any of our electronic waste items such as CDs, DVDs and DVD players, computers, television sets, video games and cell

More information

Slide 1. Enviros Consulting Ltd

Slide 1. Enviros Consulting Ltd Slide 1 Regulation of Waste Management Activities Past, Present and Future! Steve Bell Technical Manager Waste Management Thursday, 26 July 2007 Presentation Aims An insight of where we have come from

More information

Legrand's environmental commitments

Legrand's environmental commitments VDI enclosure 128, Av. du Maréchal-de-Lattre-de-Tassigny 87045 Limoges cedex - France Tel: +33 (0)5 55 06 87 87 Fax: +33 (0)5 55 06 88 88 i Your usual Sales office Website: www.legrand.fr This document

More information

The ECN Concept for Quality Assurance of Compost

The ECN Concept for Quality Assurance of Compost The ECN Concept for Quality Assurance of Compost The ECN Quality Assurance Scheme 1 Targets and Structure of ECN-QAS 2 Quality Assurance Organisations 3 The ECN-QAS for Compost The ECN - Quality Assurance

More information

Guidance for registration and annual reporting

Guidance for registration and annual reporting January 2015 Guidance for registration and annual reporting DPA-System is short for Danish Producer Responsibility System. DPA-System is in charge of administrative tasks associated with the rules on producer

More information

WASTE MANAGEMENT PLAN CERTIFICATION AND COMPLIANCE FORM (GSFA Residential Energy Retrofit Program)

WASTE MANAGEMENT PLAN CERTIFICATION AND COMPLIANCE FORM (GSFA Residential Energy Retrofit Program) Golden State Finance Authority (GSFA) 1215 K Street, Suite 1650 Sacramento, California 95814 Phone: (855) 740-8422 Fax: (916) 444-3219 www.gsfahome.org WASTE MANAGEMENT PLAN CERTIFICATION AND COMPLIANCE

More information

Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition)

Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition) Product Description: Nu G Medical Waste System Technology (Pyrolysis / Thermal Decomposition) The NU G System uses pyrolysis thermal decomposition to treat infectious wastes typically generated in hospitals.

More information

Designing Closed-loop Supply Chains: Implementation of the WEEE directive in the UK 1

Designing Closed-loop Supply Chains: Implementation of the WEEE directive in the UK 1 Issue 56 Feature Designing Closed-loop Supply Chains: Implementation of the WEEE directive in the UK 1 Dr Wojciech Piotrowicz, Oxford Institute of Retail Management, Saïd Business School, University of

More information

European policy approaches to waste management and infrastructure

European policy approaches to waste management and infrastructure European policy approaches to waste management and infrastructure A5.0 Overview Appendix 5 Of greatest interest in terms of understanding the policies best suited for Irish waste management, infrastructure

More information

What s in a Mobile Phone?

What s in a Mobile Phone? What s in a Mobile Phone? Mobile Phones are complicated gadgets capable of processing millions of calculations per second. Their components each have their useful functions however also contribute to the

More information

Do you know how to dispose of hazardous waste?

Do you know how to dispose of hazardous waste? Do you know how to dispose of hazardous waste? for Hertfordshire Electrical items Electrical appliances form the fastest growing waste stream in the UK today. These items are becoming increasingly short-lived

More information

Product Environmental Profile Step Down Transformers

Product Environmental Profile Step Down Transformers Product Environmental Profile Step Down Transformers Product overview Step-down transformers are used to convert a higher input voltage (208-200 V) to a lower output voltage (120-100 V). They are used

More information

Waste Electrical and Electronic Equipment. Information Document

Waste Electrical and Electronic Equipment. Information Document Waste Electrical and Electronic Equipment. Information Document 10 th November 2009 Table of Contents 1. Electrical Waste Management Ltd. Introduction... 3 2. Services... 3 3. Compliance... 4 4. What is

More information

State of the art sustainability marketing tools

State of the art sustainability marketing tools State of the art sustainability marketing tools Anne-Marie Imrell ABB AB 2003 ABSTRACT This report belongs to the DANTES project that is supported by the EU Life Environment Program. Examination of how

More information

Revealing the costs of air pollution from industrial facilities in Europe a summary for policymakers

Revealing the costs of air pollution from industrial facilities in Europe a summary for policymakers Revealing the costs of air pollution from industrial facilities in Europe a summary for policymakers A new European Environment Agency (EEA report, Revealing the costs of air pollution from industrial

More information

Case study for the OECD Working Party on Resource Productivity and Waste: The Australian National Television and Computer Recycling Scheme

Case study for the OECD Working Party on Resource Productivity and Waste: The Australian National Television and Computer Recycling Scheme Case study for the OECD Working Party on Resource Productivity and Waste: The Australian National Television and Computer Recycling Scheme Contents Executive Summary... 3 Background... 4 The Australian

More information

Costs of air pollution from European industrial facilities 2008 2012 an updated assessment

Costs of air pollution from European industrial facilities 2008 2012 an updated assessment Costs of air pollution from European industrial facilities 2008 2012 an updated assessment Summary In 2012, air pollution from European industrial facilities cost at least EUR 59 billion (and up to EUR

More information

Municipal waste management in Austria

Municipal waste management in Austria Municipal waste management in Austria Prepared by Márton Herczeg ETC/SCP February 2013 EEA project manager Almut Reichel Author affiliation Márton Herczeg, Copenhagen Resource Institute, http://www.cri.dk/

More information

RoHS COMPLIANCE STATEMENT

RoHS COMPLIANCE STATEMENT Document type: Document number: Version: Form (F) TBD 2.0 Document name: PDE-F-012- compliance statement Author: Reviewer: Approver: Release date: Pages: Sippe ahomi uuspe 2-May-06 17 COMPLIANCE STATEMENT

More information

MEDICAL WASTE. Product stewardship - extended producer responsibility MEDICAL WASTE

MEDICAL WASTE. Product stewardship - extended producer responsibility MEDICAL WASTE Alice P Jacobsohn, Esq, National Solid Wastes Management Association MEDICAL WASTE Product stewardship - extended producer responsibility Resource conservation has become an important issue internationally,

More information

HUGO BOSS ENVIRONMENTAL COMMITMENT. Our claim. Our approach

HUGO BOSS ENVIRONMENTAL COMMITMENT. Our claim. Our approach HUGO BOSS ENVIRONMENTAL COMMITMENT HUGO BOSS assumes responsibility for future generations. This entails that we also pursue our high standards for quality and performance in environmental protection.

More information

Product End-of-Life Disassembly Instructions Product Category: Personal Computers

Product End-of-Life Disassembly Instructions Product Category: Personal Computers Product End-of-Life Disassembly Instructions Product Category: Personal Computers Marketing Name / Model [List multiple models if applicable.] HP Pro 3120 Small Form Factor Business PC Purpose: The document

More information

Discarded Kitchen, Laundry, Bathroom Equipment Comprises Over Half of World E-waste: UNU Report

Discarded Kitchen, Laundry, Bathroom Equipment Comprises Over Half of World E-waste: UNU Report EMBARGO: 02:00 GMT, Sunday 19 April, 2015 Contacts: Terry Collins, +1-416-538-8712; +1-416-878-8712 tc@tca.tc Ruediger Kuehr, Head UNU-IAS SCYCLE; +49-228-815-0213/0271; +49-40-53630931 kuehr@unu.edu Report

More information

2009 No. 890 ENVIRONMENTAL PROTECTION. The Waste Batteries and Accumulators Regulations 2009

2009 No. 890 ENVIRONMENTAL PROTECTION. The Waste Batteries and Accumulators Regulations 2009 STATUTORY INSTRUMENTS 2009 No. 890 ENVIRONMENTAL PROTECTION The Waste Batteries and Accumulators Regulations 2009 Made - - - - *** 2009 Laid before Parliament *** 2009 Coming into force in accordance with

More information

Universal Waste Management

Universal Waste Management Universal Waste Management Reference 22CCR 66273.1 et seq., Universal Waste Rules CSUCI is a Small Quantity Handler of Universal Waste Universal Wastes Are... Small Batteries; including nickel cadmium,

More information

Working Group on Waste Prevention and Recycling

Working Group on Waste Prevention and Recycling Unclassified ENV/EPOC/WGWPR(2001)3/FINAL ENV/EPOC/WGWPR(2001)3/FINAL Unclassified Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 18-Feb-2003

More information

Recycling How Does Australia Compare?

Recycling How Does Australia Compare? Recycling How Does Australia Compare? Compiled by Nolan-ITU and Sponsored by Visy Recycling In support of Australia s Resource Recovery Sector APRIL, 2002 Ref: 3045-07-01 NOLAN-ITU Pty Ltd ACN 067 785

More information

Reuse and Recycling European Union Social Enterprises. www.rreuse.org

Reuse and Recycling European Union Social Enterprises. www.rreuse.org Reuse and Recycling European Union Social Enterprises www.rreuse.org Members: R.U.S.Z (A) RepaNet (A) ARGE Müllvermeidung (A) KVK (B) RESsources (B) BAG Arbeit BAG Arbeit & Werkstatt Frankfurt (D) AIRES

More information

ELECTRONIC AND ELECTRICAL WASTE MANAGEMENT IN SINGAPORE. Singapore

ELECTRONIC AND ELECTRICAL WASTE MANAGEMENT IN SINGAPORE. Singapore ELECTRONIC AND ELECTRICAL WASTE MANAGEMENT IN SINGAPORE Singapore Background of Ministry of the Environment and Water Resources Formed in 1972 as a full fledged Ministry Primary focus then was to Prevent

More information

TCO Certified Edge Displays 1.2

TCO Certified Edge Displays 1.2 TCO Certified Edge Displays 1.2 15 November 2012 1 (12) Contents - TCO Certified Edge Displays 1.2 INTRODUCTION... 3 A CRITERIA... 4 A.1. MINIMUM 65% RECYCLED PLASTIC CONTENT... 5 A.2. HALOGEN FREE DISPLAY...

More information

Packaging Management Law 5771 2011

Packaging Management Law 5771 2011 1 This is an unofficial translation. The binding version is the official Hebrew text. Readers are consequently advised to consult qualified professional counsel before making any decision in connection

More information

The Control of Major Accident Hazards Regulations (Northern Ireland) 2015

The Control of Major Accident Hazards Regulations (Northern Ireland) 2015 STATUTORY RULES OF NORTHERN IRELAND 2015 No. 325 HEALTH AND SAFETY The Control of Major Accident Hazards Regulations (Northern Ireland) 2015 Made - - - - 26th August 2015 Coming into operation - 28th September

More information

ECO-FRIENDLY COMPUTING: GREEN COMPUTING

ECO-FRIENDLY COMPUTING: GREEN COMPUTING ECO-FRIENDLY COMPUTING: GREEN COMPUTING Er. Navdeep Kochhar 1, Er. Arun Garg 2 1-2 Baba Farid College, Bathinda, Punjab ABSTRACT Cloud Computing provides the provision of computational resources on demand

More information

Electronic Recycling 101 Class 59 of the Metro Area Master Recycler Program April 22, 2015 www.universalrecyclers.com

Electronic Recycling 101 Class 59 of the Metro Area Master Recycler Program April 22, 2015 www.universalrecyclers.com Electronic Recycling 101 Class 59 of the Metro Area Master Recycler Program April 22, 2015 www.universalrecyclers.com e-waste asset recovery u-waste commodities State of Oregon Recycling 101 In the late

More information

The economic basis of municipal waste management A comparison between Poland, Sweden and Lithuania

The economic basis of municipal waste management A comparison between Poland, Sweden and Lithuania The economic basis of municipal waste management A comparison between Poland, Sweden and Lithuania Team: Małgorzata Zakręcka (CUT), (gosiazakr@poczta.onet.pl), Neringa Kedavičiūtė (KTU), (neringa.kedaviciute@gmail.com),

More information

SANITATION COUNTRY PROFILE NORWAY

SANITATION COUNTRY PROFILE NORWAY SANITATION COUNTRY PROFILE NORWAY Decision-Making Programmes and Projects Status Capacity-Building, Education, Training and Awareness-Raising Information Research and Technologies Financing Cooperation

More information

DIRECTIVE 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 September2000 on end-of life vehicles

DIRECTIVE 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 September2000 on end-of life vehicles L 269/34 DIRECTIVE 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 September2000 on end-of life vehicles THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION, Having regard to the

More information

Impact Assessment (IA)

Impact Assessment (IA) Plastic & Glass Packaging Recycling Business Targets 2016-2020 IA No: Lead department or agency: Defra Other departments or agencies: Scottish Government, Welsh Assembly Government, Dept of the Environment

More information

TEN GREEN TESTS FOR THE ITALIAN PRESIDENCY July December 2014

TEN GREEN TESTS FOR THE ITALIAN PRESIDENCY July December 2014 TEN GREEN TESTS FOR THE ITALIAN PRESIDENCY July December 2014 1. Challenge Deregulation Reject the Comprehensive Economic and Trade Agreement (CETA) between the EU and Canada that was finalised in May

More information

The Management of Pharmaceuticals in the Environment (PIE) FAQ. Key questions and answers. Q: How do pharmaceuticals get into the environment?

The Management of Pharmaceuticals in the Environment (PIE) FAQ. Key questions and answers. Q: How do pharmaceuticals get into the environment? The Management of Pharmaceuticals in the Environment (PIE) FAQ Key questions and answers Q: How do pharmaceuticals get into the environment? A: Like many foods and supplements that are consumed by humans

More information

E-waste and Environmental Degradation

E-waste and Environmental Degradation E-waste and Environmental Degradation By Suraj S. The Frank Anthony Public School Cambridge Layout Bangalore 560 008 Introduction The industrial advancement made by man has generated huge quantity of solid

More information

Service Overview. Chapter

Service Overview. Chapter Chapter 1 Service Overview Carefully read through this chapter for a look at various components of the Eee PC 4G (701) and necessary cautions and tools before performing any service and repairs. T o provide

More information

Directive 2000/53/EC on End-of-Life Vehicles

Directive 2000/53/EC on End-of-Life Vehicles Directive 2000/53/EC on End-of-Life Vehicles Brussels, 11 April 2006 Rosalinde van der Vlies European Commission Environment Directorate-General Legislative Set-Up Directive 2000/53/EC on end-of-life vehicles

More information

N o n - a u t h o r i z e d t r a n s l a t i o n

N o n - a u t h o r i z e d t r a n s l a t i o n Ordinance of the Federal Minister of Agriculture and Forestry, Environment and Water Management on Waste Prevention, Collection and Treatment of Waste Electrical and Electronic Equipment (WEEE Ordinance),

More information

Use of economic instruments in the EU 27 and waste management performances Shailendra Mudgal

Use of economic instruments in the EU 27 and waste management performances Shailendra Mudgal Waste in a new economic scenario: Low Cost strategies, efficiency and valorization Use of economic instruments in the EU 27 and waste management performances Shailendra Mudgal ORGANIZADO POR: CON LA COLABORACIÓN

More information

Comp-AC. ENVIRONMENTAL INFORMATION Recycling instructions for drive of type ACS 200. ABB Oy Product Support 12.11.1998 TLC/Ari Niskanen

Comp-AC. ENVIRONMENTAL INFORMATION Recycling instructions for drive of type ACS 200. ABB Oy Product Support 12.11.1998 TLC/Ari Niskanen 1 ABB Oy Product Support 12.11.1998 TLC/Ari Niskanen Comp-AC ENVIRONMENTAL INFORMATION Recycling instructions for drive of type ACS 200 Table of contents 1. Introduction 2. Product package 3. Product materials

More information

End-of-life vehicles. Information for authorised treatment facilities

End-of-life vehicles. Information for authorised treatment facilities End-of-life vehicles Information for authorised treatment facilities 1. What is this guide about? This booklet is a simple guide to SEPA s requirements under the end-of-life vehicle (ELV) legislation.

More information